Evidence for Reduction of M1 K-Shell **Internal Conversion Coefficient**

F. K. MCGOWAN AND P. H. STELSON

Oak Ridge National Laboratory, Oak Ridge, Tennessee (Received June 27, 1956)

HE internal conversion coefficients calculated by Rose *et al.*¹ assume a point charge for the nucleus. Calculations of Sliv² indicate that the finite nuclear size should appreciably reduce the M1 K-shell internal conversion coefficient for high Z. The very limited experimental evidence which has been reported ^{3,4} seems to confirm this reduction. We wish to report information on K-shell internal conversion coefficients and values for E2/M1 derived from Coulomb excitation experiments which give evidence in support of this reduction.

The ratio of K x-rays to gamma rays for α -particle Coulomb excitation of nuclei with Z = 73 to 83 has been determined. From these measurements, one can deduce the K-shell internal conversion coefficients for several gamma-ray transitions. The absolute yields of K x-rays and gamma-rays were measured with a 3-inch \times 3-inch NaI(Tl) scintillation spectrometer for 3.0-Mev α particles incident on thick targets. The yield of Kx-rays resulting from the stopping of the α particles

FIG. 1. Yield of K-shell vacancies resulting from the stopping of 3-Mev α particles incident on thick targets as a function of Z. I_K , the number of K-shell vacancies per microcoulomb of singly charged helium ions, is the yield of K x-rays corrected for the fluorescent yield.

is as much as two times smaller than the yield of Kx-rays resulting from internal conversion of nuclear γ rays following Coulomb excitation. The number of K-shell vacancies produced by the stopping of the α particles in targets of different Z was determined for a few elements for which either there is no appreciable nuclear excitation (Bi, Pb, Tl, and Ce) or the yield of K x-rays from internal conversion could be determined from the intensity of the nuclear γ ray of known E2 multipole. The results are given in Fig. 1. No correction is assumed for E2 K-shell internal conversion coefficients, α_2^K . (A reduction in α_2^K would produce an even larger reduction in β_1^{K} .) In the cases of W¹⁸⁴, W¹⁸⁶, and Os, the yield of K x-rays from internal conversion was 67%, 58%, and 10% of the total yield, respectively. The K-shell internal conversion coefficients deduced for several γ -ray transitions in odd-mass nuclei are listed in Table I. The E2 and M1 internal conversion coefficients α_2^K and β_1^K are taken from Rose *et al.*¹

Tantalum-181.-E2/M1 ratio is taken from directional angular correlation measurements⁵ which have been reinterpreted in light of the new spin assignments⁶⁻⁸ for the 482- and 615-kev states in Ta¹⁸¹. With this E2/M1 ratio and using α_2^K and β_1^K as given by Rose, the expected α^{K} is 1.57 ± 0.10 and the yield of K x-rays from stopping 3-Mev α particles on a Ta target would fall well below the curve of I_K/Z^4 vs Z as shown in Fig. 1. We list in Table I the reduction factor G to be applied to β_1^K , assuming no correction for α_2^K , to fit the experimental α_{\exp}^{K} . If we were to assume a 10% reduction of α_2^K for the measurements on W¹⁸⁴, W¹⁸⁶, and Ta¹⁸¹, the factor G becomes 0.49 for the 137-kev transition in Ta¹⁸¹.

Gold-197 .-- From the angular distribution of the 277-kev γ rays following Coulomb excitation we know $(E2/M1)^{\frac{1}{2}} = -(0.75\pm0.20).^{9}$ The large uncertainty in E2/M1 results from the fact that A_2 , the angular distribution coefficient, has a broad maximum at this value of E2/M1. This uncertainty has been reduced by a polarization-direction measurement which is rather sensitive with regard to E2/M1 (a brief account of this type of measurement has already been reported.¹⁰) This result for E2/M1 in Table I is not compatible with the $E2/M1 = 0.12 \pm 0.03$ deduced from a $\gamma - \gamma$ directional correlation measurement by Kane and Frankel.¹¹ Using their result, the factor G is 0.70.

TABLE I. Evidence for reduction of M1 K-shell internal conversion coefficients. The reduction factor G is given by $\alpha_{\exp}^{K} = I_{E2} \alpha_2^{K} + I_{M1} \beta_1^{K} G$.

Nucleus	E_{γ} (kev)	E2/M1	$\alpha_{\exp}K$	α_2^K	β_{1}^{K}	G
73Ta ¹⁸¹ 75Re ¹⁸⁷ 75Re ¹⁸⁵ 79Au ¹⁹⁷ 81Tl ²⁰³	137 134 128 277 279	$0.25 \pm 0.10 \\ (1/9)$ $0.30 \pm 0.07 \\ 2.25 \pm 0.25$	$\begin{array}{c} 1.05 \ \pm 0.15 \\ 1.50 \ \pm 0.29 \\ 2.10 \ \pm 0.43 \\ 0.29 \ \pm 0.03^{a,b} \\ 0.159 \ \pm 0.004^{o} \end{array}$	0.47 0.48 0.54 0.077 0.0763	1.84 2.34 2.65 0.45 0.53	$\begin{array}{c} 0.65 \pm 0.15 \\ 0.69 \pm 0.15 \\ 0.79 \pm 0.12 \\ 0.65 \pm 0.07 \end{array}$

Huber, Halter, Joly, Maeder, and Brunner, Helv. Phys. Acta 26, 591 (1953).
^b J. W. Mihelich and A. de-Shalit, Phys. Rev. 91, 78 (1953).
^c See reference 4.

