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The corresponding value of E is obtained from (2):
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For the special circumstance, considered by Gold-
hammer and Feenberg, where

I

&2~+1=0 for all /, (&)

we can allow such e; to approach zero in the preceding
formulas. Equations (3) and (4) then reduce to the
Brillouin-Wigner form for this case:

&=&o+&oo+ Q e2'

Thus, if (7) holds, the Brillouin-Wigner scheme cannot
be improved by varying G„alone.

However, in our second case, if (7) holds, (5) and
(6) are replaced by

G„,=G„=(1—esn/22~2) ')

62n
E=&o+Voo+ Q e2'+ (11)

(1—esn/e2~2)

In this case, then, by varying G 1 and 6 an improve-
ment on the Brillouin-Wigner procedure is obtained.

Equations (4) and (11) are clearly of the same form.
Together, they provide a simple, generally valid
prescription for improving the Brillouin-Wigner expan-
sion for the energy: namely, divide the highest order
term in the Brillouin-Wigner expansion by 1 minus
the ratio of the highest order term to the term of next
lower order. '

A numerical example illustrating the improvement
resulting from this prescription, relative to the usual
Brillouin-Wigner procedure, is given in reference 1.

3 My attention has been called to the following proof that the
improved formulas actually reduce the energy: Since the last
two terms of Eq. (4) are (n'„+os„+1)(1—22 &'/n2„') ', whereas
the corresponding terms of Eq. (2) (with all G's=i) are just
~2 +~& +&, these terms are greater, in absolute value, in Kq. (4)
than in Eq. (2). Therefore, if the energy is reduced by the inclusion
of these terms in Eq. (2), a greater reduction follows by using
Eq. (4).

I am also indebted to P. Goldhammer for the observation
that Eq. (4) is exact, in any order I, if the n; form a geometric
progression. A similar remark applies to Eq. (11)and the equation
in reference 2.
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A plasma having infinite electrical conductivity and no viscosity is assumed to be in contact with a
uniform magnetic field along a plane boundary which is parallel to the field. The behavior of small
perturbations of this boundary when the plasma is Qowing at velocity vo perpendicular to the magnetic
field is calculated by linearized theory. Perturbations which only move lines of force parallel to themselves
are unstable; for small vo/c the motion is incompressible and the rate of growth of the perturbation can be
obtained from the incompressible hydrodynamic expression by replacing the mass density of each Quid in the
hydrodynamic case by the sum of twice the magnetic energy density divided by c and the mass density
of each magnetohydrodynamic Quid. The magnetic 6eld is to be considered as a "Quid" having only magnetic
mass. It is shown that this analogy holds even in the nonlinear equations for two-dimensional incompressible
Qow. Perturbations which only bend lines of force are stable, while those which both move lines parallel
to themselves and bend them are stable if the bending wavelength is short enough.

INTRODUCTION
' " "

ELMHOLTZ instability will be observed in
~ - ~ ~ hydrodynamics if two Quids are in relative
tangential motion at a sharp plane boundary. Per-
turbations of the plane boundary are unstable and

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

lead to mixing of the Quids. Another type of instability
(Rayleigh instability) occurs if a denser Quid lies in a
layer over a less dense one in a gravitational field. An
analysis of combined Rayleigh-Helmholtz instability
for incompressible Quids is given by Lamb, ' while

' H. Lamb, Hydrodynamics (Dover Publications, ¹wYork,
1945},sixth edition, p. 373.
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FIG. 1.Unperturbed fields in the "laboratory" frame. Pro. 2. Unperturbed fields in the plasma frame.

