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hrst, and then the dressed nucleon propagates freely
until it emits the second meson.

(c) The whole effect occurs without free propagation
of the nucleon.

Just above the threshold, the relative orders in tt/M
compared with the outgoing meson current term are,
respectively:

(a) O(ts/M), occurring with g,s.

(b) O(tt'/M'), occurring with gt g„.

(c) O(tt'/Ms), occurring with g,'.s

As an illustration of the determination of these
relative orders, consider briefly case (b). At threshold,
with zero pion mass, it contributes a term proportional
to eg,gJ (2M) 'y„, since the photoproduction gives a
factor egp(2M) 'y„ys and the remaining interaction, a
factor g„(ipp+M) 'ys, in accordance with the cancella-

sgz is the Kroll-Rudermann constant, determined by the
photoproduction of a single m meson. The relation between gp
and g, is gp= (Ii+8)g,. For the definition of Ii and II, see refer-
ence 4, Eq. (4.3). Further, (a) has to be evaluated with care as,
formally, it is infrared-divergent at threshold for p, =0. In this
connection, see A. Klein quoted in reference 5.

tion of the dressed propagator and vertex eGects."
Being strictly zero at threshold, this matrix element,
between N, t(p+hp) and u, (p), starts with a hp/M
factor, with increasing hp, and its contribution is then
of order eg„gz(4M') 'tt just above threshold. Compared
to the leading term in (2.7), this behaves just with the
relative order ts'/M', but with the coefficient g,g~, as
stated earlier.

Thus, in conclusion, it is likely that the whole
contribution to the photoproduction of two pions comes
entirely from the terms of relative order k/M in (2.7) as
well from the effects (b) and (c). Calculations of the
effect (b) have been made, using the semiphenomeno-
logical Chew method, with results in good agreement
with experiment. " So far, the theoretical predictions
were based essentially on the perturbation expansion,
giving too large an estimate owing to the pair effects.
On the other hand, in the light of the present analysis,
the low experimental ratio of negative to positive pions
is no longer unexpected.

It is a pleasure to thank Dr. S. Deser, Dr. P. Martin,
and Dr. G. Kallen for many helpful discussions.

"Reference 4, Eq. (5.4)."F. Zachariasen, Phys. Rev. 100, 1809(A) (1955).
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With the use of monocrystalline targets for bremsstrahlung and pair production exlteriments, inter-
ference phenomena are expected to occur which will markedly change the y-ray spectrum as well as the pair
energy distribution, for certain angles giving enhancement of radiation and pairs. The eRect increases with
energy; it sets in at b ue(2s/a), where b is the minimum momentum transfer to the target atoms, a the
lattice constant, and no a number of the order 2 or 3. This corresponds to ~200-Mev primary energy for
bremsstrahlung, 1 Bev for pair production. The effect is confined to angles between the primary beam
and a line of atoms, of order e&(a„„,/Ko)(mcs/E) The tempera. ture motion of the lattice reduces the
interference eRect to some extent. The Born approximation was used for the quantitative analysis of the
problem.

I. INTRODUCTION

'N a recent Letter to the Editor, ' reference was
~ ~ made to deviations of bremsstrahlung and pair
production cross sections in crystalline targets from
the Bethe-Heitler formulas, and estimates of the order
of magnitude of the deviations as well as the "threshold
value" of primary energy were given. W'e here present
a detailed analysis of this phenomenon.

With a classical picture of an electron passing a
~ Supported in part by the joint program of the Once of Naval

Research and the U. S. Atomic Energy Commission.
j' Based on a dissertation submitted to the Graduate School of

Cornell University in partial fulfillment"of the requirements for the
degree of Doctor of Philosophy. Parts of this paper were presented
at the 1956 Washington Meeting of the American Physical
Society, [Bull. Am. Phys. Soc. Ser. 11, 1, 209 (1956)j.' F. J. Dyson and H. Uberall, Phys. Rev. 99, 604 (1955).

row of regularly spaced atoms in a lattice, it can easily
be seen that, for sufficiently high speed of the electron,
coherence in the successive interactions might well
occur. One could expect deviations from the one-atom
bremsstrahlung formula if, in the rest system of the
electron, the collision frequency cy/u approaches the
frequency of the radiation rrtc'/lt. Considerations of
this kind indeed led Williams to surmise a correspond-
ing interference effect for the first time.

Quantum-mechanically, such an effect should not be
considered as being due to the electrons represented by
waves, as their wavelength would be short compared to
the lattice constant at high energies. It wi11 rather be

'E. J. Williams, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 13, 4 (1935).
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due to the atoms in the lattice being hit in succession,
and interfering constructively by their recoil momenta
which will always be small &nsc, m being the electron
mass. Similarly, one can find interference also in pair
production, using the above arguments or the well-
known connection between the two processes by the
substitution law of the S matrix. ' No reference is found
in the literature to this eGect in pair production;

-however, there exist some earlier theoretical papers on
the bremsstrahlung interference, whose authors
throughout make use of the Weizsacker-Williams
approximation. Ferretti' develops a formula for the
radiation intensity, from which he concludes in a
qualitative fashion that radiation maxima and minima
should occur depending on the incidence direction of
the beam with respect to the crystal, and that they
should become more pronounced with increasing
primary energy. These calculations were refined by
Ter-Mikaelyan'. lattice vibrations and screening are
taken into account, the position and magnitude of the
di6raction maxima are calculated, and there is a
careful estimation of the limits of validity of the
approximations used. Both papers however present the
results in a form which is not immediately useful for
comparison with experiments. A step in this direction
has been undertaken by Purcell, ' who again used a
Weizsacker-Williams method. His results are in good
agreement with the ones obtained below, using the
Born approximation. Pair production has also been
investigated by Purcell,

In the following, we shall treat the problem in Born
approximation, which is expected to give more accurate
results than the semiclassical WeizsKcker-Williams
method, and have a wider range of applicability.
Though numerical methods were used, the results are
of complete generality as far as energy is concerned,
but no general Z dependence can be given.

