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A knowledge of the wave functions and energy levels for
nucleonic motion in a nonspherical force 6eld is a prerequisite to
any detailed comparison between the empirical data and the
model of Bohr and Mottleson. An extremely simple model for
this internal problem is provided by the motion of independent
particles in an ellipsoidal oscillator potential. By minimizing the
total energy of such a system, we are led to conclude (1) that
deformations which possess an axis of symmetry are always
preferred by low-lying states, and (2) that this model cannot
reproduce the observed preponderance of positive quadrupole
moments. This last conclusion is unaltered by the surface tension
or Coulomb repulsion.

The oscillator model is too simplified for the computation of
spine or magnetic moments (a). We have therefore determined
wave functions and energy levels for independent-particle motion
in a spheroidal square well, including spin-orbit coupling. Because
of the approximations made in this calculation, we cannot use
our levels to compute the equilibrium shape, but only to assign

the ground-state level and wave function. Thus the present
scheme is intended to replace that of the shell model in the
region of large deformations.

With the exception of W"', we have been able to correctly
assign the spin to all the odd-A nuclei for which 150&3&190.
The ease and consistency with which such an assignment can be
made leads us to conclude that our scheme is essentially correct
for those nuclei which possess large deformations, and whose odd
particle lies in the 50—82 shell or the lower part of the 82-126 shell.
In addition, we have computed p, in this region. Here the agree-
ment is more limited, but there are a number of important
successes: we reproduce the large difference in p for the europium
isotopes, the ratio of the magnetic moments of the two hafnium
isotopes, both p and the decoupling coeKcient for Tm'9, and p,

for Yb' ~ Re, Eu ~ and Os' . The properties of the ground
state and first excited state of Ag'" are also found to be in good
agreement with the theory.

I. INTRODUCTION

HE concept that nuclei can be nonspherical in
shape had its origin in the failure of the shell

model to account for the extremely large quadrupole
moments found among the rare earths. ' For "shell
model" implies that only a few nucleons can contribute
to the moment, while the data show that a considerable
portion of the total nuclear charge must be participating
in the formation of the quadrupole moment. Rain-
water' proposed to resolve this difFiculty with the
assumption that, in these cases, the nuclear collective
field with which the shell model operates is not spherical,
but spheroidal in shape, as a consequence of which one
expects the majority of the proton orbits to contribute
to the quadrupole moment (henceforth designated by
Q).

Although Rainwater's qualitative considerations were
quite promising, the very assumption of nonsphericity
leads to complications whose full significance was
first realized' and analyzed' by Bohr. Among these
new complexities the most important and understand-
able one is that the angular momentum J of particles
moving in a nonspherical field is not a constant of

*This work was partially supported by the OfIice of Naval
Research and the U. S. Atomic Energy Commission.

$ Junior Fellow, Society of Fellows. Present address: Jefferson
Physical Laboratory, Harvard University, Cambridge, Massa-
chusetts.' We now know that nuclei much heavier than Pb~' also have
giant quadrupole moments. Therefore this discussion, unless
otherwise stated, pertains to nuclei with mass number A &225,
as well as 150 &A &190, i.e., to heavy nuclei well removed from
the magic numbers.' J. Rainwater, Phys. Rev. 79, 432 (1950).' A. Bohr, Phys. Rev. 81, 134 (1951).

4 A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
26, No. 14 (1952).
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motion, and so the system must possess some other
angular momentum N which is coupled to J, and
results in a conserved total angular momentum I.
The angular momentum N is associated with collective
rotation of nuclear matter. Another complication is due
to the fact that the shape of a quantum mechanical
system cannot be defined with arbitrary accuracy, and
so there must be zero-point oscillations of this shape
about some equilibrium con6guration. These oscillations
are, by definition, also collective in nature. Both these
collective motions are coupled to that of the individual
particles, and also to each other.

Bohr and Mottelson' ' have analyzed the motion of
such a coupled system in several limiting situations.
The most interesting is the one in which the motion
separates approximately (Born-Oppenheimer approx-
imation) into three parts: (1) motion of nucleons in a
static, nonspherical potential, (2) collective rotation,
and (3) oscillation about the static equilibrium deforma-
tion. ' As in molecules, there are three distinct types of
excitations: rotational, nucleonic and vibrational, in
ascending magnitude of energy. The wave function
can then be written as the product of three functions,
each factor representing one mode of the motion, and
the first few steps in the spectrum follow the well-known
rules applicable to a rotating top. ' The empirical data'
support this conclusion —in fact the experimental

'A. Bohr and B. R, Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd. 27, No. 16 (1953).Also see A. Reifman,
Z. Naturforsch. Sa, 505 (1953); D. L. Hill and J. A. Wheeler,
Phys. Rev. 89, 1102 (1953);K. W. Ford, Phys. Rev. 90, 29 (1953).

Bohr calls this the "strong-coupling" approximation.
7 C. Van Winter, Physica 20, 274 (1954).
8 A. Bohr and B.R. Mottelson, Beta- and Gamma-Ray SPectros-

copy, edited by K. Siegbahn (North-Holland Publishing Com-
pany, Amsterdam, 1955), pp. 483-493.
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spectra faithfully obey the interval rule characteristic
of a symmetric rotor. This property of the level spacing,
and the values of the branching ratioss of y transitions
between and P decays to components of a rotational
band, show that these low-lying states can be repre-
sented by the wave function

Here g is the wave function of the zero-point vibrations;
is an element of the (2I+1)-dimensional

representation of the rotation group, and xl,, o is the
wave function of the nucleonic motion in the spheroidal
force-field. Because of the axial symmetry of the
deformation, the particles' angular momentum along
the body-fixed symmetry axis is a constant of the
motion, which we designate by Q. The other quantum
numbers I, E, M stand for the total angular momentum,
its component along the symmetry axis and its compo-
nent along a space-fixed 2'-axis respectively, while k

serves to distinguish the various y's which have the
same value of ~Q).