Frieman' has studied the compressible Helmholtz case.
In magnetohydrodynamics (MHD), Rayleigh insta-

bility has been investigated by Kruskal and Schwarzs-
child. ' They took the denser Quid to be a plasma with
no viscosity or resistivity, and the lighter Quid to be
a magnetic field supporting the plasma in a gravitational
6eld. Such an arrangement is unstable; the denser
fluid falls and the lighter (magnetic Geld) rises to take
its place. To extend the analogy between MHD and
hydrodynamics it seems interesting to look for instabil-
ities when a plasma Qows at right angles to a static
magnetic field (Fig. 1). This would be the analog of
Helmholtz instability. The unperturbed state of the
system is nonstatic in the "laboratory" frame but is
static in the frame of the moving plasma, the motion
being represented by an electric field in the vacuum
normal to the boundary and of magnitude:F080"
(mks units will be used). ss/c will be assumed small, so
the vacuum magnetic field Bo" is the same in either
frame of reference. Since the magnetic fields are assumed
diferent in the plasma and vacuum, there is a surface
current in either frame. Also there is a surface charge
in either frame, since the unperturbed vacuum electric
field is zero in the laboratory frame, while the unper-
turbed plasma electric field vanishes in the plasma
frame (Figs. 1 and 2).

pdv/dt= jXB+fE VP, (1)—

Bp/Bt+V (pv)=0, (2)

j=fv+~(E+vx B), (3)

(4)VX B—tio j—tis&oc1E/cit=0,

v B=o,

vXE+ aB/at=0,

v E=f/ , ss

(5)

(6)

(7)

(1 l dP (vl dp

'E. Irieman, Los Alamos Scientific Laboratory Unclassified
Report LA-1608, Sept. 1953 (unpublished).

I M. Kruskal and M. Schwarzschi1d, Proc. Roy. Soc. (London)
A223, 348 (1954).

FUNDAMENTAL EQUATIONS

The following formulation is essentially equivalent
to that of Kruskal and Schwarzschild. ' Equations
which apply to the plasma are

where p is plasma mass density, v is velocity, j is current
density, E and B are electric and magnetic Gelds, f is
charge density, P is pressure, po and 6p are the usual
mks constants (tisss=1/c'), and 7 is cs/c. for the
plasma gas. Equation (3) is the Ohm's law used. Since
o., the electrical conductivity, is taken as infinite,
E+vX B=o in the plasma. Equation (5) can be
omitted, since it is the same as the divergence of (6)
if perturbations away from the steady state are assumed
to behave as e"' and oi/0. Equation (8) is the adiabatic
law. Its use requires the assumption that heat Qow due
to thermal conductivity and heat sources due to
j E are negligible. The equation of charge conservation
is omitted, since it follows from (4) and (7).

Conditions which apply to the sharp boundary
between plasma and vacuum are

dn/dt=nXLnX(vv) n), (9)
nP= ss((Ei' n)E"—(E".n)E"-snL(~")'- (~")'3}+(1/po)

X{(B&n)$&—(B".n)$'
-l L(&")'-(&')'3)- ( )

x(F"xB"—E xB ), (1o)

(11)n ($&—B")=0

LINEARIZATION AND SOLUTION
OF THE EQUATIONS

The basic equations are linearized in the same
manner used by Kruskal and Schwarzschilds Each

nX(E&—E")= (n v)(B&—B'). (12)

The superscript c denotes vacuum and p the plasma
quantity. n is a unit vector normal to the boundary
and directed into the plasma. Equation (10), which is
obtained from the electromagnetic stress tensor, says
that the total stress (electromagnetic plus hydrostatic)
must be continuous across the boundary. The erst
term is the net electric stress, the second is magnetic,
while the third subtracts the amount of stress which
is changing the momentum of the electromagnetic
Geld in the boundary. Equations (11) and (12) arise
from application of (5) and (6), respectively, to the
boundary. In deriving (10) and (12), it is assumed that
the directional derivative of a quantity parallel to
the boundary is much smaller than the normal deriva-
tive —i.e., that the boundary is truly sharp.

