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Frictional forces in He II were studied by observing the decay of free oscillations in a U-tube. The decay,
unlike that for ordinary liquids (including He I), is characterized by tlo logarithmic decrements: one for
amplitudes of oscillation below about 0.1 cm, and another for amplitudes between about 0.2 and 1 cm. The
values of these two decrements agree with the results of a hydrodynamical calculation which assumes that
for the lower range of amplitudes the two-Quid equations of Landau and Tisza hold, and that for the other
range of amplitudes the normal and superQuid components have identical velocity fields. The values for the
viscosity coeKcient deduced from the observations agree roughly with each other and with the published
results of other methods. Despite the large experimental error, there is evidence that the viscosity when the
two components move together is higher than the viscosity of the normal component when the two-Quid
equations hold, the ratio being about 1.33:1.

The transition between the two types of behavior is fairly sharp near the lambda point but becomes dif-
fuse as the temperature is lowered to 1'K. At a given temperature, the transition appears to be sharper the
more gentle the bend of the U-tube, that is, the more uniform the velocity over the walls of the tube.

I. INTRODUCTION of the meniscus in a rotating vessel containing He II' ',
in fact, the observations in this experiment are most
easily explained by assuming that the normal and
superQuid components move together. It appears,
therefore, that for small enough velocities the two-Quid

equations of Landau and Tisza hold, but for larger
velocities some frictional force acts tending to make the
two Quids move together.

Benson and Hollis Hallett' have studied these effects
by observing the torsional oscillations of a sphere
suspended in liquid helium by a 6ber. They observed
that the damping of the oscillations depended upon
amplitude, as sketched in Fig. 1(a). Between the
lambda point and about 2'K, there are two distinct
amplitude ranges within which the damping is inde-
pendent of amplitude. In the low-amplitude range, the
observed damping agrees with the predictions of the
two-Quid equations (that is, with the assumption that
only the normal Quid is dragged by the moving sphere);

"
YDRODYNAMICAL experiments with liquid

- ~ ~ helium II have shown that the two-Quid hydro-
dynamical equations proposed by Landau' and Tisza' '
have only a limited range of validity. Although these
equations account for the frictionless Aow of He II in
slits' and for the results of Andronikashvili's experiment
with a pile of disks' when the velocities involved are
small enough, they fail to account for the additional
frictional sects observed in both experiments'' at
larger velocities. They also fail to account for the shape
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move together at all times. Comparison with the ex-
perimental results will then show that reasonable
values for the viscosity are obtained by using assump-
tion (i) for the low-amplitude range and (ii) for the
other range.

2. THEORY

We first calculate the logarithmic decrement of the
oscillations according to the two-Quid equations. To
simplify the problem, we make the following assump-
tions:

(i) The motion is laminar.
(ii) p„p„andthe entropy density can be treated as

constant.
(iii) Effects due to the bend and ends are negligible.

The equations of conservation of mass and entropy
are, respectively, "

pn+ ps= d&v(pnvn+psvs)&

o = —div(o v„),
where cr is the entropy density, and the other symbols
have their usual meanings. By virtue of assumption (ii),
these equations simplify to

divv„=divv, =0.
(b)

Fro. 1. (a) Logarithmic decrement, h, as a function of ampli-
tude, @, for the oscillating sphere experiment (after Benson and
Hollis Hallett'). (b) Logarithmic decrement, 8, as a function of
amphtude, h, for the U-tube experiment. This figure was pre-
pared from the data given in Table I.

in the other range, however, it indicates that both
normal and superQuid components are dragged. Thus
two distinct types of hydrodynamical behavior are
demonstrated in a single experiment.

In Benson and Hallett's experiment the transition
between the two types of behavior becomes diffuse as
the temperature is reduced, and the higher-amplitude
range is ill-de6ned below 2'K. The reason for this
may be that the velocity is not uniform over the surface
of the sphere, but varies from zero at the poles to a
maximum at the equator. If this is so, an experiment
where the velocity is roughly uniform over the oscillat-
ing surface might show a sharper transition.