%'e shall present some qualitative arguments to
begin with, to give an idea of the orders of magnitude
involved. The essential quantity in the Born approxi-
mation matrix element of bremsstrahlung and pair
production is the Fourier transform of the electrostatic
potential of the nucleus, '

~V(r)etq rdr

where g is the momentum transfer to the nucleus. In
a crystal, V(r) will be the periodic lattice potential. In
the following, we shall measure all lengths in units of
the electron Compton wavelength, Kc ——5/srtc, and all
energies and momenta (by which we mean the actual

' J. M. Jauch and F. Rohrlich, The Theory of Photorts old
E/ectroms (Addison-Wesley Press, Cambridge, 1955).

4 B. Ferretti, Nuovo cimento 7, 118 (1950).
~ M. L. Ter-Mikaelyan, Zhur. Eksp. i Teort. Fiz. 25, 296 (1953).' E. M. Purcell (unpublished).
7 W. Heitler, The Quantum' Theory of Radiatiol (Oxford Univer-

sity Press, New York, 1954), third edition, p. 248.

momenta times c) in units of mc'. Moreover, we shall
make the assumption throughout that wc~ can be
neglected in comparison with the energies of the
electrons and quanta involved. In bremsstrahlung, we
denote initial and final electron momenta and energies
by pr, er and p2, e2, and the quantum momentum by k.
For pair production, we designate the pair by p+, e+
and p, ~ . There is always the momentum-energy
relation p'= e' —1.

First we shall consider the eGect in momentum
space, and take pair production only, the bremsstrah-
lung case being completely analogous. Energy and
momentum conservation give the two relations

q=k —p+ —p, k=e++e .

Taking k as direction of the s axis, we can show that
the s component of the momentum transfer, q„ is of
order 0 '(&1, whereas the perpendicular component
q~ is of order 1 or smaller. To see this, we recall first
that the angles of emission of the pair 0+ are of order

This follows immediately from the terms
8+e+(1+8+'e+') ' in the Bethe-Heitler formula' (using
small-angle approximation). Now we have from (2)

q, = h p+ cos8+ —pcos8-,
q~'= p+' sin'8++ p ' sin~8 +2p+ sin8+p sin8 cosg,

and expanding for small values of e ', we obtain

q~~1, q,~28,

the indicated result. Here 8 is the minimum momentum
transfer, which occurs for the pair being emitted with
zero angles, and which is

1 1 k
8=k —pp —p = +

26+ 26 26+6

for e~ -', h, 8 is of order k '. W'e also have the relations

q&~5, q, ~&8,

which show that q can be of order 5 to 1, q, only of
order 5. This means that pair production (and likewise
bremsstrahlung) will occur predominantly in such a
way that the momentum transfer to the nucleus lies in
a thin, pancake-shaped region of radius 1 and thickness
8, with center shifted from the origin in q space along
the direction of k (which is the axis of the pancake)
by an amount b. The momentum transfer is therefore
almost completely transversal, and its magnitude is
not greater than ~1, no matter how high the primary
energy is.

In the case of a crystal potential, we can insert
into (1)

V„,=P U(r+L),
L

where V is the one-atom potential and I a lattice

e H. A. Bethe, Proc. Cambridge Phil. Soc. 30, 524 (1934).
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vector. So, (1) for the crystal is replaced by
~R

2V bo

P exp(iq L) V(r)e'p'dr,
L

which gives to the differential bremsstrahlung and
pair production cross section the additional factor

k of p)

~P exp(iq L) ~'=
sin.'(-,'at. q) sin'(-', as q)

sin'(-', 1Vpa p q)
X , (6)

sin'(-', a, q)

sin'(-', X&at q) sin'(-', %sap. q) = 27rb)

a Laue-Bragg type interference factor familiar from the
theory of x-ray diffraction. The ai are the primitive
lattice vectors and X; the number of primitive unit cells
along the ith edge of the crystal. In a non-Bravais
lattice, an additional structure factor would occur also.
For macroscopic crystals, the X; are very large, and

(6) can in very good. approximation be written as

(2pr)'
W P 5 (q —2prg), (7)

b=k/2p+e &2pr/a, (»)

a sum over aH reciprocal lattice vectors g, with 6 the
volume of a unit cell in the lattice and S the total
number of atoms in the crystal. Therefore, in a crystal,
the momentum transfer has to be 2x times a reciprocal
lattice vector.

Tg obtain the total cross section of pair production,
an integration over the emission angles of the pair has
to be performed. We shall see later that this can be
converted into an integration over q space, and the
main contribution will come from the pancake region.
Because of (7), for a crystal this integration gets
replaced by a summation of the differential cross
section over the reciprocal lattice points. The situation
is presented in Fig. 1 for a simple cubic lattice with
lattice constant g (here the reciprocal lattice vectors
coincide with the ordinary ones, only their length is
changed to 1/a). We see that for sufficiently high
energies (i.e., a suKciently thin pancake), there will

be a contribution from few or many points, depending
on the angle of incidence 8, and we can expect a di6rac-
tion-type variation of the cross section with 8. This
instructive picture permits us to state the conditions
of appearance of the e6ect: the thickness 5 of the
pancake must not be larger than the reciprocal lattice
spacing to give appreciable variation of the cross section
with 8, so using (4) we get

n &pr/aqz=— npp (10a)

nGqg) cosp
~ qg

(10b)

With our previous estimates for q, and q, we 6nd that
the number of lattice points over which the phase
change is &m will be of an order eo 3 for pair produc-
tion of ~1 Bev, bremsstrahlung of 200 Mev, and
will be larger than that at higher energies. At the
same time, we see that 8 has to be very small, of order
2pr8. Now (9) can be approximated by

sins(-', Xa q)
P np exp(sq rmnp)

m sin'(-,'npa q)

N 2pr p a 2pr
=no'——E5l q ——

no g s L u npa )

F&G & The "pancake" in the reciprocal lattice. b; are the primitive
reciprocal lattice vectors,

~

b;
~

= 1/p, .

which @=3.61 A, or 2pr/a=6. 72X10 ' (units tnc') We
obtain from (8a): k& 150 Mev, from (Bb): er & 75 Mev;
we shall see later, however, that we have to go to
somewhat higher energies in order to get more pro-
nounced eGects.

