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of supernovae of Type II do not show the 55-day half-
life; the curves fall more steeply, suggesting that radio-
active nuclei with decay periods longer than a few days
are absent. There is considerable variety in the light
curves of diGerent Type II supernovae.

We therefore identify two cases, one in which the
hydrogen concentration is deficient and the other in
which it is present in excess concentration. These we
tentatively associate with supernovae of types I and II,
respectively.

CONCLUSION

In conclusion we wish to emphasize that the produc-
tion of Cf'" in the November, 1952 thermonuclear test
stands as clear evidence for the terrestrial production

on a fast time-scale of heavy elements by neutron-
capture processes. Our argument in this paper would
indicate that this process is occurring on a large scale
and has contributed to the synthesis of the heavy
elements. In a similar manner, the existence of Tc in
certain stars demonstrates that neutron-capture proc-
esses on a slow time-scale are occurring in stars. It is
our point of view that neutron-capture processes on
both a fast and a slow time-scale have been necessary
to synthesize the heavy nuclei in their observed
abundance s.

We should like to express our thanks to Dr. W. Baade
for many stimulating discussions, and for providing us
with very valuable unpublished data on supernovae.
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By using the method of Goldhammer and Feenberg, a simple, generally valid prescription for improving
the Brillouin-Wigner perturbation procedure is derived.

and so on. In the Brillouin-signer method, all G s
equal 1, whereas, according to Goldhammer and
Feenberg, the G s in (2) are varied to make E a
minimum. A formal discussion of the general case,
for arbitrary e, is given in their paper.

It is instructive, however, to consider two special
cases. In the 6rst, we put all G s equal to 1 except G„.
The best choice of G„ is then given by

Gn (1 e2n+1/e2n) (~)
while the energy becomes'

i
~OLDHAMMER and Feenberg have recently~ proposed an interesting modification of the

Brillouin-Wigner perturbation method. ' They illustrate
their method with several examples, in each of which
their refinement produces a correction factor of the
same simple form. Its repeated appearance suggests
that this simple correction factor may be rather
generally applicable, and in this note we wish to show
that this is indeed the case.

Assuming a familiarity with the material and notation
of reference 1, we recall that the wave function has
the form &2n+1
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The associated expression for the energy is 7
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E=Eo+Voo+ Q e'+ (4)
(1 e2n+1/e2n)

Our second case is slightly more general: we put all
f1 Vie' ' ' V 2 G s equal to 1 except G„ 1 and G . We then find, for

) the best choice of G 1 and G„:
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'P. Goldhammer and E. Feenberg, Phys. Rev.

(1956).
101, 1233
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'More generally, if all G, 's equal 1 except Gj„optimizing Gg,
leads to

G2= 1 es+n+rl (e22+r —222), —
2n+1

&=&o+&OO+ & e;+&2+nir'/(&22 —&22+r).

Thus, regardless of k, the correction to the wave function is of
order m+1 and the correction to the energy of order 2m+2,
as one would expect. Also, both corrections approach zero as e
increases, again regardless of k.
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The corresponding value of E is obtained from (2):
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62n—2 62n—1)62n+1~ 62n

f

2

~ 1—
e2n-2+ e2n-1) e2n e2n 1

2

+e2n+1

2e2n—1+e2n—2) e2n+ (e2n—1 e2n —2) e2n+1 e2n1—
2

(6)

For the special circumstance, considered by Gold-
hammer and Feenberg, where

I

&2~+1=0 for all /, (&)

we can allow such e; to approach zero in the preceding
formulas. Equations (3) and (4) then reduce to the
Brillouin-Wigner form for this case:

&=&o+&oo+ Q e2'

Thus, if (7) holds, the Brillouin-Wigner scheme cannot
be improved by varying G„alone.

However, in our second case, if (7) holds, (5) and
(6) are replaced by

G„,=G„=(1—esn/22~2) ')

62n
E=&o+Voo+ Q e2'+ (11)

(1—esn/e2~2)

In this case, then, by varying G 1 and 6 an improve-
ment on the Brillouin-Wigner procedure is obtained.

Equations (4) and (11) are clearly of the same form.
Together, they provide a simple, generally valid
prescription for improving the Brillouin-Wigner expan-
sion for the energy: namely, divide the highest order
term in the Brillouin-Wigner expansion by 1 minus
the ratio of the highest order term to the term of next
lower order. '

A numerical example illustrating the improvement
resulting from this prescription, relative to the usual
Brillouin-Wigner procedure, is given in reference 1.

3 My attention has been called to the following proof that the
improved formulas actually reduce the energy: Since the last
two terms of Eq. (4) are (n'„+os„+1)(1—22 &'/n2„') ', whereas
the corresponding terms of Eq. (2) (with all G's=i) are just
~2 +~& +&, these terms are greater, in absolute value, in Kq. (4)
than in Eq. (2). Therefore, if the energy is reduced by the inclusion
of these terms in Eq. (2), a greater reduction follows by using
Eq. (4).

I am also indebted to P. Goldhammer for the observation
that Eq. (4) is exact, in any order I, if the n; form a geometric
progression. A similar remark applies to Eq. (11)and the equation
in reference 2.
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A plasma having infinite electrical conductivity and no viscosity is assumed to be in contact with a
uniform magnetic field along a plane boundary which is parallel to the field. The behavior of small
perturbations of this boundary when the plasma is Qowing at velocity vo perpendicular to the magnetic
field is calculated by linearized theory. Perturbations which only move lines of force parallel to themselves
are unstable; for small vo/c the motion is incompressible and the rate of growth of the perturbation can be
obtained from the incompressible hydrodynamic expression by replacing the mass density of each Quid in the
hydrodynamic case by the sum of twice the magnetic energy density divided by c and the mass density
of each magnetohydrodynamic Quid. The magnetic 6eld is to be considered as a "Quid" having only magnetic
mass. It is shown that this analogy holds even in the nonlinear equations for two-dimensional incompressible
Qow. Perturbations which only bend lines of force are stable, while those which both move lines parallel
to themselves and bend them are stable if the bending wavelength is short enough.

INTRODUCTION
' " "

ELMHOLTZ instability will be observed in
~ - ~ ~ hydrodynamics if two Quids are in relative
tangential motion at a sharp plane boundary. Per-
turbations of the plane boundary are unstable and

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

lead to mixing of the Quids. Another type of instability
(Rayleigh instability) occurs if a denser Quid lies in a
layer over a less dense one in a gravitational field. An
analysis of combined Rayleigh-Helmholtz instability
for incompressible Quids is given by Lamb, ' while

' H. Lamb, Hydrodynamics (Dover Publications, ¹wYork,
1945},sixth edition, p. 373.