With the object of demonstrating more clearly the
sects observed by Benson and Hallett, we have studied
the damping of free oscillations of a column of liquid
helium in a U-tube. The variation of damping with
amplitude is sketched in Fig. 1(b). As in Benson and
Hallett's experiment, there are two distinct amplitude
ranges, but now, perhaps for the reason mentioned
above, the transition remains fairly abrupt down to 1'K.

In the next section we shall calculate the relation
between the viscosity and the damping of the oscilla-
tions in, two ways: (i) assuming that the two-Quid

equations hold, and (ii) assuming that the two Quids

It follows from Gauss' theorem that the surface inte-
grals fsv„ds and fsv, dS, where S is any cross
section of the tube, are independent of the position of
S. Each of these expressions can therefore be equated
to its value just below the meniscus in one arm of the
U-tube. We have therefore, for any S, provided a
suitable sign convention is used,

xa'h= v dS= ~v. dS,
~s s

(2)

where h is the height of the meniscus in question above
its equilibrium level, and a is the radius of the tube.

Before trying to solve the hydrodynamical equations
of motion, we use assumption (iii) to simplify the
geometry. That is, we assume that the velocity profile
in a U-tube is the same as in an infinitely long cylin-
drical tube of the same radius, with a uniform pressure
gradient equal to the average pressure gradient in the
liquid —that is, to 2pgh//, where g is the acceleration
of gravity and l is the length of the liquid column. By
assumption (i), we may take v„and v, to lie along the
axis of the cylinder and to depend on the radial co-
ordinate r only. This automatically satisQes Eq. (1).
The equation of momentum conservation' can now be
written

p v„+p.v, = 2pgh/l+rl(8'/Br'+r '8/B—r)v„, (3)

where v and v, are the axial components of the vectors
v„and v„and p is the viscosity of the normal
component.
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This implies here that e, is independent of r. Thus we
can rewrite Eq. (2) as follows:

(5a)

=2a—' v (r)rdr. (5b)

To find the period and damping of sinusoidal oscilla-
tions, we seek a solution of Eqs. (3) and (5) in the
form

w„=R1V(r)e'"'

h =R1He'"'

where U, B, and co are complex quantities, and Rl
stands for "real part of." Using (5a) to eliminate w,

from (3), and substituting (6) into the resulting equa-
tion and also into (Sb), we obtain

(g2//»~+A ~g/gr —j(gp g ~) V= (~02P —(gPP, )g ~/ (7)

and

(8)

where (op= (2g/l)l is the angular frequency for zero
viscosity.

The boundary conditions on ~„are that it should
vanish at the surface of the tube (that is, when r=a)
and should be finite when r= 0. Accordingly U satisfies
the same boundary conditions. Introducing the new
symbols

y=r(ap„/ig)&,

z= a((op„/ig)&,

(9a)

(9b)

where i&=—e' ', we find that the appropriate solution
of (7) is

V= &(~'p.—~o'p) (i~p-) 'E1—~o(y)/~o(s)], (10)

where Jo is the zero-order Bessel function. To deter-
mine co, we eliminate V and B from (8) and (10):

' =2( ' — ')(' - ') ' L1-~o(y)/~o()3 ~.
~o

Multiplying both sides by —mp„/(a&PP —aPP, ) and sub-
tracting the identity 1=2a 'Jo'rdr, we obtain

which reduces to

(~o' ~')p!(~0 p—~ p )= 2~~(s)/s~o(s),

since dLyJ&(y)$/dy=yJO(y) and rdr/a'=ydy/s'

The equation of motion of the superQuid leads' ' to
the condition

curlv, =0.