Thallium-203.-Extensive measurements of the internal conversion coefficients of the 279-kev transition in Tl²⁰³ have recently been made by several groups of workers.^{3,4} Starting with experimental values for α^{K} , $\alpha^{L_{I}}$, and $\alpha^{L_{II}}$ and with the assumption $G_{K}=GL_{I}=GL_{II}$ they found $E2/M1 = 1.38 \pm 0.25$ and $G_K = 0.53 \pm 0.08$. Since this reduction factor depends rather decisively on the value of E2/M1, we felt that a measurement of E2/M1 independent of internal conversion coefficients would be desirable. The measured angular distribution of the 279-kev γ rays following Coulomb excitation could be fitted equally well by $(E2/M1)^{\frac{1}{2}}=1$ to 2. However, a polarization-direction measurement is very sensitive to this range of $(E2/M1)^{\frac{1}{2}}$ for a transition of the type $3/2(E2+M1)^{\frac{1}{2}}$ and the value observed for E2/M1 is listed in Table I.

Rhenium-187, -185.—These transitions are of limited value as evidence for a reduction in β_1^K because of the uncertainty in E2/M1. The determination of the E2/M1 value from the angular distribution is unfavorable for these transitions because the transition of the type 7/2(E2+M1)5/2 is nearly isotropic for a wide range of E2/M1. The angular distributions have been measured and they are found to be isotropic. A K/L measurement has been made for the transition in Re^{187} , ¹² and the E2/M1 value of 1/9 is based on this measurement.

¹Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 83, 79 (1951) and "Tables of internal conversion coefficients" (privately circulated by M. E. Rose).

² L. A. Sliv, Zhur. Eksptl. i Teort. Fiz. **21**, 77 (1951); L. A. Sliv and M. A. Listengarten, Zhur. Eksptl. i teort. Fiz. **22**, 29 (1952). ³ A. H. Wapstra and G. J. Nijgh, Nuclear Phys. **1**, 245 (1956).

⁴ Nordling, Siegbahn, Sokolowski, and Wapstra, Nuclear Phys.

1, 326 (1956)

⁵ F. K. McGowan, Phys. Rev. 93, 471 (1954).

⁶ H. Paul and R. M. Steffen, Phys. Rev. 98, 231 (1955).

⁷ Heer, Ruetschi, Gimmi, and Kundig, Helv. Phys. Acta 28, 336 (1955).

⁸ P. H. Stelson and F. K. McGowan, Bull. Am. Phys. Soc. Ser. II, 1, 264 (1956).

⁹ F. K. McGowan and P. H. Stelson, Phys. Rev. 99, 127 (1955). ¹⁰ P. H. Stelson and F. K. McGowan, Bull. Am. Phys. Soc. Ser. II, 1, 164 (1956)

¹¹ J. V. Kane and S. Frankel, Bull. Am. Phys. Soc. Ser. II, 1, 171 (1956).

¹² Cork, Brice, Nester, LeBlanc, and Martin, Phys. Rev. 89, 1291 (1953).

Beta Decay of a C⁹ Nucleus*

M. S. SWAMI, J. SCHNEPS, AND W. F. FRY Department of Physics, University of Wisconsin, Madison, Wisconsin (Received June 29, 1956)

'N a systematic survey of photographic emulsions, exposed to 3-Bev protons, for excited nuclear fragments, a connected double star was found which is interpreted to be the disintegration of a C⁹ nucleus. It was thought worthwhile to describe the event in detail

FIG. 1. A photograph of an event interpreted as the beta decay of C⁹. The C⁹ nucleus (track F) was produced in star (A) and disintegrated into a proton, two alpha particles, and a positron (tracks 1, 2, 3, and 4, respectively).

since there has been no evidence for a long-lived C⁹ nucleus.

A photograph of the connected stars is shown in Fig. 1. The primary star (A), which was probably produced by a neutron, has three outgoing tracks. Track F is saturated, 6.2 microns long and was caused by a slow multiply-charged particle. The absence of δ rays and the presence of some visible scattering along F suggest that the particle came to rest before it gave rise to the secondary star (B). The secondary star which appears at the end of track F consists of four charged particles. The main characteristics of the secondary star and the fragment are given in Table I. Measurements of multiple Coulomb scattering and grain density along track 4 indicate that it was caused by a 3.1-Mev electron. Tracks 1, 2, and 3 are coplanar to within one degree. The coplanarity strongly suggests that the fragment that caused track F came to rest before it decayed and that no neutrons were involved in the decay. Since track 1 was produced by a singly-charged particle, the coplanarity and the momentum balance uniquely determine that the particles which produced

TABLE I. Characteristics of C⁹ decay.

Track	Range in microns	Identification	Energy in Mev	Angles
F	6.2	C9	9.4	65°
1	341.0	Р	7.6	115°
2	9.9	He ⁴	2.7	
3	7.8	He ⁴	2.1	136.5°
4			3.1	11°