Another argument on the interference eGect can be
given, considering the ordinary lattice space. Assume
that the primary is passing a row of atoms at a small
angle 0, and neglect interference from neighboring
parallel rows of atoms. Then our Laue-Bragg factor is
one-dimensional and simply

&iq. rn 2 (~)

For small 0, we can write the phase

q r„=nu(q, +q~8 cosg);

this will be &m if we have

or in the case of bremsstrahlung

h—=0/2etep&2pr/a. (Sb)
Multiplying by the diGerential cross section and
integrating over the angles or, equivalently, over q,

For a numerical estimate, consider a Cu target, for Based on suggestions due to Dr. Haakon Olsen.
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we can replace the sum by an integral as the points h

are now no times closer spaced as before, and get the
old one-atom cross section multiplied by no. This
shows that an "interference length" of no atoms can
give constructive interference in the cross section by a
factor no. A similar argument was used in reference 1.

Thermal motions of the lattice atoms are expected
to reduce the interference eGect. A particular lattice
vector L will be replaced by L+u, where u is the
displacement of the atom due to thermal vibration.
The 8-function peaks of the interference factor (6) will

be smoothed out if the phase change in (6) due to the
displacement, q u, becomes of order m. Assuming"
(24) a/20, we 6nd that for q & q»=5X10 2, the
interference will be markedly reduced, or in the
reciprocal lattice picture, the summation over the
points outside the sphere qo is replaced by an integration
again, the sharp reciprocal lattice points being smeared
out to a continuum. But as there are still about ten

reciprocal lattice points along a distance qo, the inter-
ference eGect will be reduced only partly.

H. FORMULATION OF THE PROBL'EM

To obtain the total cross section in the one-atom
case, the differential cross section needs to be integrated
over only three variables, namely, the two emission
angles of the two final particles and one relative azimuth.
In the case of the crystal however, the crystal axes
determine a preferential direction, and integration over
two azimuths is necessary. Using the difIerential cross
section from reference 8, we take account of this by an
additional factor (22r) '. The crystal factor (6) will
depend on the two azimuths separately. Table I
presents our designations for the various angles.

The situation is somewhat simpler for pair production
because of the symmetry between the outgoing pair
particles, so let us consider this case first. %e use
Bethe's' expression for the diGerential cross section;
after making the smaH-angle and high-energy approxi-
mation, it becomes

;,0+do+0 do d@+'dp+' =
—Z ( e i »+» d»+ L1—F(q)j 2

]I
— —g+dg+—g dg de&+'drt&~"

137 &mc2] (2~)2k' q4

»+ +»—g- 2»+» g+g cosp+X 4»+' (4» '—q')+« '— —(4»+' —q')+4»~»
(1+»~2g+2)2 (1+» 2g 2)2 (1+» 2g 2) (1+» 2g 2)

2g 2+» 2g

X (4»+» +q' 2k') —2k'4—»+»
(1+»+2g+2)(1+» 'g ')

~(q) =1/71+ (q(-Z ')'j (12)

P(q) is the atomic form factor which is calculated by
Bethe using a Thomas-Fermi electron distribution.
According to Schi6," one can assume exponential
screening as a good approximation, with a corresponding
form factor

and an adjusted parameter C= j.11; we shall later
designate CZ r'=Ag. This quantity approximately rep-
resents the screening radius a, =137' '.

We introduce new variables m=0 e, v=0+~, in
which the Bethe-Heitler differential cross section takes
on the simple form

—Z' (' e' ) '16»+» d»+ f1—J (q)j2
&r&sir(24&V&rt&+)dg+dg &+ d4t&+ —

~ l 14d24VdVdrt&+ d@-+
137(22r)2 &mes) k' q4

I
(1—kg) q,'+2 1 1

X (13)
I (1+242) (1+V2) (1+N2)2 (1+V2)2

depending only on the azimuth difference Q+, as the because the pancake then contains a large number of
perpendicular momentum transfer is atoms of a given plane. Then we can use

q~ =I + v +224v cos&f&+. (14)

In the crystal, we have to add the factor (7) to (13).
The small thickness of the pancake and the smallness
of 8 now permit us to replace the summation over the
points in the planes perpendicular to b~ by an integra-
tion over these planes. This mill be a very good approxi-
mation indeed for angles of order given by Eq. (10b),

»& P. P. hvvsld, II&4&&dbmch der Phys4h (Verlag Julius Springer,
Berlin, 1933},Part 2, Vo1. 23.

n L. I. Schiff, Phys. Rev. 83, 252 (1951).

(15)

instead of (7). In the ordinary lattice space, this
corresponds to replacing the actual crystal also by a
set of smoothed-out continuous planes such that the
primary direction forms the angle 8 with the normals
of the planes. This sheds light on the usefulness of our
one-dimensional lattice-space argument of Sec. I.
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At this point, other lattice structures besides the
simple cubic lattices considered above might be investi-
gated. Take a face-centered-cubic lattice (e.g. , Cu, Pt)
with lattice constant a=edge of fundamental cube.
The reciprocal lattice is body-centered cubic, its
fundamental cube having an edge 2/a. When we

replace the lattice planes perpendicular to h& by
smoothed out planes, the plane nearest to the one
containing the origin will be the one containing the
center point of the fundamental cube; so we have a
spacing of the planes of 1/a, and get exactly the same
situation as if we had taken a simple cubic lattice
with lattice constant a. In fact, any lattice with a
cubic basis produces the same interference efIect as a
simple cubic lattice. This is found to be true even for
such complex cubic structures as the diamond lattice.