~rp. 2~ Lp„)
' (16)

where P is the measured period of oscillation, and P is
a correction given graphically in Fig. 7. For small
values of p5/p„ it has the form

P=3pb/ p.+0(pb/p„)' (17)

The above calculation refers to the case when the
two-Quid equations are valid. However, we can obtain
the corresponding results for two other cases without
further calculation: (i) An ordinary fluid (e.g. , He I).
This is merely a special case of the above calculation,
with p, =. 0, p„=p,and p the viscosity. (ii) He II when
frictional forces act between the normal and superQuid
components. We assume that the frictional forces, in
effect, prevent all relative motion of the two Quids.
In other words, we abandon Eq. (4), replacing it by

ve= vn) (18)

and we retain Eq. (3) unchanged in form, though
possibly with a diBerent value for q Substituting (1.8)
into (3), we see that the problem is now exactly the
same as for an ordinary Quid. Thus the relation between
8 and p is again found by formally setting p, =0, p„=p
in Eq. (16).It should be emphasized, however, that this
does not mean that p, is actually zero; although the
frictional force is great enough to make the HeII

To And ~, we must solve the simultaneous equations
(9b) and (11).A useful approximate solution is given

by the assumptions that co~coo and that the quantity

) =a—'—(ig/~op )I (12)

is small. Then (9b) becomes s X '. It follows that Ims
is large and negative, so that the asymptotic formula
for J'„(s)becomes

J„(s) —,
' (2/s. s)& expLi(s ,'e—s.—,'s—)—]

This implies J&(s)/A(s) —i, so that (11)becomes

((oo'—aP) p/((op'p —(u'p, ) —2iX,

and ~ is approximately given by

(o a&0(1+2iX)'(1+2ihp, /p) ' (op(1+ihip„/p). (13)

The logarithmic decrement 8 is given in terms of + by

8= 2s. (Im(o)/ (Rl~). (14)

Substituting from (13) and using (12) we obtain the
result 8~sv2~X~p /p from which it follows, with the
help of (12), that

q=cuop„a2)X(' a&oa'PP2/2s p .

More accurate methods of determining co and 6 are
discussed in the appendix. It is shown there that,
provided g/pa'&eo is negligible (in our experiment it
was roughly 10 ') a good approximation for g is
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sent the component in phase
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—Jo(j&xr/g)/Jo(i&a) j,with
g=—

I
ll.

~

' = 20%2 in case (a), and
x=10 in case {b}.

behave like an ordinary Quid under the present con-
ditions, relative motion of the two Quids would still
occur if the conditions were more complicated, e.g., if
second sound were superimposed upon the motion
considered here. This situation also arises in the rotating
bucket experiment, where the He II behaves hydro-
dynamically like an ordinary Quid'8 but can still
propagate second sound. '

To illustrate the hydrodynamical process which
brings about the damping, we have plotted in Fig. 2

typical velocity distributions across a diameter of the
tube. The walls of the tube aRect the velocity dis-
tribution mostly in a narrow "boundary layer, " whose
thickness in our experiment has the order of magnitude
10 ' cm when the two fluids move together [ease (a)j.
When the two-Quid equations hold [case (b)], this
boundary layer is thicker and exists in the normal
Quid only, while the velocity distribution of the super-
Quid is uniform since the superfluid moves irrotationally
[see Eq. (4)$. In this case, no frictional forces aet
directly on the superQuid component; the damping
eRect of viscosity is transmitted to it indirectly by
means of the thermomechanical term, proportional to
gradT, in the equation of motion of the superfluid.

It remains to discuss some of the eRects due to the
bend and ends ignored in the above work. Of these,
the only one amenable to numerical estimation is the
additional damping caused by the vapor in the tube
above the liquid. Applying Poiseuille's law to the Qow
of this gas, we have estimated the logarithmic decre-
ment arising from this cause to be roughly 5&10 ' and
therefore negligible. Another source of end eRects is
surface tension. Since helium wets the walls of the
tube, one might expect surface tension forces in the two
arms to balance out; however, preliminary tests with
water and liquid air indicated a tendency for a thick
film of liquid to form on the wall as the liquid level
falls and to drain oG as the level rises again. This made
the damping exceed the theoretical prediction, espe-

~~ H. Z. Hall and W. F. Vinen, Phil. Mag. 46, 546 (1955).

cially at large amplitudes. Fortunately, the eRect was
not visible with liquid helium but it may account for
the large experimental scatter. A third complicating
factor is the bend of the U-tube. Although a reliable
estimate is dificult, intuition suggests that this eRect
will lead to additional damping, because the Qow is
more complicated near the bend than in the infinite
cylindrical tube considered in the theory.

