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A calculation of meson production in a meson-nucleon collision has been carried out for the processes
m++p-+~++2t-++e and x++p-+x++H+p, by means of the method of Low. Use has been made of an ap-
proximate form of the Chew-Low transition matrix for scattering oB the energy shell. This matrix exhibits
explicitly the resonance behavior of the isotopic spin 3/2, angular momentum 3/2 scattering state. At 350-
Mev incident-meson kinetic energy, the cross section for m+ production is 0.86 mb and that for m~ production
is 5.5 mb. The angular distribution of each Anal state meson is of the form A+cos~8. For x+ production, at
250-Mev incident-meson kinetic energy, A =0.64. The two 6nal-state pions seem to share the available ki-
netic energy. The probability for a spin Qip of the nucleon in the process is about 1.5 times the probability for
no spin Qip.

INTRODUCTION

'HERE has been increasing interest in the produc-
tion of mesons in meson-nucleon collisions at high

energies. We have felt that it would be of interest to
calculate the production cross section for energies near
threshold. There is evidence indicating strong P-wave
production of mesons. Such evidence consists of the
small cross section for sr production in p-p collisions,

the rapid increase with energy of the total cross section
for x+ production in these collisions, and the center-of-
mass angular distribution for the sr+ of 0.29+cos'8. ' '
The (3/2, 3/2) resonant state in meson-nucleon scatter-
ing appears to be of importance in the production
process. The hypothesis that meson production takes
place through excitation of a nucleon into the (3/2, 3/2)
resonant state is capable of explaining the small cross
section for sr+ production in n pcollisio-ns relative to
that in p-p collisions. ' The hypothesis ha. s also been

used to explain the sr+/s- production ratio in nucleon-

nucleus collisions. 4 We have assumed production from

the (3/2, 3/2) state and have investigated the processes
sr++ p—+sr++sr++ tv and sr++ p~sro+sr++ p.

The procedure has been to derive the amplitude
describing the process by the method of Low. ' The
method deals with a perturbation-like expansion in
terms of exact eigenstates of the total Hamiltonian,
This feature makes possible an improvement of the
ordinary perturbation-theory treatment, since it is
possible to describe part of the process as meson-nucleon
scattering and to use here the scattering transition
matrix developed by Chew and Low."We will be
dealing with a transition matrix for scattering oG the
energy shell. Chew and Low have derived an approxi-
mate expression for this matrix in a form that exhibits
the resonant behavior of its (3/2, 3/2) part. It was this
possibility which led to the calculation presented here,
in the hope that, in spite of the approximations, the
form of this matrix off the energy shell would give
reasonable results in the computation of a cross section
for meson production. Chew and Low have shown that,
on the energy shell, their matrix gives a good descrip-
tion of low-energy scattering. '

CALCULATIONS

Following Low, ' one starts with Dyson s 5-matrix between initial and final bare-particle states,

" (—&)"
(f~&~v)=P J

dtl'' dt (4, ~a;(kt)«(ks)&t&r(tr) &z(t ))a'*(k) ~@',),
~-o

where A=c= 1, x= (x,xs), and k= (k,&o). Hz is the usual interaction Hamiltonian for pseudoscalar meson theory. '
Assume kg kryo ks, pW p'. The a,*(k) is commuted through the Pbracket to the left and the at (ks) and at(kq) are

commuted through to the right, making use of

(C,. i
a,*(k)=a, (k,) iC,)=a;(k,) i@,)=O. (2)

This work was performed under the auspices of the U. S. Atomic Energy Commission.
' A. H. Rosenfeld, Phys. Rev. 96, 130 (1954).

Frank S. Crawford, University of California Radiation Laboratory Report UCRL-2187, 1953 (unpublished), and M. Lynn
Stevenson, University of California Radiation Laboratory Report UCRL-2188, 1953 (unpublished).' G. S. Yodh, Phys. Rev. 98, 268(A) (1955).' D. C. Peaslee, Phys. Rev. 94, 1085 (1954); 95, 1580 (1954).

~ F. Low, Phys. Rev. 97, 1392 (1955).' G. F. Chew and F. E. Low (to be published).
7 G. C. Wick, Revs. Modern Phys. 27, 339 (1955).
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The resulting expression is transformed by making use of the identity

where on the left side all operators are in the interaction representation and on the right side A. ;(x) has the Heisen-
berg time dependence,

A;(x,xo) =e'"*oA,(x,0)e—'~ o, (4)
and the

~ +„)are exact single-nucleon eigenstates of the total Hamiltonian (free-field plus interaction). The S-matrix
is then —i 3 r

(flsli)= d' d' d' '" '" '" '(e,
i 8[A, (*)A ( )A ( )]i+,)

(8(o(oi(oo) ~~

(—i)9.
+ d'xd'ye'"*(e '("+")"-(+;!~[(V,(y)@i(y)+~~)4-(y)4-(y))A'(x)]1+.)

