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Using a method which involves finding the expectation value of the square of the Hamiltonian, lower
bounds to the ground state energies of He, Li+, and 0'+ have been obtained from existing Hylleraas-type
wave functions. The limit of error in the Chandrasekhar-Herzberg 18-parameter helium upper bound,
—2.9037063 atomic units (a.u.), is found to be in absolute value less than 0.00179 a.u. and "probably" less
than 0.00009 a.u. (~20 cm '). These results would seem to indicate that the Hylleraas series is not as rapidly
convergent as previously thought.

Again using existing Hylleraas-type wave functions, values have been obtained for the mass polarization
(specific mass effect) in the same helium-like atoms. The value obtained for helium is somewhat different from
that given by Bethe.

I. INTRODUCTION

HE recent precision measurements by Herzberg
and Zbinden of the ionization potential of helium

have renewed interest in the problem of calculating
very accurately the ground state energies of helium-
like atoms. The helium-like atoms are of special interest
since they provide one of the few opportunities to test
the two-body relativistic formulation of quantum
mechanics.

The early nonrelativistic calculations of Hylleraas'
have been extended by Chandrasekhar and Herzberg'
to include (in the case of He) 18 adjustable parameters.
To the nonrelativistic energies so obtained must be
added the corrections for finite mass (normal and spe-
cific mass effects), relativistic effects, and Lamb shift.
The last two eBects will not be discussed here, but a
general review of them, along with further references,
will be found in the papers of Chandrasekhar and
Herzberg.

At present, the experimental value of the helium
ionization potential, the error in the calculated non-
relativistic energy as estimated by Chandrasekhar and
Herzberg, and the magnitude of the relativistic correc-
tions are all comparable —about 2 cm '. There is hope
for even further improvement in the experiments and,
if necessary, more detailed nonrelativistic calculations
can be made. It should also be noted that individual
contributions to the relativistic corrections are of the
order of 20 cm ' and therefore "observable" at this
time.

.The purpose of the present work is to obtain an
estimate of the accuracy of the calculated nonrelativistic
energies. The convergence of the Hylleraas expansion
to the correct energy is not a settled matter, although
it does appear "plausible. '" Even if the expansion is

* Work supported by the U. S. Atomic Energy Commission.' G. Herzberg and R. Zbinden Lunpublished; referred to by
Chandrasekhar and Herzberg (1955), reference 37.

2 E. A. Hylleraas, Z. Physik 54, 347 (1929);65, 209 (1930).' Chandrasekhar, Elbert, and Herzberg, Phys. Rev. 91, 1172
(1953); S. Chandrasekhar and G. Herzberg, Phys. Rev. 98,1050
(1955).' T. Kato, Trans. Am. Math. Soc. 70, 212 (1951).See reference
11 in Chandrasekhar and Herzberg. ' Kinoshita (private com-

convergent, it is not necessarily rapidly convergent. A
difficulty in estimating the speed of convergence is
the non-orthogonality of the Hylleraas functions. The
decrease in change of energy (as a function of the num-
ber of parameters) is not a reliable guide to convergence.
The present investigation indicates that the converg-
ence is perhaps not so rapid as estimated by Chan-
drasekhar and Herzberg.

Stevenson and Crawford' obtained lower bounds to
some of the early Hylleraas wave functions by methods
similar to those discussed here.

II. FORMULA FOR BOUNDS ON THE GROUND
STATE ENERGY

Given any trial wave function, the expectation value
of the Hamiltonian with respect to that wave function
provides an upper bound to the ground sta'te energy,
according to the Ritz variational principle. Several
methods' have been proposed for finding a lower bound
to the ground state energy, all of which involve finding
the expectation value of the square of the Hamiltonian.
Those which give the "best" lower bound also require
some knowledge of the first excited state of the same
character (angular momentum and parity). The method
chosen here' (others are roughly equivalent) bounds
the ground state energy Eo as follows:

(&')—(&)'
(H) & Ep& (II)

Er —(H)

where E& is the energy of the first excited state of the
same character.