3. THE EXPERIMENT

Open-ended U-tubes (Fig. 3) were used for the
experiment. Although tubes with closed ends would
have eliminated the correction for loss of liquid through
the 61m, described below, they would have made
necessary much more dificult corrections for the corn-
pressibility of the vapor and for evaporation and re-
condensation. The U-tubes were made of Pyrex and
had fairly uniform diameter, even at the bends. The
U-tube was supported inside the cryostat at one end
of a —,', -in. stainless steel rod; the other end of the rod
projected, through a rubber 0-ring seal, out of the
cryostat and was used to raise and lower the U-tube.
A cylindrical plunger about 5 cm long, fitting loosely
into one arm of the U-tube, was suspended and con-
trolled in the same way.

For each run, the U-tube was immersed in the liquid
helium bath and then raised until about 3 cm of the
tube was above the bath. The plunger was then in-
serted into one arm of the tube. As soon as the tempera-
ture, determined by measuring the pressure of the
helium vapor with an oil manometer, was steady, the
oscillations were started by withdrawing the plunger.
The liquid level in one arm of the tube was observed
using a cathetometer with a reticule eyepiece. The
highest level attained in each complete period of
oscillation was observed; every time this maximum
level corresponded to a ruling of the reticule the time
was recorded. Observations were continued for some
minutes after the oscillations were indistinguishable
from motions of the liquid due to stray vibration.

25 cm

FIG. 3. Sketch of the two
Pyrex U-tubes used in the
experiment.
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Figure 4 shows a plot of the observations from a
typical run.

Figure 4 also illustrates the method of deducing the
amplitudes of the oscillations. The solid straight line is
drawn to fit the final portion of the curve, where the
variation of level is due to film Qow and evaporation
only. Assuming the oscillations have negligible effect
upon film Qow and evaporation, the straight line repre-
sents the mean level of the oscillating liquid; the
amplitude, h, of the oscillations at a given time is thus
the difference between the observed maximum level
and the estimated mean level. This indirect method of
finding h had to be used because it was not possible to
observe minimum as well as maximum levels. In a
few runs, however, rough estimates of the amplitude
were made when it was less than one reticule graduation
(about 0.5 mm). These made it easier to draw the
straight line accurately.

To find logarithmic decrements, the values of logh
were plotted against the time, t. If such a plot yields a
straight line, the logarithmic decrement can be calcu-
lated from its slope and the observed period of the
oscillations. In the present case, the error of the
graphical construction of Fig. 4 could be as large as h
itself, at the lowest amplitudes (about 50 microns).
To reduce uncertainties due to the resulting scatter of
the low-amplitude points, therefore, three or four
separate runs were made at each temperature and
combined on a single plot of logh its 3 (Figs. 5 and 6).
The time origins of the different runs on such a plot
were adjusted to give agreement at an arbitrary ordi-
nate (10 reticule divisions).

Figure 5 shows two plots of logh vs 3 for He I. In both
cases the points lie close to a straight line down to the
smallest amplitudes. We shall denote the reciprocal of
the slope of any one of these stright lines by the
symbol v&. Tube 8 shows a deviation at very high
amplitudes, which will be discussed later.

Figure 6 shows some of the results for He II. For
each temperature there are two distinct ranges where
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Fio. 5. Semilogarithmic plot of amplitude h (see Fig. 4) es
time t, for He I at 2.27'K. Curve A was taken from data for
U-tube A. Curve J3 was taken from data for U-tube 8 and extends
to higher amplitudes. At the amplitude h~ a deviation sets in,
which may be due to turbulence. Each graph contains combined
data from several runs. The unit of amplitude is approximately
0.53 cm.

the points lie close to straight lines. We denote the
reciprocal slopes of these lines by ~& for the high-
amplitude range and 72 for the low-amplitude.