(8(o(oiooo) ~~

+ *"' '"'"(+'I&[»(y)(2()()'(~)e«~)+()'&-(')()()-(x))]l+ )
+e-'""'""(+;II'IA (y)(2~.( )x~;( )x+I' ';)l()( )x~-( )x)]l+.))

(—i)x
+ t d'xe""-' —' )*(+,

~
2y, (x)8,;~@„)

(8ooG)iQ)o) ~J

(—i) d'*'".(p'k. k.jl I
A. ( ) I p),

(2o))&&

where A, (x) is given by Low's quantity O, (x). The quantity (p'kik& jl
~
A;(x)

~ p) is defined by the above equation
for all values of p, p, ki, and k~. By the commutation process, it may be shown to be identical with

(6)

On the energy shell, p+k&+ko ——p+k, this quantity is the S matrix with the delta function of energy and
momentum left out. However, off the energy shell, the S-matrix is not defined, whereas (p'kik& jl

~
A;(x)

~ p) is de-
fined by the integrand on the left side of Eq. (6).

Ke will be interested in the static limit. We therefore drop terms in ) and consider

(p'k k jl
~
A;(x)

~ p)

(—i)'
dozdzod'ydyo exp[ i(o)iyo —k' y+(—oozo ko z)](—V„~8[exp[i(Hzo —P z)]Ai(0)

(4(oiooo) ~~

Xexp[—i(Hso —P z)] exp[i(Hyo —P y)]A, (0) exp[ —i(Hyo —P y)] exp[i(Hxo —P x)]A, (0)

Xexp[—i(Hxo —P x)]]~4' ), (7)

where we have utilized invariance under the translation (momentum) operator P,

A;(x) =e '~'*A;(0)e'~ *. (8)
We now perform the indicated space and time integrations, setting x= xo ——0 in the 6nal result. This is best done

as in the following example: Introducing complete sets of exact eigenstates ~+„) and ~@„),and considering a
particular time ordering so&yo&xo, we have
—(4o)io)o)&(p'kiko jl

~

A '(x)
I p)

d'zd'y exp[—iki. y —ik& z] dzorl+(zo yo)e,"'*'
~

dyo)t+(yo xo)e'"'"'—., J j
X(%'„

I exp[i(Hz —P.z)]A (0) exp[—i(Hz, —P.z)] I 4„)
X(%'„[exp[i(Hyo —P y)]A;(0) exp[—i(Hyo —P.y)]j@ )

X(4 (exp[i(Hxo —P'x)]A'(0) exp[—i(Hxo —P'x)](%' )
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f' 1 ) e" t "dae"'" "" t" 1"dbe'~el
dsoe '(»+««' —e«) ~o

I d. , ei(«x+2i'«-&m) woyo
«.~ (2mik J„„a—ie ~„„b—ie

&&

J
d'zd'y expLi( —ki —p.—p-).H exp[:i(—k2 —p'+p-) zj&+. I A~(0) I+-&

(%~ (Ag(0) [%„&(%' IA;(0) (4' &&'P IA, (0)4„&B(p —p„—kq)8(p„—p' —km)

fb jW (E«—Gl2 —CO& ~
—'le) (E~—

&8 2
—M y

—M &~
—'lb)

Here we have used

n+(~) =
1 [."dae' *'

2.;J „.;,
=1, xo&0

Xo&o.

This procedure is carried out for each time-ordering. The full amplitude is then given by

1 &'P„.I A ((0) I P„&&'P„lA, (0) [P„&&'P„lA;(0) I P„&B(p„—p' —k2)8(p —p„—k&)
&p'&&~2jil A'(o)I p) =

(4(g,(g2)& «, m (E„—Mg —M&~ —'lN) (E~ CV ~ My—td&—~ te—)—
(O' ~ IA;(0) (%„&&% IA, (0) [%„&(%'„IAt(0)(%'„)b(p„—p' —k2)8(p„—p+k&)

(E«&1 co&1—zc) (E~+c02—
M&

—M)

(0) le„&&+„(A,(0) le.)(e.(A, (0) le„&s(p —p„—k,)s(p„—p —k,)

(E«+(dy+M2 My Ze) (Eg~—(d p+ &2+M)
(10)

plus three additional terms obtained by interchanging
the subscripts j and 1 and 1 and 2.