A simple derivation of (1) can be readily given. Let
lb=ptt, &;, where the p, are eigenfunctions of the H

munication) expressed the belief that the Hylleraas expansion is
not formally complete. He is carrying out a calculation with a
more general expansion which includes negative powers of the
variables. H. M. Schwartz, Bull. Am. Phys. Soc. Ser. II, 1, 26
(1956), for similar reasons, is carrying out an expansion in frac-
tional powers.

'A. F. Stevenson and M. F. Crawford, Phys. Rev. 54, 375
(1938).

'See P. M. Morse and H. Feshbach, 3EIethods of Theoretical
I'hysics (McGraw-Hill Book Company, New York, 1953),Sec. 9.4,
especially Eqs. (9.4 110) and (9.4 117).

"G. Temple, Proc. Roy. Soc. (London) A119, 276 (1928).
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corresponding to the eigenvalues F.,; Pa,2= 1. Then

2 '(&—F-o)(&—& )=((H—&o)(H—& ))
=(H') —(H)'+ ((H)—F~) ((H)—~1) (2)

Equation (1) then follows directly. It can be seen that
in the second comparison in Eq. (1), the equality sign
holds if the trial wave function is a combination only
of the ground and first excited state eigenfunctions.

III. EVALUATION OF (H'l

For the S-state con6gurations the atomic wave func-
tion can be described in terms of the three coordinates

s= k(r,+r2),
t= k(r, —r,),

Q= Iclfl2,

where the indices 1 and 2 refer to the coordinates of the
two atomic electrons. k is an arbitrary scale factor.

The Hylleraas-type wave functions are given by

+=me—'* P C, .s't-u",
lmn

where X is a normalization factor. The ground state
configuration is symmetric, so that only even powers of
t are assumed. Thus the variables s, t, and I may be
considered to range over positive values only, and the
expectation value of an operator 8 may be written

00

(8)= (2~)'Xk '
!~ ds udu dt(s' t') (4—'8%) (5)J.

The normalization is obtained by setting (1)=1.
All expectation values are bilinear forms in the C~ „.

The coefFicients in the expressions for the energy and
normalization are given by Hylleraas, ' and may also
be found in the papers of Chandrasekhar and Herz-
berg. ' To obtain the lowest upper bound, the param-
eters C~ n and k are varied so as to minimize the ex-
pectation value of the energy, subject to the condition
that the normalization of the wave function remain
constant. Minimization with respect to the scale factor
k corresponds to satisfying the virial theorem: (kinetic
energy) = —~~(potential energy).

In terms of the variables s, t, I, the Hamiltonian
assumes the form'

H (atomic units)

2s (u' t2) —g' 2t(s' u') —y 4s g 4t 8 4Zs= —k' —+—+ +——+ — + + —+k +—. (6)
Bs' Bt' Bu' u Bu u(P P) BsBu— u(s' —t') Bt8u (s' —t') gs (s' t') it- (s' —t')

The expression for the expectation value of the square of the Hamiltonian is then the bilinear form

where

(H')= (2m)'Kk ' ' ds ' udu dt(s' —t)(H@) = (2m.)'Dtk ' P C~~„C~.~ „.J, ~, J,
llew'n'

~00 ps
Sl+l'~—sdS +n+n'+ldN

1 me Jo &o ~0

1 l l(l —1) m(m —1)
t + 'dt(s' —t2) ——+-—

4 s t2

e(e+1) 1 2 / t2 ) s s') 2Z
+—+ el 1——I+2 l +meI 1————I+2m ——s

u' ku s' —t2 E u')

1 l l'(l' —1) m'(m' 1) n'(e'+1) 1 — 2
I

( t' )X —+— — — +—+ m'i 1——i+2)
4 s s' t2 u' ku s' —t2 !, u')

s ( s') 2Z
X —l' +me

I
1——I+2m' ——s . (8)

2 u') k

Two types of intervals are involved. They are

00 s pQ

j c 'ds j du ' dts t'u'=
0 0 0

(a+b+c+2) !
, (9)