Owing to the large scatter of the points, especially at
small amplitudes, the following method was used to
measure the slopes: five observers independently fitted
straight lines to the plots of logh vs t and measured
their slopes. At the same time they estimated the
following "critical amplitudes": h~, the amplitude
above which the line of slope 1/ri no longer fits the
points, and (for He II only) h„,below which this line
no longer fits, and h„above which the line of slope
1/rs no longer fits. Table I shows, for each set of ex-
perimental conditions, the averages of the five esti-
mates of the quantities r&, ~2, h&, h, and h, . The esti-
mates varied by as much as 10%%u~ for rr, 20'Po for 1 s&

and 50 jo for hg, h„,and h, .
Table I also shows values for the viscosity, p& or p2,

calculated from the corresponding values of 7~ or z2
respectively. These were calculated using formula (16)
together with the relation 5=I'/r where I' is the ob-
served period of oscillation. In this calculation I' was
not measured separately for each value of r but was
given a common value for all runs with the same tube.
Measurements of I' at different temperatures varied
only by about 1%.variations of this order of magnitude,
arising from changes in 8, are to be expected theo-
retically. LSee Eq. (A13) of the appendix. ) For the
suKx 1 (referring either to He I or to He II with the
two fluids moving together), p /p was set equal to one
in Eq. (16). For the suffix 2 (He II when the two-fluid
equations hold), p„/p was given the value shown in the
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table. " For comparison, we also give values for the
viscosity, interpolated from data given by Donnelly
et al. ' and by Hollis Hallett. ' The former set of values
we regard as values for p&, since they come from an
experiment where it was shown that the normal and
superfluid components moved together; the latter set,
as values for g~, since they come from an experiment
where the two-Quid hypothesis was verified by a
simultaneous determination of p„/p.

4. DISCUSSION OF THE RESULTS

Table I shows that the experiment gives values of g&

and p2 agreeing roughly with each other and with other
experimental determinations of the viscosity. This
agreement over a wide range of values'of p„/p indicates
that the approximations made in Sec. 2 are not too
inaccurate and supports our fundamental hypothesis
that the two-Quid equations hold in the low-amplitude
range and that the two Quids move together in the high-
amplitude range.

Despite the poor accuracy of our values of p& and p2

(the spread of the tabulated values indicates that it is
about 30%%uz), we may tentatively draw two further
conclusions from them. First, we note that g~ exceeds
the corresponding value for q2 in 10 cases out of 12, and
that the geometric mean of the values of q~/ris is 1.33.
This indicates that the viscosity when the two Quids
move as one exceeds that for the normal component
alone. Secondly, the value of p& or p& obtained with
tube 8 exceeds the corresponding values for tube A
8 times out of 9. Since the bend in tube 8 was sharper
than that in tube A, this appears to con6rm the sug-
gestion made in Sec. 2 that a sharp bend will tend to

"These values were kindly supplied by A. C. Hollis Hallett
who calculated them from published values for the speed of
second sound and the entropy data of Kramers, Wasscher, and
(iorter [Physica 18, 529 (1952)].

make the damping larger. This possibility may account
for the results of a few runs using a U-tube about i cm
in diameter with a very sharp bend. These give vis-
cosity values as much as twice Hallett's. '

Although the two regions of constant damping per-
sist to lower temperatures than in the oscillating sphere
experiment, the transition does become more diffuse as
the temperature is lowered (see Fig. 6), so that it is
not easy to de6ne v& below 1.4'K. This broadening of
the transition is reflected in the tendency of h, to de-
crease as the temperature decreases, while h„remains
roughly constant (see Table I). A similar temperature
dependence of the quantity corresponding to h, was
noted by Hallett' for the oscillating disk experiment.
%e offer no explanation" either of the values or of the
temperature dependence of h. and h„.Table I also
indicates that h, is greater for tube A than for tube B.
Since tube 8 has a sharper bend, one would expect a
less uniform velocity distribution over its wall, and
hence, for the reasons put forward in the introduction,
one might expect a less sharp transition and a lower
value of h, .