Equations (4), (5), (6), and (7) apply to the vacuum.
As before, (5) can be omitted. Also, since j=o and
f=o, (7) is the same as (4) for &oWO, so that only (4)
and (6) are used.
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vector or scalar quantity is assumed to be the sum of
a steady-state value and a small perturbation. Products
of perturbations are dropped after substitution into
the basic equations. The unperturbed solution in the
plasma frame is: p= po, v=O, E"=0, lE"

l
=Ep" (along

—y), f=0, P=Po,
l
B"

l
=Bo" and

l

B"
l
=Bo", both

directed along +s, dn/dt=0, and, from (10),

eo(&0")' (Bo")' (Bo")'——+ +Po=
2 2po2@0

pp ) [
t'm

h' —
I

1+-
eo(BQ")2 3 ~ l E P

(1 ppPQ ) tso«Pptt t u tso«Poh
x I

-+
(Bo")'& po & v po

X t22 —
l 1+ lu2 =0. (14)

po

eo(BQ&)')

The boundary equation becomes Lafter eliminating q'
but not q by means of (13)j
q (Bo")' t' po & m—t22 —

l 1+ lu2 =L(8+u)2 —h'j—,(15)
& (Bo")' & eo(BQ")'&

if b' is neglected compared to unity. These three
equations have been obtained with the assumption

Perturbations are assumed to be of the form: amplitude
Xexp(ik."my+—isss+QQt) in the plasma and amplitude
Xexp(ilx+qy+isss+Qot) in the vacuum. The signs of
the qy and esy terms are chosen so that in cases of
interest the real parts of m and q are positive. With
these substitutions, the plasma equations yield 15
homogeneous scalar equations for the 15 amplitudes,
the coeKcients being functions of l,nz, m, or, and unper-
turbed quantities. Similarly the vacuum gives for the
six amplitudes six equations containing l, g, e, and co.

From the boundary, ten more equations containing
l, m, e, q, and ~ are obtained. This system is over-
determined, having 31 equations for 24 amplitudes.
When the determinants of the plasma and vacuum
systems are set equal to zero, two conditions on l, ns,

e, q, ~ are obtained. A third condition is obtained from
the boundary equations; all of the boundary equations
were either used or found to reduce to an identity, so
that there can be no more than these three conditions
on l, m, e, q, co. This means that co, for example, can be
expressed in terms of / and e, or that one is free to
specify the shape of the deformed surface at 3=0
and then observe what happens in future time.

In terms of the dimensionless symbols ts= n/t,
B=sp/c, alld u=ico/tc, the vacuum equation is

q2/P = 1+t22—u'.

The plasma equation is

that co, m, and q are all diRerent from zero, so that they
cannot be trusted if any of these three vanishes. For
example, if co=0, then V' B=O must be introduced as
an additional equation.

The 6rst factor in the plasma equation cannot be
zero in cases of interest. If m=0 and l/0, the factor
obviously cannot vanish. If v~0 and 3/0, it is not
evident that the factor can be dropped. Therefore,
suppose u' does equal h2(1+pp/pp(B02')'j ', then (15)
is not satisfied unless m=0. But since (13)—(15) are
not trustworthy for m=0, the original equations for
the amplitudes must be re-examined. It turns out that
all vacuum and plasma perturbations must vanish if
1/0. If /=0, this is actually a permissible solution for
co, in which vacuum perturbations vanish and the
boundary is unperturbed from a plane. The only
nonvanishing plasma perturbations are v, j„, E„&,
8 ", so that all Quid motion is parallel to the boundary;
the motion involves sinusoidal bending of the lines of
force in a plane parallel to the boundary and gives
wave motion along the lines of force.

The second factor of the plasma equation yields
several well-known' dispersion expressions for magneto-
hydrodynamic waves in an in6nite plasma. For example,
if v=0 and nz, l/0, then

f co $ 'yP0+ (Bo") /tso

& P ms) —Pp+ e p(BQo)'
(16)

This is a longitudinal wave propagating at right angles
to the lines of force without bending them. If e/0 and
m, l=0, two solutions are possible:

(Bo")'/pp
)

22' pp+ ep(B02')'
(17)

which goes to c' as pa~0 and is the transverse wave
propagating along the lines of force mentioned above.
The wave is the analog of a wave in a string having
tension (Bos')2/tsp and mass per unit length of Lpo

+op(Bpo) ].The other solution is

—~2/I'=7PQ/po,

which is merely a sound wave with Quid motion parallel
to the lines of force.