We now evaluate the relevant quantity in (15) in
our new variables:

8] 81
q —=—(k—p+ —p ) =h cos8 —P+ cos82 PcosH&—

8 8
=8 22(h82 p+82—2 —pHr—2). —

The angles in Table I(a) satisfy

His=8 '+8' —28 8 cosQ~", 822=8+2+82 —28+8 cosifr+',

and we obtain

~1
q —=q, —8(ss cosQ+"+e cosQ+'),

where we have introduced the longitudinal momentum
transfer, which is in our new variables

TAaLE I. Angles in pair production (a) and brernsstrahlung (b).
a& is a crystal axis; the angle between it and the direction of the
primary is called 8.

(a) Pair production

p= g (k,ar)

4= 4(p+,&)

p+'= g (p+k plane, ark plane)

g+"= + (pA piane, ark plane)
4+ =4'+ 4'+

(b) Bremsstrahlung

8= 4 (pr, ar)
g + ( a )

012 K (plryk)

~ (I '~
)

03= g (PI,P2)

$1= g (p1k plane, pIaI plane)
&3= + (p1p2 plane, pIaI plane)
Prr= g (Prrk Plane, ark Plane)
0=A —01

and the total pair-production cross section has the
simple form

8(8+ 8- &+)
O i, pair=% Q 22rapair

8(mp, q~ )2

2
Xdldpdqs ——,(20)

aL82qA2 —(q. 2h2r/a) —jsl

with (13) and (19). The prime on the integral sign
indicates that we must integrate over those regions
only for which the radical in (20) is real. If the last
factor in the integrand were absent, we wouM get
exactly the one-atom formula multiplied by N. The
expression contains the one-atom formula as a limiting
case if the lattice constant a goes to in6nity. For large
a' s, a step from h to h+1 in the sum will change the
integrand very little, so that we may replace P„
-+J'dh, and the last 'factor integrates out to 1, leaving
us exactly with N times the Bethe-Heitler cross section,
as it should.

To carry the -integration one step further, new
variables x and y—=q,—6 will be introduced instead ofI and ~ by the equations

I
q, =h —p+cosH~ —p cosH =8+ + . (17)

26 2k+

x
Q = +—+qg

28&+ 5 2&+)8
(21)

2' 2EQ-
A LHsq

'—(q,—22rh/a)23'

, 0

«rlq. —2~h/al «q. , (»)
forlq, —22rh/al &~8qA.

In place of the variable p+, we introduce qA2 by the
relation (14). We have now a Jacobian

8(8+,8-A+)

8(s,'U)qA ) Ege [4s p —(zl +p —
qg ) ]*

As the differential cross section depends only on p+, we

shall in the integration of (13) with the factor (15) go
over from the variables P~', P+" to p+, g+" and perform
the P+" integration with the help of the 8 function.
The result of this integration on (15) is

—x $ 6+—6

+—+qA
28& 5 2e kb

with

4N2ps (~2+ 22 q 2)2 to2

4gg 2gg
'N =

kb

(22)

The integrals over x can then be performed analytically.
The limits of integration for both I and e were 0 and ~,
and 0 and 22r for p+. Expressing p+ by qA2, we let q~s

go from 0 to ~ and take the result with a factor two,
because when @+ covers its complete range, q~' covers
its range twice. In the new variables, the limits on x are
given automatically by the zeros of the expression (22)
whose root appears in the Jacobian, and are &w. For

the coeKcients are chosen such that the expression in
the square root of (19) becomes simply
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the same reason, the limits on q. are 8+qt /2k and, of course, q. After the x-integration, the cross section becomes

$1 F(q)]'—Z'( e' q'8N e+e de+ t-" t."
trtps, ir=

137 ~tttc') u k' » p ~pyp~t/2a

21r q' '*4

0'qi, '—
) q, ——k

)

a )

q*+Al:(e-—~)/2e+kl q +q'r(e+ —e-)/2e-kl

I q*— I+; I q*— I+
2e~J 4+' E 24 )

+L(1—k~)q,'+2j
2ppqz ( q~') '

qi,
' ~ 2e—q ( qi.') ' q~'(+, I q

— [+
2e+) e+ 2p )

(23)

The formula shows the desired symmetry between
positron and electron, but is otherwise rather compli-
cated. All these derivations were made for a crystal
with rigid atoms; we shall see later that the inclusion
of thermal motion will simplify matters. Before that,
however, let us derive the corresponding formulas for
bremsstrahlung.

The angular situation is somewhat more complicated
here LTable I (b)j, because the primary is now the

electron y~, whereas the diGerential Bethe-Heitler
formula depends on the azimuth difference @, measured
from the direction of the quantum k as axis. Having
the preference direction a~, we cannot integrate over
the electron angles, as Bethe' did, but have to keep p~

fixed with respect to a~.

Again using small-angle and high-energy approxima-
tion, the differential cross section' becomes

Z' tt' e' q' «dk L1—F(q)j'
ob O~ld010pd02dtttl@p=

~ ~
Old01HpdOpdyldt3t,

137 'EtttC') (21')'elk q4

X 4~2'
ep20wp2 ePHP 2&l&1010~p cosp

. (4&1 q )+4&1 (4«q ) 4el«
(1+p 2 0~ 2)2 (1+e 2 0~ 2)2 (1 +.e 2 0~ P) (1+ P 0~ P)

et Hl +Pp +4
X (4pipp —q'+2k')+2k' 4ple&

(1+el HP) (1+ppP Q„P)
(24)

Energy and momentum conservation now make

k = el —«, 41=p 1
—p p

—k.