The deviation from constant damping at amplitudes
exceeding h& was observed only for tube B. This shows
that the deviation was not a starting effect. No doubt
the e6ect could have been observed with tube A too,
using larger starting amplitudes. The value of k& de-
creases with temperature, but is apparently unaffected

"The only quantitative description so far proposed for the
breakdown of frictionless flow is that of C. J. Gorter and J. H.
Mellink )Physica 15, 285 (1949)j who suggested adding non-
linear "mutual friction" terms to the two-fluid hydrodynamical
equations. We were able to determine the effect of these terms
only for very small amplitudes, using G. C. J. Zwanikken's
method LPhysica 16, 805 (1950)g. The calculation indicated
that a rigorous solution of Gorter and Mellink's equations might
give the right temperature dependence and order of magnitude
for h„but it told nothing about h&.
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TABLE I. Summary of experimental results. '

2 27oK 2.15oK

0.869

2.00 K

0.553

1.80 K

0.317

1.60'K

0.166

1.40'K

0.0739

1.20 K

0.0282

1 14oK

0.0196

1 05oK

0.01044

~~ (sec)
rs (sec)
ri (sec)
rs (sec)

g~ (p poise)
g~ (p poise)
gi (p poise)

q2 (p poise)
gs (p poise)
g2 (y poise)

hg (™)
h„(cm)
h (cm)
h, (cm)
h, (cm)

Tube A
A
B
B

B
A
B
A
B

19.5

26.1

30
35
32

1.2

19.7
22.4

29

26

0.32

0.32

22.8
39.9

22

24

11.5

0.32

0.13

22.6
46.7
28.4
58.2

22
30
21

16
22
9.8

1.15
0.30
0.23
0.14
0.10

24.0
67.2
25.3
94.2

20
38
24

14
16
103

1.23
0.32
0.27
0.15
0.069

20.6
86.8
27.2

107

27
33
28

18
26
13.2

1.01
0.30
0.29
0.097
0.080

21.3
97.7
23.8

209

25
43
29

33
18

0.80
0.32
0.27
0.075
0.036

21.4
137

29

24

0.32

0.091

29.8
212

28
29

0.85

0.27

0.041

a The radius of tube A was 0.505 cm and that of B was 0.754 cm. The average observed period for tube A was P =0.983 sec and for B was P 0.938 sec.
b See reference 11.
e See reference 8.
& See reference 6.

where the penetration depth is (2q/pros)'* and the kine-
matic viscosity is q/p. For spheres with two different
periods of oscillation they f nd the values 177 and 188
for E. In our case, the corresponding number is

R= h, (2a&sp/q) l 255 (20)

for h&
——1 cm, g=30pIP. Considering the differences in

the experimental arrangements and the experimental
errors involved, it is probably safe to assume that the
liquid is turbulent for amplitudes above h& ~

S. CONCLUSIONS

We may interpret the observed damping of oscilla-
tions of He II in a U-tube as follows. At low amplitudes
the two-Quid hydrodynamical equations of motion are
valid; the motion of the superQuid is irrotational. At
higher amplitudes a transition takes place to a motion
where the normal and superQuid components have
identical velocity 6elds, and the motion of the super-
Quid is no longer irrotational. At still higher amplitudes
(where the Reynolds number exceeds 255), there
appears to be turbulence in He II in the classical sense.

The experiment also indicates that the viscosity
coeKcient when the two Quids move together is greater
than when they move separately.

by the lambda transition. The oscillating-sphere experi-
ment' shows a very similar effect, which Benson and
Hallett attribute to turbulence. They define a Reynolds
number for the onset of turbulence given by the
expression

(maximum peripheral speed) && (penetration depth)
R= )

(kinematic viscosity)
(19)

APPENDIX. MORE ACCURATE TREATMENT
OF THE EQUATIONS OF SEC. 2

We first de6ne a new symbol e—= 1—cue/&u, in terms of
which Eqs. (9b) and (11) become

s—=) '(1—e) &, (A1)

—(2e—es)p/l p„(2e—es—)p7= —2)~(1—e)Ip(s), (A2)

where

e( )—= -& ( )/Jo( )=&.'( )Po( ), (A3)

the prime denoting a derivative. Rearrangement of
(A2) gives

ep (1—e)- p
1—(2e—e')—y(s).