(b+1)(b+c+2)

and

~ s ~u satb~c
e 'ds, dN, ' dt

J s2 t2

= (a+b+c)! +F(c) . (10)
(tt- I) (~+ )

P even

The summation is taken as 0 for b= 0. In both integrals
[Eqs. (9) and (10)], b only assumes even values, and
a&&0, b~&0, c&&—1. F(c) is given by

pc q (—1)" (—1)
F(c)=k 2 I I

+
~=o Ee) (e+1)' e+1

2n+1

X 2"+' ln2 —— +, cW —1, (11)
e+1 e+1

F( 1)= ',7r'-—
The evaluations of the algebraic expressions for (H')

were carried out on the Los Alamos IBM-701 electronic
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TABLE I. Summary of calculations on helium-like atoms. The reference numbers refer to footnotes in the text. Column 3 gives the
upper bound in the energy (Hl, column 6 the absolute error in the upper bound as estimated by Eq. (1l. Columns 7 and 9 compare the
upper bounds with the 18-parameter lower LE (18lj and upper (E (18)7 bounds, respectively. The values of 8& are experimental; in
the case of 0'+ the first excited 'S state is unknown, so the estimate of its energy was made from the position of the lowest 'S state.
All energies are in atomic units. The mass polarization (speci6c mass-effect) is obtained by dividing column 11 by the nuclear mass
in units of the electron mass. The sign of this term is conventially taken as positive if in the same sense as the normal mass effect; this
is opposite to the sense of the energy shift.

1

No. of
param-

eters

2

Refer-
ence (H) (H2)

6 7

(H2) —(H)2

Ey —(H) (H) —E (18) (6)/(7) E (18) —(H)

10

(6)/(9) —(ut u2)

He (EI=2.146)

1
3
6

10
14
18
20

—2.848—2.9024—2.90324—2.903603—2.9037009—2.9087063—2.9037178

8.109
8.4242
8.42880
8.430909
8.4314789
8.4315103

9.006
8.4715
8.44589
8.438489
8.433529
8.4328680

1.28
0.0626
0.0225
0.0100
0.00271
0.00179

0.057
0.0030
0.00228
0,00190
0.00180
0.00179

20
21
10
5.3
1.5
1

0.056
0.0013
0.00047
0.000103
0.0000054

23
48
47
97

502

0
0.17764
0.16437
0,15905
0.15923
0.15916

10 —7.2797624 52.99494

I.i+ (E,—E,=0.5468)

53.01801 0.0420

0'+(E —Ep =6.55)

10 3 —59.156422 3499.482 3499.682 0.0305

computer. For consistency, the wave function normal- different expansion seems required to yield accuracy
izations were recalculated. comparable with the experiment.

IV. RESULTS AND DISCUSSION OF
LOWER-BOUND CALCULATIONS

In Table I are given the results for the 1, 5, 6, 10,
14, and 18 parameter wave functions of helium and the
10-parameter wave functions of Li+ and 0'+.

A 20-parameter helium wave function has also been
calculated by Herzberg, ' the corresponding energy of
which divers very little from the 18-parameter value;
a lower bound has not been calculated for this wave
function.

Comparison with the 18 parameter bounds indicates
(as was found by Stevenson and Crawford) that in
the other cases the upper bound is considerably closer
to the true eigenvalue than is the lower bound. Thus
while the absolute limit of error in the 18-parameter
upper bound is 0.00179 atomic units (a.u. ), it appears
quite probable that the actual error is at least an order
of magnitude smaller. In column 8 (or 10) of Table I
is given the ratio of the error in the upper bound to that
in the lower bound assunzing the 18-parameter lower
(or upper) bound gives the correct energy. It seems
reasonable that this ratio using the true energy would

generally be at least 20—perhaps greater. Thus a more
probable limit on the 18-parameter upper bound would
be 0.00009 a.u. ( 20 cm '). Although this may still
be an overestimate, it would seem to indicate that the
convergence is not so rapid as the small change in (Il)
as a function of the number of parameters might imply.
Further calculations with either more parameters or a

s G. Herzberg (private communication).