To keep the incoming electron momentum p~ fixed,
we shall iritegrate over the angles of y2 and the quantum,
0~10~pfipp, and accordingly have to take the element

of solid angle

Old 010pd Hpdpid|t p

rather than the one used in (24). To express the
goethe-Heitler cross section in these angles, we find by

spherical trigonometry:

02 01 +Op' —2H10. p cosp

with p=tfrp f» and using 0—1+Q~pp —2Q&1Q&2 cos$= Hpp

we have furthermore

q,'= I'+ n'+244' cosiP, (2S)

2010p costt =2(H1' —0101 cosp).

~e now introduce new variables I=Q,k, it= H, ep, in
which the perpendicular momentum transfer (perpen
dicular with respect to pl as the z axis) takes its former
simple form

and the Bethe-Heitler formula becomes

Z' ( e' )'16p,p,kdk t1 —P(q)$'
trbr (44,tip/) d 01d0pdlpldttt'1— 14dN Sd'0@'1d I/i 4

137 Etttc') (21r)' q4

1 1 (1+M)qi'+2

(k +pl«44 +elkv «kqg ) (k +pl zP) (k +plppN +elkpp —epkq@&) (kp+plp441)
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8(Q~q Q~s II,)
o2 b, ——X Q, 22rob,

8 (m, V, q&2)8$ 8]
q ' —=—' (p1—p2 —k) = P& cos8—P2 cosg2 —k cosgs

6 8 Xd&&dgx (30)

a 8'q, ' —
I q, ——k

I

a )
=8——', (Pig' —P282' —kgs') =q, 8(—u cosII i+ v cosset 2); (27)

the last equation was obtained by using

g 2 82+ Q~ 2 280~2 cosl//2 g 2 —82+ Q~ 2 28Q~~ cosf~

and introducing the momentum transfer along p~.

with (26) and (29). Now we introduce x and y=—q,—8

by the relations
k 2~2k k —e2

e2=—X+ y+q22k
Cy

The crystal factor is (15), as before, and its argument and we obtain for the total cross section once more
now becomes

I 'V

q.=Pi—P2 cos02—k cosOi=g+ —+ . (28)
2k ~~2&2

2&2k eg —k
V = ——S+ —g+Q. 22

1 &1 612

(31)

Again we go over to azimuths f, P~, and integrate over
f~ with the help of the 8 function; this replaces the
crystal factor (15) as before by (18). Elimination of
the variable f in favor of q~2 gives the Jacobian

e2'k
x'=8

4&2k

2
(32)

They make the square root in (29) become 2v2 —
2v

again, with

8(Q~~ Q~2 P) 1 The limits on q, become 8+F2/2sq and q, and the
(29) resulting total cross section is after analytic x-integra-

8(N, v)q~ ) eskL4N v —(I +'v —
q~ ) ]I tion:

L1—F(q) j'Z2 ( e2 q
' 4)V dk

137 (me ) a sP & 2 ~s+q ~g„ Lgsqgs —(q, —22rh/a) 2]l

qz+q~'(k —s2)/2sys2

(q —q.'/2 ~)' I:(q.—q~'/2s2)'+48'q ']-*'

(1+kg)F2+2
(33)

q.—q.'/2s~ L(q*—q~'/2s2)'+48'q. ')'*

It might be noted that the limit of the q, integral shows
us that the left boundary of the pancake, Fig. 1, is
sharp and slightly paraboloidally shaped. The right
boundary is not sharp.

Formulas (23) and (33) are valid for a "perfect"
crystal whose atoms form a rigid lattice. In the next
section, we shall consider the inQuence of zero-point
and temperature oscillations of the atoms.

III. EFFECT OF LATTICE VIBRATIONS

We consider the atom at L to be displaced by a
small amount uL. If we assume that the electron
configuration does not get distorted thereby, we obtain
a new diffraction factor instead of (6):

I Z «pI:iq (L+ur) jl'. (34)

uL can be expressed by the normal coordinates of the
lattice, " and (34) averaged over the distribution of
normal coordinates at a given temperature T, using
the oscillator distribution function of Bloch."Then we
approximate in the usual way the Srillouin zone by

'2I. Seitz, The 3EoderrI, Theory of Solids (McGraw-Hill Book
Company, Inc. , New York, 1940)."F.Bioch, Z. Physik 74, 295 (1932).

a sphere of equivalent volume, replace the sum over the
Brillouin zone by an integral, and introduce the Debye
temperature by

c,„,„=22r(3/4xa')lv = kO/k.

The frequency of lattice vibrations ~ has been put
equal to ~q, with the sound velocity e independent of
polarization. Thus we obtain

(IZ expIiq (L+«)3I')
(sin'n

I
L—L'

I= Q exp iq (L—L')+Aq'I —1 I, (35)( n2IL —L'I' i
calling

32P22c2 2'
t 0) 2r ( 3 ) &

1+4~i —
I

4iVkO O I T) a(4 )
Here C (O~/T) is a function tabulated by Debye. "
Strictly speaking, (35) was derived by us only for the
case T=O, as the Sloch distribution function is then
especially simple. The general expression for 3 has then
been obtained by comparison of (35) with the expression
derived by Debye" in place of (35), which is

exp( —Aq')
I P exp(iq. L) I2+EI 1—exp( —Aq')). (37)

L
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TABLE II. Atomic constants of selected elements.

Element

Diamond
Cu
Pt

6
29
78

1860
315
225

M/mII

12.01
63.57

195.23

atAj

3.56
3.61
3.92

Lattice

diam
fcc
fcc

A(0)/(137Z &)2

1.907X10~
6090X10 '
5.370X 10-2

A (0)

108.4
121.1
55.2

A (77)/A (0)a A (293)/A (0)

1.0135 1.1916
1.3745 ~ ~ ~

1.6735 ~ 0 ~

a Liquid-nitrogen temperature.