If the (%'„&, (%'„&, (%„),and (4 ) were replaced by
bare-nucleon spinors, the above equation would yield
lowest-order perturbation theory for the six diagrams
shown in I'ig. 1. In this case, although +„& and (%'„&
represent physical nucleon states, the 4„) and I@ )
may be any members of a complete orthonormal set of
eigenstates of H, a physical nucleon, or a physical
nucleon plus any number of real mesons. Another
interesting feature is that although (%'„& is to represent
the initial physical proton in our process, and although
A;(0)—since it is derived from an interaction which
represents the absorption of a m+ by a neutron —con-

(b)

A, (0)

A, (0)

i(4n) lfe.kr,

~(2~)'

—i(4n.)&fa kyar;
=Ax*1 )

p(2(og)1

tains the operator r+ r&+ir2, yet ——A;(0) [4~&&0.
Operation on a bare proton with r+ yields zero, but the
physical proton is a superposition of a bare-proton
amplitude, a bare-neutron-plus-meson amplitude, etc.
Equation (11) contains only energy denominators of
the form (E;,«,~.e;,«—E&;»&). Since the physical-
nucleon self-energy appears in both states, this un-
observable quantity does not appear in the equation.

We wish to treat the equation for &p'k&k2 jl IA;(0) I p)
in the static limit:

A, (0):
i(4z.)'*fe k2r)—

=A ~2*.
p(2(om) '*

(c)

FIG. 1. Feynman diagrams for meson production
in the Born approximation.

Here f is the unrenormalized, unrationalized pseudo-
vector coupling constant. r;= (V2r+, &2r, ra). In the
double sum over the two intermediate states, we keep
those terms in which both intermediate states contain
only a physical nucleon, and those terms in which one
intermediate state contains only a physical nucleon and
the other state contains a nucleon, plus one meson.
These terms correspond to the nine diagrams shown in
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Fig. 2, plus nine more obtained by interchanging k~

and k2.
Let us consider first the process s++~++x++m.

Since there exist neither doubly charged nor negatively
charged physical nucleons, our initial physical proton
cannot make a transition to another state of the
physical nucleon by absorbing a x+ or by emitting two
successive m+. Therefore the matrix elements corre-
sponding to diagrams (a), (c), (f), and (g) of Fig. 2
vanish.

We are left with two pairs of diagrams, (d) and (e),
and (h) and (i). These correspond, respectively, to
resonance scattering in the first and in the second inter-
mediate state. In Fig. 2, the open diagrams, (d) and

(h), contain the energy denominators corresponding to
the resonating intermediate state. The energy control-
ling the resonance in diagram (d) (the singularity intro-
duced by the energy denominator) is the total energy of
the incident meson, whereas in diagram (h) it is the total
energy of the second outgoing meson. We have investi-
gated diagram (d) and its crossed counterpart, diagram
(e), and we find that, since o&i+co2 is well above the
(3/2, 3/2) resonance energy, the contribution of these
diagrams to the matrix element is less than 10% of that
from diagrams (h) and (i). We shall consider only the
latter two diagrams.

Our amplitude is then

(pi A2I A~In)

&P IA"*l.)(.IA. I»

(P I Any*I(o'y&(co'y I A~ I»
GO 0)] Z6

(P I A.
I
~'»(~'~ l»i*I» (l I A»*In)

M +G)y+CV2 M2

+the same expression with 1 and 2 inter-

changed. (12)

In the new notation, ln) (I p)) represents the initial
(final) physical proton (neutron) states; IX) and I»
represent the four states of the physical nucleon, and
these are to be summed over; Iar) represents the nu-
cleon, one-meson states, One sums over the spin and
isotopic spin of the nucleon and the isotopic spin of the
meson, and one integrates over the meson momentum
from zero up to the cutoff value. The delta functions
of the momenta of intermediate and initial and 6nal
states are taken into account by integrating over inter-
mediate nucleon momenta, the nucleon in the static
limit being in6nitely heavy, and hence the absorber of
any amount of momentum required for conservation
at a vertex.

In Eq. (12),we now neglect the cu2 in the denominator
of the last term in the curly brackets and the co& in the
denominator of the same term in the curly brackets of
the same expression with i and 2 interchanged. Our

Kl K

fa) (b) (CP

K) K

(d)

FIG. 2. Feynman diagrams for meson production
in the one-meson approximation.

