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both the stored energy model and the scattering model
are inadequate for small e.

It is seen that for sizable clusters of 10' or more
vacancies, the resistivity per unit stored energy is about
3 times greater than for isolated vacancies. Thus if
vacancies cluster as the sample is warmed from low
temperatures we may expect to remove a larger fraction
of the stored energy than of the excess resistivity. At
suKciently high temperatures we expect the vacancies
to evaporate from the clusters and disuse away, the
excess over the equilibrium figure characteristic of the
temperature leaving the crystal, annealing of the vacan-
cies becoming complete.

Unquestionable evidence that the vacancies formed
at low temperatures actually cluster in the form treated
here does not seem to exist. If it were not for the argu-
ments at the beginning of this section, it would seem
plausible on geometrical grounds that they tend to
cluster in platelets, which form collapsed vacancy disks.
However, in this event they would scatter much less
effectively for a given energy storage. That vacancies

are created both by cold-work and by high energy
bombardment at low temperatures seems inescapable;
that they cluster in some form or another, upon warming
the crystal, likewise appears so. A number of experi-
ments of the type proposed by Seitz' seem capable of
deciding in detail the fates of the vacancies created by
radiation damage and by cold-work. Most of the crucial
experiments have either not been performed or have
been carried out on alloy systems which introduce
additional complexity into the interpretations. An im-
perfection similar to the type discussed here would seem
to be required if, for a given stored energy, there is a
relatively large excess resistivity, a relatively large
volume increase in the sample, and a large amount of
small angle x-ray or neutron scattering.
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By the inclusion of half-integral powers in the Hylleraas functions for the ground state of the helium
atom, it is possible to obtain more rapid convergence in the Ritz variational method applied to the non-
relativistic Schrodinger equation (for infinite nuclear mass), as shown by results of calculations involving
from four to thirteen parameters. The energy obtained with 13 parameters, —2.903719 a.u. , is the lowest
so far published. The coe%cients for the normalized wave functions are given.

HE recent remeasurement' of the ionization poten-
tial of the helium atom with an accuracy of

perhaps a few parts per million, ' is making it possible
to undertake a meaningful check on the relativistic
theory for this state. ' To that end, one requires the
solution of the nonrelativistic helium wave equation
to a corresponding accuracy. The recent calculations by
Chandrasekhar and Herzberg' using the Ritz-Hylleraas

*This work is supported in part by the U. S. Atomic Energy
Commission.

'By G. Herzberg and R. Zbinden (as reported by S. Chand-
rasehhar and G. Herzberg, Phys. Rev. 98, 1050 (1955), reference
12).' The experimental result, I.P. (He) = 198 310.&+1 cm ', quoted
in reference 4, is termed "provisional. "

' Ta-You Wu and G. E. Tauber, Phys. Rev. 100, 1767 (1955),
and references therein to earlier work on the relativistic solution.
For preliminary calculations on lowest order radiative corrections
see M. Giinther, Physica 15, 675 (1949);H. E. Hakansson, Arkiv
Fysik 1, 555 (1950); P. K. Kabir and E. E. Salpeter, Bull. Am.
Phys. Soc. Ser. II 1, 46 (1956).

4 S. Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050
(1955).

method may perhaps have yielded such results. Uncer-
tainty arises from present ignorance as to the rapidity
of convergence of the Ritz-Hylleraas method. ' The
determination of an upper bound on the error for the
energy by using the best method available for ending a
lower bound to the energy, ' is handicapped by the
rather poor approximation of this lower bound to the
true energy. ' ' Under these circumstances it seemed
worth while to explore modifications in the Hylleraas
type solutions that may lead to improvement in con-
vergence. A simple modi6cation consisting in the intro-
duction of half-integral powers in the Hylleraas poly-

' Some uncertainty still exists even with regard to convergence.
The proof given by A. S. Coolidge and H. M. James LPhys. Rev.
51, 855 (1937)7 can be shown to be valid in what concerns the
completeness of the Hylleraas set, but the part dealing with
convergence involves an unproven assumption.'L. Wilets and I. J. Cherry, Phys. Rev. 103, 112 (1956).

VA. F. Stevenson and M. F. Crawford, Phys. Rev. 54, 375
(1938).



NONRELATIVISTIC EQUATION FOR He

TABLE I. Nonrelativistic wave functions of Hylleraas type with fractional exponents for the He ground state.
P=e &"*(csoo+coo,u&+corot'+ ); s=r&+rs, t=rs r~, u—=r~s (normalized function; atomic units).
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2120

3.614
2.90277

3.61529
2.90277

1.22323
0.22927
0.17392
0.25168

3.5
2.9033807

3.500706
2.903381

1.401276
0.380444
0.153910
0.144767—0.366021
0.051416

3.5
2.9035502

3.498814
2.903551

1.409473
0.312906
0.226558
0.158258—0.337711
0.026374
0.037595—0.053238

3.5
2.903639

3.498639
2.903639

1 AAA384

0.199743
0.375122
0.250348—0.347380
0.026178
0.050218—0.276125—0.017173
0.080784

3.5
2.903660

3.498779
2.903660

1.487603—0 018836
0.344291
0.648979—0.354477
0.025919
0.059514—0.230744
0.059567
0.064742—0.300762

3.5
2.9037135

3.500070
2.903719

1.396898
0.176205
0.329913
0.518561—0.232078
0.007720-0.172997-0.255175
0.023661
0.066023—0.244214
0.136027
0.030960

a See formulas (8) in reference 4; or, H. A. Bethe, Handbuch der Physik (Verlag Julius Springer, Berlin, 1933},Vol. 24, Part 1, p. 357.

nomials yielded the results summarized in Table I.'
Comparison of these with the corresponding results in

reference 4, shows that there is indeed a substantial
improvement of the type sought, especially as no
attempt was made to choose the optimum scaling
factor k. The following immediate questions remain:

(1) Will the energy be pushed substantially lower by
suitable increase in the number of parameters'? (2) In-
asmuch as this method proved less satisfactory for
Z=1,' does it actually improve with increasing Z?

The suitable introduction of negative powers has been ex-
plored successfully by Dr. T. Kinoshita (private communication).

(3) What can be expected from the employment of
more general fractional powersP (4) What restrictions,
if any, in the applicability of the present functions,
result from their having singular derivatives on the
planes s=0 and I=OP Some work on these questions is
continuing, but any significant progress relative to (1)
would involve computational facilities not presently
available to the author.

The assistance of Veronica C. Fink, who was in
charge of all the numerical work on this problem, is
gratefully acknowledged.

' The result of Levitt, Tauber, and Wu LPhys. Rev. 99, 1659(A)
(1955)g needed revision I G. E. Tauber (private communication) )