If m/t and q/t are eliminated from (15) by use of
(13) and (14), the result is

(1+t2 u2)$(Btg2 Au2) L(h+u)2 h2j

XL1+ (Dh' —u') (Bh'—Au')/(Gh' —Fu') j& (19)

where the positive dimensionless quantities A, 8, D,
F, and G have been introduced:

A = lj o+«(Bo")'3/l «(B")'j B= (Bo")'/(Bo")'
tsp«PQY/pp= &sound /c q

G= BD, F=B+D(A—B).
' H. Alfvdn, Costlicat Elcctrody22arwscs (Oxford University Press,

New York, 1950).
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The square root to be chosen on each side of (19)
is the one with the positive real part, corresponding to
perturbations which fall off away from the boundary.
These are the only ones of physical interest for semi-
infinite plasma and vacuum regions.

Equation (19), which is of eighth degree in u when
squared and multiplied by Gh' —Fn', can be solved
when l=0 (h = pe). In this case it reduces to

Vo

c
Line of marginal stabilify

vp= PA+i) (g~g)n~c

FIG. 3. Stable and unstable regions for vp/c and 22/i small.

(1+r)-'*(Ar+a)+ (1+r)~

(r+D)(Ar+8) '
X =0, if P«1, (20)

(Fr+6)

—S~s[A~2 —(A+ 1)(a+ 1)asj-:
(21)

where r=poeopo2/ns. The solution r= —1 gives q=o by
(13) so that the original equations must be re-examined;
the result found is that all perturbations must vanish.
The solution r = 8/A gi—ves 222= 0 by (14). But this
is simply the case where the first factor in (14) vanishes
and, as previously stated, it is a permissible solution
but does not result in a boundary perturbation. The
second factor in (20) gives two more solutions for r.
It can be shown that one of these solutions is positive
real and the other negative real for nonrelativistic
gases (those in which the rest energy of the particles is
much greater than their kinetic energy). But r)0 is
not a solution, since the radicals in (20) are those with
positive real parts. Hence the only permissible solution
is r &0, which means co is imaginary and the boundary
undergoes stable oscillations.

In the more general case where l/0, an approximate
solution of the eighth degree equation in I can be
obtained for small h and b. Although h=b=N=O is a
solution, expansion of I in a Taylor series in h and b

about the origin is not permissible, since the partial
derivatives Be/85 and Bsi/Bh are discontinuous at the
origin. This can be seen from the fact that (Bu/88)5
+(BN/Bh)h is different from what is obtained by
expanding I in terms of distance along a ray through
the origin in the h —6 plane. The ray expansion is
accomplished by letting 6=ys and h =xs and I=a power
series in s, where s= distance from the origin and
y/@=slope of the ray. Equating coeflicients of the
lowest power of s and expressing the result in terms of
h and 6 gives

second term is imaginary, the system is stable and
merely oscillates. If APvp' (A—+1)(8+1)22'c'=0, the
system is in a condition of marginal stability. co is in
general complex in the plasma frame, so that unstable
modes appear to grow in an oscillatory fashion. In the
frame moving at the wave velocity, which can be
obtained from the imaginary part of ~, unstable
modes grow without oscillating. If vo is reversed in sign,
it can be seen that the wave moves in the opposite
direction with the same speed in the unstable case,
while the instability rate is unaGected.

If I=0 (no bending of lines of force), (22) shows that
the system is unstable for all /, cu being larger for
shorter wavelengths, as is also true for MHD-Rayleigh
instability. If so=0,

)' (IIo")') / (~o")
+ i vapo+, +—,i.

)io po ~ ~ pto& iso&

Except for the two magnetic field terms in the denom-
inator, which are present because light velocity has
not been assumed infinite, this agrees with the Kruskal-
Schwarzschild' result for the case of no gravitational
force.

TABLE I. Amplitudes of perturbations ~vhen co, m, and q
are all different from zero.