In x-ray dift'raction, this gives rise to a Laue-Bragg term
in the scattered intensity, reduced by the Debye-
Waller factor, " and an additional background scatter-
ing which is continuous in angle. Wailer later showed
that Debye's derivation of (37) was wrong as he
obtained the second term by treating the atoms as
independent oscillators, but we shall see that we can
use (37) with an accuracy suKcient for our purposes.
The usual treatment in x-ray diffraction theory"
consists of an expansion of the second exponential in

(35) (except for the Debye-Wailer factor). This is not
possible in our case, however, as we have to do with
much larger q values. But the shape of the function
sin'x/x' in the exponential suggests to treat the term
L= L' separately, so that we obtain from (35):

(sin'(n
I

L—L'
I )X++' exp iq (L—L')+Aq'I —1

I
.

L.r 4 ~'I L—L'I'

Now for LW L', we have
I
L—L'I &~a, and are therefore

well outside the principal maximum of the function
sin'x/x' (using A- values from Table II). The side-
maxima are not longer than 0.05, so that we can
neglect sin'(a

I
L—L'

I
)/n'I L—L' I' in the exponent

compared to 1. This leads to the old Debye expression
(37).

The interference effect will be least disturbed in
elements for which the ratio of the mean temperature
displacement (given by A&) to the screening radius
137Z & is smallest. For three elements satisfying this
condition, the atomic constants are listed in Table II.

If we now use the crystal factor (37), we shall get
the following results. The second term gives a contribu-

tion to the cross section which is similar to the one-atom
cross section, as it does not depend on 0. It is analogous
to the continuous x-ray di8raction background. We
can simply obtain this part of the cross section by intro-
ducing the factor

1VL1—exp( —A q')]

into Bethe's' formula (B 50) which represents the
cross section as an integral over q; comparison with the
derivation of (B 50) show that this procedure is justi-
6ed if we use values of A given in Table II. Thus we
can represent the continuous term of the cross section
as follows:

Zs / es )sde+
&tpair,

137 &tttc') P
XL(e+'+e ')q & (&)+seye—q's (&)), (3&)

Zs (
137 (trtcs2 keP

XI (.,'+e,')q, '(~) ——;e,e,q, '(~)]. (3S')
In both cases, the same functions 4» appear. They

depend on the b's of the respective processes only, not
on 0, and therefore represent an isotropic contribution
to the cross section. The Z dependence cannot be given
generally, as it was possible in the one-atom case. The

are given by

pl
q'i'(&) =4+4~' L1 —em( —Aq') j(q—~)'L1 —F(q)7—,

q3

10 t',
@so(b)=—+4 I

1—exp( —Aq')$I q' —6&'q ln-
J,

dq
+3Ãq —4~s

I L1 —F (q) $' —. (39)

g3
2

yOg

5 io 2 5 to 2
I I

5 10' 2
I

5 lo

FIG. 2. p+12 for Cu as functions of r=o/b.

i4R. |vv. James, Optical Priaciptes of X ray Dcgractiott (G. -
Bell and Sons, London, 1953). &t=&t +at ~ (40)

The integrals have been evaluated numerically with an
IBM card-programmed electronic calculator for the
three elements of Table II, and the resulting curves of
4»~ plotted vs tt =—5/(2v. /a) are shown in Figs. 5 to 9,
together with the corresponding one-atom and inter-
ference parts. One can see that they lie below the
Bethe-Heitler curves, C» —(4/3) lnZ, by approximately
10—

20%%uz. The curves for T=77' lie closer to the
one-atom curves than the zero-point curves, as the
more enhanced temperature vibration brings the
substance closer to an amorphous state.

The total cross section is of course given by
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X$(.,'+. ') P ~,"(~e)+-',... P e,"(~P)), (41)
h)~0 h) 0

Z' ( e2
q
' dk

137 (222c2J k&12

X L(61 +22 ) Q +1 (8P) —22122 Q +2 (~P)). (41 )
h)~0 h)0

The %~2h are the same for bremsstrahlung and pair
production (with the respective 8's); they are

Sb t" exp( —Aq')qdq
h

(P-2+ q2) 2

dq, 2
q

—
qg

X
4 L02q2 (q

2 22r72/p)2)t q
2

485 I"exp( —Aq')
h

2

g J 2 (P
—2+q2)2

dq, '
X

"2 L~'q' (q 2~h—/~)')—t

2~q 2

s(q.—~).
4

(42)

The variable q has been used instead of q~'. The terms
h(0 contribute a negligible amount, and have been
omitted. This can be seen as follows. Because we
must include only regions of real lattice square root,
the integrand will be QO only if

22r 1 ( 22r
ls+Hq&b or q&-—

(
5+—)I2) (.

a 8( a j (43)

IV. INTERFERENCE PART OF THE CROSS SECTION
1

The first term of the crystal factor (37) consists of
the old Laue-Bragg expression, multiplied by the
Debye-Wailer factor. This corresponds again to our
reciprocal lattice situation of Fig. 1, with the weight of
the points reduced with increasing distance from the
origin. For A~100, the reciprocal lattice points are
washed out for q&10 ', or outside a distance of 10—15
points. This shows that considerable interference
remains, the more so as the maximally contributing
values of q given by the screening radius (due to the
factor $1—F(q))2/q4 in the cross section) are always a
good deal below 10 '. The continuous part of (37)
increases with q as the interference part decreases.

To get the interference part of the cross section, we
can take over the "ideal crystal" formulas (23) and
(33) and simply insert the Debye-Wailer factor
exp( —Aq2) into the integrand. Because of this factor,
we can now radically simplify the integrand, since
values of q &10 ' will be of no importance. Expressions
like q~2/22+ in the roots can be considered small
compared to q„and the roots expanded. We can then
represent the interference cross section in a similar
form as the one-atom cross section, namely, as

Z' (c' ) d2+
0't, pair

'=
&&

137 E222c2) kt

IOO

P, 'Flg, OiOmand

Io'-

IO

IO3 I I l l I 1 I l I I

2 5 IO 2 5 IO 2 5 IO 2 5 IO
= Y

Fzo. 4. @%120 for Pt.

I t I t I l t I t ~ 1

2 5 IO 2 5 10 2 5 IO 2 5 10

FIG. 3. p+12' for diamond.