Dropping A&2 in the denominator gives rise to an error in
the integrand of the order of a&2/(a&'+~&+o&2), which, at
most, is about 2p/(p+3g) = ~. The error in the integral
is less, since the integral diverges linearly, and hence the
main contributions come from co', several times p. This
can be seen from the following:

(~'~IA~ln)

6 I A.*l ~&(~l A~ ln)

0) —
CO]

—Z6

(ylA le)(elA„*In)
I

I

-(1/~') (6 I A.*l~&(~ I A. In)

+(yl AI, II)(el A„*ln&}, (14)
where

A,*= i (4~)&fa—pr;/p(2(v') &

Therefore (~'ylAqln&n1/+au', and the above integral
is proportional to z, .

Our amplitude now has the following form:

(pkgkm I
A g I n)

(p I »i*i»b I A. I»

(p I
A»*l ~'»(~'v

I A I»
6) GOj, Z6

(PIA l~'»(~'~IA~ *I» (l IA* *In&
+— . (15)

approximations are made in the terms coming from the
"crossed" diagrams [(i) of Fig. 2]. These matrix ele-
ments contain no poles and will therefore be small
compared with the matrix elements coming from the
"open" diagrams [(h) of Fig. 2j. More explicitly, the
approximation is made in a term of the form

r ™x,,(&l» *l~'v&(~'vlA In&
pe) dbms (13)

M My M2

where
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is then the "crossed" contribution to the Born approxi-
mation in the Chew-Low scattering matrix. The error
in the Born term is of the order of Mg/(Ml+Mg), which is
quite small compared with the complete contribution
to the matrix element from the Born terms plus the one-
meson terms. The Born term can be treated exactly;
however, we feel that to do so would alter the cross
section by less than 10%.

In Eq. (15), the matrix element &X~Agge(a) is of the
form

(physical nucleon~ fo kr;~physical nucleon).

Evaluating this matrix element is equivalent to taking
the vertex operator between bare nucleon states and re-
normalizing the coupling constant, f +f„'s- .

The scattering matrix may be expanded in terms of
projection operators for the various states of total iso-
topic spin and angular momentum. We keep only the
I=3/2, J=3/2 ps, rt. Then

r.(k,) = kk,k.(k,)P,Q,.
(4MMl) &

Here Pg and Qg are projection operators for the
J=3/2 and I=3/2 states, respectively. Pg is given
explicitly by

1
Pg= (2k kl+ilr (kXkl)}.

3kkg
(18)

The expression for hg(kl) in the "effective range ap-
proximation" of Chew and Low is given by

igg(kl) =
Ml (1—M l/M g)

—17l,gk1

' T. D. Lee, Phys. Rev. 95, 1329 (1954).

The term in parentheses is the one-meson approxi-
mation for the Chew-Low scattering matrix, Tg(kl)
(in.the notation of Chew' ). It describes the scattering
of a gr+ of momentum (energy) k(M) into a gr+ of momen-
tum (energy) kl(Ml), with the physical neutron going
from state n to state P.

A similar equation may be derived for the process
~++~++~'+p. In this case, the matrix element
corresponding to diagram (f) in Fig. 2 does not vanish.
We neglect this diagram, since the energy denominators
give rise to no poles. There is, in addition, a nonvanish-
ing matrix element for the Born approximation repre-
sented by diagram (c). The contribution from this
diagram is given by

(PIA IV)&VIA**I»(lIIA**I~)
(16)

0)y 0)j C02

We neglect Ml in the quantity (Ml+Mg). The part

&8IA Iv)61Ag *I»

&(pg g,+~~ (&x&p}Q Ix)

—i(4gr)'f, e kgv2r
X

~

~

xi
v2pMgi

+the same expression with subscripts

1 and 2 interchanged, (2o)

where g;(xy) is the initial (final) bare-proton (nucleon)
spinor, spin up or down, and the intermediate bare
spinors are summed over spin and charge states.

The matrix element for x' production is given by the
above formula with the V2r in the perturbation term
changed to v3 when the subscripts 1 and 2 are inter-
changed.

RESULTS AND DISCUSSION

The results for the square of the matrix element
averaged and summed over initial and final spin states
follow.

Spigg pip:
4(4 g)rfg, o( kklk)gg

( r,k,kg('=-
81il (MlMgM)

XpA o(4 sin'8l cos'8g+ sin'8g cos'8l

+-', sin28l sin28g cos(q4 —$l) }

+Bp(1~2, 2~1}

+Cp(2.5 sin28l sin28g cos(gg —p,)

+4 sin'8g cos'8l+4 sin'8l cos'8g}].