Plasma

e,= —ipolcvn
'vy =potÃco(x

v, = —(in/pnp) [ (Bpv) 2(222+ippppppp+lp mp)+ pppnpp )n—
B "=i/.on/Bp"n
By~ =ippnmB p~n

Bz"=po(m —l2)Bp~a
+~"= —ij,oeuoBo"
Ey& = —zp plcoB p~m

g y —pj,v = m (222+p p poP+ipp m') Bp&n-
j 2=pl(N2+ppppppp+ip m2)Bpvn

j,u=p
f=p
P=P(Bpv)2(222+ ppppcpp+ip m')+ happ prop jn-
p= (pp/yPp)P(Bp") (22 +I2pppuP+l m)+Ipppw )Q—

or
Vol PAPVo' (A+1) (8+1)22'C'j»

co=1 (22)
A+1 A+1

The discontinuity of the partial derivatives at the origin
can be verified from (21). The second term of (22)
determines whether instability occurs. If it is real,
there are two normal modes, one which grows expo-
nentially and the other which is damped in time. If the

n, = —ipomln

Boundary

ey=p

Vacuum

B v — pp(mwl/q)Bp'n
By =zppmeBp cx

B."= pp(m/q) (222+ppp )Bpp"p—pnp

+a"= —p,pmMB p"A

E„"= ip, (ml(a/q) Bp"n

E;=0

s~ = —zppmsQf
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Fro. 4. Fields and flow for N=O, l/0 (unstable case).
Fro. 5. Fields and flow for oo/0, l=0 (stable case).

The eighth degree equation obtained from (19) has
six other roots for N. Two of these were introduced by
multiplying through by Gh' —PN'. Two come from
(19) with the sign of one side reversed and therefore
are also extraneous. The final two, given by u'= (A' —1)/
(A'F A) to—lowest order in Is and 8, do not satisfy (19)
because of the requirement that the radicals have
positive real parts. Equation (21) then gives the only
two permissible solutions for small h and 8. Figure 3
shows the regions of stability and instability.

sv pl (vp'Pp/p') l
07=

1+p/p' 1+p/p'
(23)

where p is the density of the Quid at rest. It is interesting
to note that the approximate MHD solution for ~
when n=0 can be obtained from (23) by replacing
p by pp+ep(Bp")' and p' by ep(Bp")'. epB' is twice the
mass equivalent of a Geld energy. Now (23) is obtained
from linearized theory by assuming incompressible
irrotational Qow, while from Table I it can be shown
that the MHD Qow is strictly irrotational if n=0, but
it is not incompressible, since

V. v= —(P /7Po)e"* "v+

I' is the amplitude of the pressure perturbation and
equals [(Bp")'(ppeppp+P 5$)+pppprp')a—, where u is a
parameter which sets the scale of all the perturbations.
Also, by (14), P—m' is proportional to cp', so that
V v~~s. But by (22), pp 5, and V v is therefore P.
Thus to Grst order in vp/c, (22) is an incompressible
solution.

ANALOG TO HYDRODYNAMICS

Lamb' gives an expression for hydrodynamic Helm-
holtz instability. If it is applied to a frame of reference
in which one Quid is at rest and the other moving
with velocity —eo, the result is

From the basic equations (1) to (7) one can show
that if the lines of force remain straight and parallel
and if cr= (x),

8 (p+ epB')
+V [(p+epB') v]= epB—sV v, (24)

8t

dv B' f' v'i
(p+epB') +V P+——

~

1——
[

=epB'vV' v, (25)
dt 2ppE cy

where 8 is scalar and equals the magnetic field. If the
terms containing V v and v'/c' in (24) and (25) are
dropped as being of higher than first order in 6 in the
present problem, these two equations look like hydro-
dynamic equations, but with p+epB' appearing as
mass density and P+B'/2pp as total stress. This is
the reason for the similarity of (22) with m=0 and (23).

Table I gives the relative amplitudes of the perturba-
tions. The expressions are exact in that they do not
involve any approximate ~, and are rigorous solutions
of the homogeneous linear equations provided co, m,
and q are all diGerent from zero. a is an arbitrary scale
parameter.

Figures 4 and 5 show some features of the 6elds and
Qow for n=0 and 1=0, respectively. The 6gures are
only approximate in that the wave motion has been
neglected —i.e., the imaginary part of or has been
neglected compared to the real part. This is justi6able,
since in practical cases A))1.

Extensions of the present work could in principle
be made to two Quids with magnetic fields, to 0-/ ~,
viscosity/0, hnite dimensions, etc.
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