The most favorable case is h= —1, 8=0. Inserting for
the largest value considered in the following numerical
evaluation, 0 SX10 2, and using (22r/a) 7X10 ', we
obtain q &~ 1.4X10 ', but these q values give a negligible
contribution due to the Debye-%aller factor.

According to the q, ' or q, ' dependence of (42),
most contribution comes from q, values near b. The
lattice root demands

2x 2'—h —eq& q, &—h+Oq;
8 8

so for h=0, q, reaches the minimum 8; for h=0, it will

in general not because of the small angles 0&10 '. This
show's the minor importance of terms h=0, Figure 1

makes this obvious: for small 5 and 0, only the plane
k=0 will contribute a good number of points to the
pancake.

Considering Ig=0, and integrating over q„we obtain

4 t "exp(—Aq')q'dq (r2q2 —1)'*
@10(2-)=—'

~I "v. (P '+q')' V
12 t "exp(—Aq')q'dq 1

+"( )=— (44)
(&'+q')' V

7'q' —4
X lnf~q+ (72q2 1)t)+ — (r2q2 —1)t

3%q

IOO

P F14~, Pt
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I8

l7-

For h &~ 1, the integrals over q, were done analytically,
over q numerically. The 4»"(h ~&1) depend on 3 and |I
separately. They simplify for 0=0:here we get contribu-
tions from q, = (2s./a)h only, according to (43). The
terms in the sum decrease at least as rapidly as h ', so
we need to keep only few of them, such that (2s/a)shs
«P I, and can write

1 - t'2s. y
'

P e't"(b,0) =4@Up —exp —AI —
~

h'
h&0 ~ h' Eu)

I2

tI-

0 I.O I.5 2 2.5 3 3.5 4

h —p (2' 1 '
P Vs" (b,0) = 16ps U Q exp —A

I

—
~

h',
a&o & h4 (a)
with

(45)

Fio. S. Bethe-Heitier (4'» —(4/3) InZ), continuous (+&2o), and
interference functions (Zq%'»" for e=O) tIs p=b/(2~/o)g„@, p, r's

plotted from the +1+ curve upward. Cu, T=O'.

The +»' are functions of r=e/3 only. They were
evaluated numerically for Cu, diamond and Pt at
T=O', and for Cu and Pt at T=77' (diamond has
nearly no change with temperature). Curves of p%»'
are plotted vs r in Figs. 2 to 4. They show a maximum at
a&a„„,„and decrease above it with a 45' slope in
logarithmic scale, meaning proportionality with p.
We read off: for given 3 (given primary energy and
spectral component), the h=O part of the interference
cross section has a maximum at 0&bu„„,„, and goes
to zero on both sides. Typical 3's are 1/k or 1/er, so the
angle of the maximum will be small &10 ', but will
be larger than the intrinsic bremsstrahlung and pair
production angle mc'/E by a factor (a„„,/KG).
Because of the factor 1/Ii in (44), the maximum will be
larger for smaller p (higher primary energy or lower
spectral component), and will be shifted to smaller (I's.
Eventually, the maximum would go to infinity, with
the corresponding 0 going to zero, if at a given primary
energy we approach the low end of the bremsstrahlung
spectrum (p or 3—4). Such values of 3 are excluded,
however, as our theory is valid only for quanta &)me~.
In pair production, this phenomenon cannot occur, as
3 has a minimum 2/k (for equal energy distribution
of the pair).

l7-

The summation has to start from h ~&p, because of the
lower limit of the q, integration. For 6xed h and
increasing p, the terms with an h which is being passed

I4

fI I I I I I
0 4 I l.5 2 2.5 3 X5 4

Fio. 7. C» —(4/3) InZ, 4'&r, and Z&+&P for diamond, T=0'.

by the p will drop from the sum; so P%& will be discon-
tinuous in Ii, but not p4s, because of its factor (h —p).

Equation (45) was evaluated numerically, and the
results added to the corresponding 0 ~2~ in Figs. 5 to 9.
Ke see that the curve of continuous plus interference
term oscillates around the corresponding Bethe-Heitler
curve. A numerical investigation was made for Cu at
T=O to find the behavior of g%ts" for angles e/0.
We merely quote the result. The discontinuities get
rounded oG and become Qatter when 0 increases. At
0 2&10—

~, about half of the excess above the one-atom
curve is removed, and for tII~SX10 ', the peaks have
gone over rather smoothly into the one-atom curve.

l2

II-
I I I I I I I I

0 .5 I.O I.5 2 2A 3 3g 4

Fio. 6. C» —(4/3) InZ, +~2o, and Zq%'&p for Cu, T= 77'.

V. RESULTS

From (39), (41), and (41'), we have calculated the
bremsstrahlung spectrum and the pair energy distribu-
tion for copper at T=O. The bremsstrahlung spectrum
is plotted in Fig. 10 for 200 Mev and in Fig. I1 for 1
Sev, together with the angular dependence of selected
spectral components. The big enhancement over the
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10-
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FIG. 8. e,2
—(4/3) lnZ, 4'&2c, and Zz%'n" for Pt, T=O'.

10-

9 I l
=I

.5 I 1.5 2 K5 5 K5 4

FIG. 9. C~s —4(/3) lnZ, 4 Iso, and Zq%IP for Pt, T=77'

Bethe-Heitler spectrum at the low-frequency end
(8((2s./G) at small angles is due to the k=0 part of the
cross section. The higher k's (representing the harmonics
in the Fourier decomposition of the potential) show
themselves as little sharp peaks at the high-frequency
end. They decrease with angle, whereas the low-fre-

quency part of the spectrum first increases from its
"continuous" value at 0=0 to the above discussed
maximum, and then goes down to the Bethe-Heitler
spectrum. The softer the radiation, the higher is the
maximum, and at the smaller angles it occurs. Lowering
the primary energy lowers the A=O enhancement and
shifts the h) 0 peaks to the left.