Eo spigg flip:

4 (4gr)' f„'(kklkg)'
( Tg (klkg) i'=

81''(MlM gM)

XL(A o+Bo)(4 cos'8l cos'8g+sin'8l sin'8g

—s11128l sll128g cos(@l—Qg) }

+Cp(8 cos 8l cos 8g

+2 sin 8l sin 8g cos2(8l —8g)

—2 sin28l sin28g cos(@a—Pg) }$, (21)

Here, f„ is the renormalized, unrationalized coupling
constant; era is the "resonance" energy. We take
f '=008 Ms=2. 1y.o

The matrix element for gr++ p-ggr++gr++gg is now

4gr
Tg (k kg) —Q xf

2(M1M) Ml(1 Ml/Mg) ZXgkl
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where, for m+ production,

Ap=
o12 (ppr (1—o)1/(ds) +)13 kr )

&o=
o11 jpp2 (1 o12/o13) +X3 ks l

o11o12(1 o11/o13) (1 o12/pp3)+X3 kl k2co=-
(o11o12)io11 (1 ppl/pp3) +~3 k1 }(2 (1 o12/&3) +)13 k2 )

SPi88 fisP:

Xo sPi88 jiiP:
a= (5/4) (A+B)+2C.

a =A+B+.C.

For m+ production,

The coeKcients for x' production are

~0 =4 5~0, &0 =2&o, Co =3CO

The diGerential cross section is given by

do= (k/~)-'~ T,(k,k2) ~2

22rb (pp o1 1 o12) k1k2o11o12do11do1 2di) ld(1 2/ (22r) (22)

(23)

At 350 Mev, the cross section for production of an
additional meson is about 12%%u~ of the total cross sec-
tion."The sharp increase in cross section at 350 Mev
is due to the resonance behavior of the scattering part
of the matrix element when one or both of the mesons
may come out with kinetic energy approaching the
resonance kinetic energy. At 500-Mev incident-meson
kinetic energy, the production cross section becomes of
the order of the total cross section of 20 mb, indicating
the breakdown of this approximation.

Comparison with de6nite experimental results is not
yet possible. However, Blau and Caulton" have ob-

TABLE I.
A (B)(C) =Z d&orkrsk23Ap(Bp) (Cp),

Incident- Energy above
meson kinetic threshold
energy (Mev) (c.m. ) (Mev)

0 (~+2r+)
(mb)

0 (2r+m0) a (m+~+) +a (~+8r&)
(mb) (mb)

where Z=O 7f„pk/188, . pps=o1 —
&ut, k2= (o122—ps)'*& and

T= incident meson kinetic energy=ra —p.
For m' production replace Ao by Ao', etc.
The angular distributions for each meson are given by

the following:

Xo spi28 flip:

where

do./d(cose) =a cos'0+b, (24)

SPi 83 fiiP:

where

a= 88(A+B)+asc, b= ,'(A+B)-
do/d(cosg) g cos'0+ f,

g=-.'[(7/4)A ——,'B+C], f= ;(',A+B+C)--
The integrations were performed numerically. At

250-Mev incident-meson kinetic energy, the differential
cross section for ++ production as a function of the polar
angle between either outgoing meson and the incident
direction is of the form 0.64+cos'0. At 350 Mev, the
angular distribution is of the form 0.7+cos 8. The dip
at 90' is more pronounced than that obtained by
Miyachi' for the angular distribution of the x+ from the
prOCeSS rr +p—12r++2r +23 at 210 MeV. The latter Cal-

culation was done by using covariant perturbation
theory with pseudovector coupling. The total cross
sections for the two processes are listed in Table I.

' Y. Miyachi, Progr. Theoret. Phys. Japan 12, 243 (1954).

250 60
350 130

0.071
0.86

0.44
5.5

0.51
6.4

'8 L. C. L. Yuan and S. J. Lindenbaum, Phys. Rev. 100, 306
(1955).

"M. Biau and M. Cauiton, Phys. Rev. 96, 150 (1954).

served inelastic collisions of 500-Mev x mesons in
emulsions. They have estimated the cross section for
the production of an additional charged meson, aver-
aged over pr —p and rr 88 collisions, t—o be between 3.5
and l0 mb. We have taken the value of 3.5 mb and have
deduced, on the basis of the isobar model, a lower limit
on the production cross section in 2r+—p collisions of
about 6 mb. Yuan and Lindenbaum" have recently
indicated, on the basis of their total-cross-section
measurements, that meson production in 2r+ —p collisions
is likely to become important above 300 Mev.
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