APn 1—z6 p~-
(A4)

In our search for an approximate solution of this
equation, we use the simple approximate solution al-
ready obtained in Sec. 2 to estimate the orders of mag-
nitude of various quantities. Equation (13) shows that
e=i) p„/p (the symbol = indicates equal orders of
magnitude). It follows that

lel'& lelsp/p. = le)
I

= l~l p /p=&/+oiop=10 (A5)
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FIG. 7. The func-
tion F(Z), used in
calculating the vis-
cosity from the ob-
served damping by
means of Eq. (16).
For the definition of
this function see the
appendix.

where x—= fX f
', and berx and beix are the Kelvin

functions. Savidge" has tabulated the real and imagi-
nary parts of the above expression (he calls them W/V
and Z/V, respectively).

Experimentally, we measure not e but the logarithmic
decrement o. According to (14) and the definition of e,
this is given by

8/2or= [Im(1+e+e'+ )]/[Rl(1+e+e'+ .)]
= [Ims+2 Ime Rle+ .]/[1+Rie+

Ime[1+ Rle], (A10)

since fels«1. To express lXl in terms of the measurable
quantities 8 and p„/p, we first note that, by (A7), (A9),
and (AS)

Rle+ Ime«1. (A11)

Using (A10), (A11), and (A7), we obtain an implicit
equation for fX f:

Our approximation will be to neglect quantities =10—'.
Thus Eq. (A1) becomes

p ~(——
I 1+—I=—Ime=l) Ig(l) I).

p 2' l 2') p„
(A12)

We shall also need an expression for or0 in terms of the
corresponding measured quantity 2x/F. Using (A11)
and (A12) we find

so that

where the symbol ~ denotes approximate equality.
The asymptotic formulas for Bessel functions" show
that, when Ims is large and negative,

27r/Ftoo Rl(11e+—— ) 1—Ime 1—8/2or. (A13)

y(s) =i[1—(2is)-'+O(s —')],

4'(z) =-'s '+O(s ').
so that

rt=toop. u'l)I f'
('a'Pp'/orF p ) (1+38/2or) (1—F),

It follows that fg(X ')
f
=1, that fX 'eg'(X ')

f
=s le&f

«1 [by (A5)], and hence that @(s)~P(X '). Substitut. -
ing this into (A4), and using (AS) some more, we obtain

(A14)

where F= 1—(2g')—'. I—t is convenient to regard F as a
function of Z=—2or fXfg(f'Al) rather than of fhf, since
Z can be expressed in terms of measured quantities
[Eq. (A12)]. A graph of the function F(Z) is given in
Fig. 7.

Equation (A9) shows that, for small f)I. f,

ep/Xp„(1—2ep/p„)g(X i).

Solving this for e and recalling that, by (12), X=il fX f,
we obtain

(A7)e=(p-/p) f) f[f(f) f)+ig(f) I)],

To express g in terms of measured quantities, we use
(A6) equations (12), (A12), and (A13), together with the

fact that 6'((1:

where the real functions f and g are defined by

(Ag)

1—F=1—3v2f) f+O(f) fs)
= 1—3Z/or+0 (Z') (A15)

For small fXf, Eq. (A6) shows that

f= —1/%2yo() '),
g=1/VZ+-;f) fyO( s). (A9)

For larger fkf, f or g can be evaluated numerically,
by making use of the relation

i &/y(), —') =——i—V—o(i—&x)/Jo'(i —
&x)

= iJo(itx)/ii Jo'(i')
= i(berx+i beix)/(ber'x+i bei'x),

"See, for example, E T. Copson, T.he Theory of Fmnotioms of a
Complex Uariable (Oxford University Press, London, 1935),
pp. 335—336.

This shows, in the first place, that the approximation

Z pb/p„, (A16)

used in Fig. 7, is adequate for evaluating Ii; for the
error in F arising from this approximation is [by (A12)]
roughly (pP/2orp )dF/dZ and, by (A10), (A15), and
(AS), this is roughly 3 le'p/p„f «1. Secondly, (A15)
shows [together with (AS)] that (38/2or)F =9

f
eX

f
«1,

so that (A14) can be replaced by our final expression
for tl, Eq. (16) of Sec. 2. Finally, (A15) and (A16)
together give the useful approximation (17).

~ H. G. Savidge, Phil. Mag. 19, 49 (1910).