This behavior can easily be understood from Fig. 1,
when one considers that a linear scale in p, , going to
~, COrreSpOndS tO an X=A/eI SCale WhiCh COnVergeS

towards @=1.For 0=0, the pancake does not contain
the plane 5=0, and so we have only a contribution from

the noninterference spectrum. Increasing 0 tips the
pancake and puts more and more points from the
h=0 plane into it. The optimum 0 will be that one for
which the maximum of the q distribution, 1/a„„„,
coincides with this plane, which occurs at 0 bg„„,„.
The high-frequency peaks lie at the values 3= (2Ir/II)h.

Energy distributions in pair production are plotted
in Fig. 12 for 1 Bev, Fig. 13 for 5 Bev for copper at
T=O, together with their angular dependence. At
h=0, the curve lies below the Bethe-Heitler value,
except for the peaks due to h)0 at both ends. With
increasing angle, the k=0 eGect enhances the cross
section, but tending back to the one-atom cross section
for 8~5X10 . The enhancement is more pronounced
the higher the primary energy. For small angles &10—2,

we can expect considerable increase of total pair
production probability over its complete screening
value of 7/9 per radiation length.

60

It e
i
Eio

50

Cu, T=0', 200Mev

e in milliradian

60

50-

4p 40

50 50-

20

,50

20

10- 10-

~ X
I I I I I I I

0 02 OA 0.6 Q8 IO

(a) (b)

FIG. 10. Bremsstrahlung spectrum in a Cu crystal at 1'=0', &,~ 200 Mev In unIts o =Z&(ss/~cm)&/137
and corresponding angular dependence. g= k/~, .
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FIG. 11.Sremsstrahlung spectrum in a Cu crystal at T=o', e&= 1 Sev, and angular dependence.

I et us finally consider the case that our cross section
in the crystal be averaged over all angles 8. This
means that the differential cross section in q space
has its pancake shape averaged out and turns into a
function which varies slowly over several reciprocal
lattice spacings 2tr/a. Then, however, we can replace
the crystal factor (6) or (38) by its average value over
a volume small compared to dimensions over which the
function changes appreciably, but containing at least
one reciprocal lattice cell (2tr)s/A. This average is simply

&IZexpLs~ (&+uL)jl')=»
L

and we get back the Bethe-Heitler formula. Thus, an
average over 8 cancels all interference. Situations where
this might occur are a crystal powder, or the randomly
oriented Ag Br grains in emulsion. Concerning the
latter case, one could have hoped to explained the
anomalous trident production" (direct pair creation
by electron impact) by a constructive crystal inter-
ference of the process itself, or of the bremsstrahlung
via production of pseudotridents by a forward emitted
quantum. The cancellation of interference by average
over orientations seems to exclude this possibility of
explanation.

.16-
I Bev

l4-
i

t4- ya0.9

l

10$ i

E+
8$ o

50
20
e=o

Cu, TeO', & Bev

8 in rnilliradians

t2-

IO-

8-

c7

6-

ys0.7

ys0.5

O.l

=y
I t I t I I I I

Q2 (h3 OA a5 0.6 0.7 Q8 QS IA)
I I

t'l0~ 2 4 5

(a) (b)

Fro. 12. Pair energy distribution in a Cu crystal at T=O', k= 1 Bev in units o =St(et/mP)t/137, and angular dependence. y= t+/k.

"M. Koshiba and M. F. Kaplon, Phys. Rev. 100, 327 (1955).



B RE MSSTRAH LUNG AND PA I R P RODUCTI ON I N CRYSTALS

l6 5 Sev

IO

5
20

8.
E+

0'
6-

4 i

t:M, T~O', 5 8ev

8 in rniilirodions

8-

4-

iso~E
cr

O.l 0.2 Oh OA OA Ok G7 OtS OB 1.0

2

I~ IOR

=e
I

5

(a) (b)

FIG. 13. Pair energy distribution in a Cu crystal at 7=0', c&= 5 Bev, and angular dependence.

2m Ze'/h v, 2 «1, (47)

and for pair production:

2m.Ze'/h, v~&&1, (48)

which are satisied for high energies. A qualitative
condition is that the potential times its range shall not
be too large, so that an expansion in powers of Ze' is
possible. Since the crystal potential consists of an array
of essentially nonoverlapping atomic potentials, for
each of which Born approximation is valid if Eqs.
(47) and (48) hold, the Born approximation is valid for
our crystal calculation to the same extent as it is valid
for the one-atom case.

Experimental verification of the calculated effect is
within the range of present-day accelerators. Especially
the striking enhancement of the low-frequency end of
the bremsstrahlung spectrum will be measurable, for
example by observing a low-frequency spectral compo-
nent and rocking the target crystal through a small
angular interval around 8=0, which would produce a
minimum of the observed yield at 8=0. Also the
h=i peak might be observable, because its rise will
persist even to lower energies, and its position get
shifted to the left of the spectrum. The target crystal
should be thin, &1/1000 radiation length, in order to
prevent multiple scattering of the electrons. For pair
production, less precautions are necessary, as electronic
and nuclear Compton effect are negligible; however,
the effect sets in at much higher energies. It might be

VI. DISCUSSION

Conditions of applicability of the Born approximation
are, ~ for bremsstrahlung:

reasonable only to look for an increase of the total
pair production probability above its one-atom value of
7/9 per radiation length.

There are possible applications of the effect. In
bremsstrahlung, the h= 1 peak provides a slight
chance for monochronatization of radiation; the big
increase is in the low-frequency part and therefore of
less use to the experimenter. The 0 dependence of the
pair cross section could be employed for a collimating
mechanism of high-energy p rays because of the dip
at 8=0 and the steep rise up to 0 10 ' (Fig. 13).
Components of the beam traversing the crystal under
some small angle will be more strongly absorbed than
those traveling along a line of atoms. This couM
provide a partly collimated beam of considerable
lateral width. Similar considerations apply to electron
beams also.
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