V. MASS POLARIZATION CORRECTION

The nonrelativistic energies must be corrected for the
finite mass of the nucleus. As a matter of convenience,
the nuclear mass corrections are generally divided into
the normal (reduced) mass and mass polarization
(specific mass) effects. The separation is made as
follows:

In a coordinate system where the center of mass of
the atom is at rest, the atomic Hamiltonian assumes
the form

H=(2m) —'P p'+V+( M)
—'(P p)' ( )

where ns and M are the electronic and nuclear masses,
and p, = —ikV;. It is of importance to the form of the
potential energy term that the distances x; are measured
relative to the nucleus rather than relative to the center
of mass.

The second term on the right-hand side of (12) repre-
sents a correction for the kinetic energy of the nucleus.
It is convenient to separate the correction term into
two parts, thusly:

(2M)
—'(Q p )'= (2M) ' Q p,s+ (2M) ' P p,"p,. (13)

'b i+j

The first term on the right-hand side of (13) has the
same form as the electronic kinetic energy. It can be
combined with the electronic kinetic energy term
merely by replacing the electronic mass ns by the re-
duced mass ii= mM((m+M). The atomic energy levels
[neglecting for the moment the second term on the
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(14)

Written in terms of the Hylleraas variables (3), the

H'—=M 'pg p2

right-hand side of (13))are directly proportional to the
reduced mass; this gives rise to the normal, or reduced
mass, correction.

The second term on the right-hand side of (13) re-
ferred to as the mass polarization or specific mass term,
appears only in polyelectronic atoms. Because of the
appearance of the nucleonic mass in the denominator,
it is assumed to be small and can be treated by first-
order perturbation theory. In most atoms, the mass
polarization term can be larger than the normal mass
term.

In the case of helium, the summation for the mass
polarization reduces to the single term

expectation value of the operator assumes the form'

pCO p8 B

(H') = —(2s-)'M '31k ' ds dl dt
4p

)((B(ss+ts 2Qs) (%r s + s) N(ss ts)+ s

+2s(t' —u')+ e,+2t(st' s')—+ 4 } (15)

where the subscripts on the +'s indicate differentiation.
For a Hylleraas-type wave function (4), the expecta-
tion value of II' assumes the bilinear form

lm1z
H' = —(2s.)'AM 'k 'p— —Ct„„C,.~.„. I, (16)

i m ~ 1'm'n'
l'm'n'

dp

00
AS

s'+'e 'ds
Jp.

' trl 1) t'/' 1) mm' (s' —t') st"' '« ~Ls'+t' —»')
I

——
II
——

f

— — «'+-L'
4s 2) 4s 2) ts I

( t 1) fP 1 ) (st' —s')
&&

~

——(&+~ ——~~+ (m~'+~'~) . (17)
Es 2) (s 2&

Equation (17) may be evaluated from the integrals
given in (9) to yield explicitly

t'm'e'

X

4( +3)!
(t +1)(t +~+3)

mm',' (o.+4)—(a+5) tl'—+—
— ( +3)(t+~+5) (t —1)(J +~+1)-

et'+n't+Nn' em'+rt'm+ee'
(18)

where X=t+t', p=rrt+m', v=rt+rt' and o.=X+p+v.
The algebraic expression for the mass polarization

was evaluated on the I,os Alamos IBM-701 electronic
computer for the same wave functions as were used in
calculating the lower bounds. The results are sum-
marized in Table I.

The mass polarization term depends upon the elec-
tron correlation, and in fact vanishes unless the coordi-
nate r, s ——st/k appears in the wave function. It is thus
more critical to the accuracy of the wave function than

is the energy. Indeed, for the one-parameter wave
function, the mass polarization vanishes while the
energy is given to within 2%.

The value obtained from Hylleraas's 6-parameter
wave function is somewhat at variance with that re-
ported by Bethe, ' who gives for —

p& p& the value
0.173 compared with our value of 0.164. This discrep-
ancy was noted earlier by Edmonds and Wilets and by
Kinoshita (both unpublished).
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