Thallium-203.-Extensive measurements of the internal conversion coefficients of the 279-kev transition in Tl²⁰³ have recently been made by several groups of workers.^{3,4} Starting with experimental values for α^{K} , $\alpha^{L_{I}}$, and $\alpha^{L_{II}}$ and with the assumption $G_{K}=GL_{I}=GL_{II}$ they found $E2/M1 = 1.38 \pm 0.25$ and $G_K = 0.53 \pm 0.08$. Since this reduction factor depends rather decisively on the value of E2/M1, we felt that a measurement of E2/M1 independent of internal conversion coefficients would be desirable. The measured angular distribution of the 279-kev γ rays following Coulomb excitation could be fitted equally well by $(E2/M1)^{\frac{1}{2}}=1$ to 2. However, a polarization-direction measurement is very sensitive to this range of $(E2/M1)^{\frac{1}{2}}$ for a transition of the type $3/2(E2+M1)^{\frac{1}{2}}$ and the value observed for E2/M1 is listed in Table I.

Rhenium-187, -185.—These transitions are of limited value as evidence for a reduction in β_1^{κ} because of the uncertainty in E2/M1. The determination of the E2/M1 value from the angular distribution is unfavorable for these transitions because the transition of the type 7/2(E2+M1)5/2 is nearly isotropic for a wide range of E2/M1. The angular distributions have been measured and they are found to be isotropic. A K/L measurement has been made for the transition in Re¹⁸⁷, ¹² and the E2/M1 value of 1/9 is based on this measurement.

¹ Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 83, 79 (1951) and "Tables of internal conversion coefficients" (privately circulated by M. E. Rose).

² L. A. Sliv, Zhur. Eksptl. i Teort. Fiz. **21**, 77 (1951); L. A. Sliv and M. A. Listengarten, Zhur. Eksptl. i teort. Fiz. **22**, 29 (1952). ³ A. H. Wapstra and G. J. Nijgh, Nuclear Phys. **1**, 245 (1956).

^o A. H. Wapstra and G. J. Nijgh, Nuclear Phys. 1, 245 (1950). ⁴ Nordling, Siegbahn, Sokolowski, and Wapstra, Nuclear Phys.

1, 326 (1956).

⁵ F. K. McGowan, Phys. Rev. 93, 471 (1954).

⁶ H. Paul and R. M. Steffen, Phys. Rev. 98, 231 (1955).

⁷Heer, Ruetschi, Gimmi, and Kundig, Helv. Phys. Acta 28, 336 (1955).

⁸ P. H. Stelson and F. K. McGowan, Bull. Am. Phys. Soc. Ser. II, 1, 264 (1956).

⁹ F. K. McGowan and P. H. Stelson, Phys. Rev. **99**, 127 (1955). ¹⁰ P. H. Stelson and F. K. McGowan, Bull. Am. Phys. Soc. Ser. II, **1**, 164 (1956).

¹¹ J. V. Kane and S. Frankel, Bull. Am. Phys. Soc. Ser. II, 1, 171 (1956).

¹² Cork, Brice, Nester, LeBlanc, and Martin, Phys. Rev. 89, 1291 (1953).

Beta Decay of a C⁹ Nucleus*

M. S. SWAMI, J. SCHNEPS, AND W. F. FRY Department of Physics, University of Wisconsin, Madison, Wisconsin (Received June 29, 1956)

I N a systematic survey of photographic emulsions, exposed to 3-Bev protons, for excited nuclear fragments, a connected double star was found which is interpreted to be the disintegration of a C⁹ nucleus. It was thought worthwhile to describe the event in detail

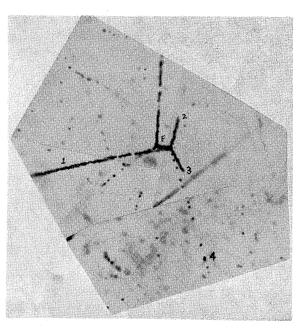


FIG. 1. A photograph of an event interpreted as the beta decay of C⁹. The C⁹ nucleus (track F) was produced in star (A) and disintegrated into a proton, two alpha particles, and a positron (tracks 1, 2, 3, and 4, respectively).

since there has been no evidence for a long-lived C^9 nucleus.

A photograph of the connected stars is shown in Fig. 1. The primary star (A), which was probably produced by a neutron, has three outgoing tracks. Track F is saturated, 6.2 microns long and was caused by a slow multiply-charged particle. The absence of δ rays and the presence of some visible scattering along F suggest that the particle came to rest before it gave rise to the secondary star (B). The secondary star which appears at the end of track F consists of four charged particles. The main characteristics of the secondary star and the fragment are given in Table I. Measurements of multiple Coulomb scattering and grain density along track 4 indicate that it was caused by a 3.1-Mev electron. Tracks 1, 2, and 3 are coplanar to within one degree. The coplanarity strongly suggests that the fragment that caused track F came to rest before it decayed and that no neutrons were involved in the decay. Since track 1 was produced by a singly-charged particle, the coplanarity and the momentum balance uniquely determine that the particles which produced

TABLE I. Characteristics of C⁹ decay.

Track	Range in microns	Identification	Energy in Mev	Angles
F	6.2	C9	9.4	65°
1	341.0	P	7.6	115°
2	9.9	He ⁴	2.7	
3	7.8	He ⁴	2.1	136.5°
4			3.1	11°

tracks 1, 2, and 3 were a proton and two alpha particles, respectively. With this assignment, the momentum unbalance for tracks 1, 2, and 3 is 15 ± 10 Mev/c. Depending on the sign of the charge of the beta particle, the fragment (track F) was either Be⁹ or C⁹. Since Be⁹ is stable, the fragment was probably a C⁹ nucleus and the beta particle was positive. The possible decay schemes are

$$C^9 \rightarrow Be^{8*} + p + \nu + \beta + Q_1, \tag{1}$$

$$Be^{8*} \rightarrow He^4 + He^4 + Q_2, \qquad (2)$$

$$C^9 \rightarrow He^4 + He^4 + P + \nu + \beta + Q_3. \tag{3}$$

The similarity in the energy of the two alpha particles

suggests the formation of Be^8 in an excited state, in which case Q_2 is found to be 3.8 Mev.

For the decay scheme (3), the value of Q_3 is found to be greater than 15.4 Mev. Of course the energy of the neutrino cannot be measured. However, if Q_3 were greater than 16.4 Mev, C⁹ would be unstable against decay into B⁸ and a proton. Hence the maximum energy of the neutrino is 1.0 Mev. The limits on the mass of C⁹ are 8408.6 and 8409.6 Mev.

The authors are greatly indebted to Dr. George Collins and Dr. R. K. Adair for their assistance in exposing the plates.

* Supported in part by the U. S. Atomic Energy Commission and by the graduate school from funds supplied by the Wisconsin Alumni Research Foundation.

or

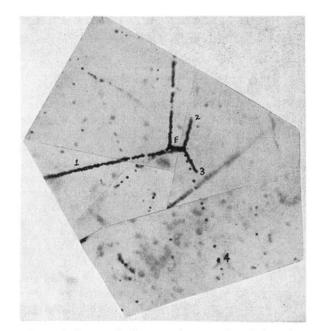


FIG. 1. A photograph of an event interpreted as the beta decay of C⁰. The C⁰ nucleus (track F) was produced in star (A) and disintegrated into a proton, two alpha particles, and a positron (tracks 1, 2, 3, and 4, respectively).