The lowest states are characterized by E=Q, and
their energy differences are given by

(2)

where Io is the spin of the ground state and 8 is the
effective moment of inertia. For even-even nuclei,

~Q( =Is——0 and I=2,4, etc. ; for odd-A nuclei, ~Q~ =Is
and I=Is+1, Is+2, etc. , unless ~Q~ =s. In the latter
case the Coroilis force must be taken into account,
and this leads to the expression'

which is to be added to BED. Here

where J„J„are the components of the particles'
angular momentum along the body-fixed x- and y-axis
respectively. Furthermore, Io depends on the value of
a~', it is not one-half in general.

It is to be noted that beyond the general structure
of the state (1), the spectral intervals and branching
ratios determine only 8, Io and sometimes a~. Of these,
8 may be termed an extensive observable, since it
depends on the over-all nature of the collective rota-
tion, "and not so sensitively on the detailed properties
of X. On the other hand, aA, provides an effective
probe into the structure of x, while the assignment of Io

' J. P. Davidson and E. Feenberg, Phys. Rev. 89, 856 (1953).
'o See, e.g., S. G. Nilsson, Kgl. Danske Videnskab. Selskab,

Mat;fys Medd. 29, No. . 16, 68 (1955).
"A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.

Selskab, Mat;fys Medd. 30, No. . 1 (1955).

depends on the properties of the internal Hamiltonian
which has the x's as eigenstates.

There is a considerable mass of empirical material
which sheds further light on the nature of both the
collective and particle motion. This material is con-
veniently separated into two broad but somewhat
overlapping classes, the first pertaining essentially
to the col1ective, the second more to the particle aspects
of the motion. Experiments belonging to the first class
demonstrate that for the nuclei under consideration
not only Q, but also the matrix elements for induced
and spontaneous E2 transitions are far larger than the
shell-model estimates, and that 8 is roughly propor-
tional to Q', the proportionality factor indicating that
the rotation is neither rigid nor irrotational. " The
details of the structure of x are revealed only by data
of the second class, which includes the magnetic
moments, the electromagnetic transition probabilities
other than the E2-type, P-decay ft values, and the
energy diIII'erences between rotational bands. "

It is apparent that a knowledge of the intrinsic (or
nucleonic) wave function x is a prerequisite to a
comprehensive comparison between the model and data.
In the following we shall construct a set of y„'s from a
model of the intrinisc motion which embodies, among
others, the great simplification that the internucleon
forces may be ignored, i.e., the particles are assumed to
move independently of each other under the inQuence
of the collective field. This assumption is certainly a
drastic one, but the successes of the shell'3 and optical"
models indicate that it is at least a reasonable starting
point. In addition, we will always assume that the
equipotential surfaces of the collective field are confocal
ellipsoids whose volume, for the sake of nuclear incom-
pressibility, is independent of the eccentricities. These
geometrical assumptions are probably well justified
for low-lying states, and simplify the computations
considerably. Finally, we shall also assume that the
conditions of constraint implicit in the introduction of
collective variables" may be ignored.

Even though our first and most essential idealization—that of independent motion —is not entirely justifi-
able, " our work is not in vain since a more realistic
determination of the x's might have to use a crude set
of functions such as we shaH construct as the basis of
a perturbation calculation.

In the following section we briefly consider an

~' The interaction between the collective and nucleonic degrees
of freedom is, of course, reflected in the experimental results and,
as stated above, renders the attempted separation of the data
somewhat ambiguous; thus, for example, the total g-factor has
contributions from both the collective and nucleonic rotations, as
do the (E2:3f1) admixtures of radiative transitions between
rotational states. Nevertheless, this classification serves the
didactic purpose of focusing our attention on the most essential
physical attribute of each phenomenon under investigation.' See, e.g., P. F. A. Klinkenberg, Revs. Modern Phys. 24, 63
(1952).

"Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954)."F. Coester, Phys. Rev. 99, 170 (1955); Lipkin, deShalit, and
Talmi, Nuovo cimento 2, 773 (1955);F. Villars (to be published).
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extremely simple model whose properties can be
evaluated analytically, and which serves as a very
useful orientation for the problem at hand. The wave
functions and energy levels belonging to a more
realistic collective potential are discussed in Sec. III,
and selected application to nuclear ground-state
properties will be found in Sec. IV.

II. HARMONIC OSCILLATOR MODEL

A systematic study of Q and 8 reveals a striking
correlation between the nuclear shell structure and
equilibrium deformation' ": the distortion becomes
very small near the magic numbers and is largest in
the middle of major shells. From this we conclude that
the shell structure of the nuclear level scheme is, for
our purpose, a most essential feature which we must
incorporate into the model. Since the harmonic oscillator
(without spin-orbit coupling) is the simplest collective
potential which exhibits a shell structure, we shall

employ it as a first orientation. ' "The exclusion of the
spin-orbit force implies that this model cannot be used
to assign spins and magnetic moments. Nevertheless,
we may still expect to gain some insight into the
question of nuclear deformability, and so we confine
ourselves to this problem for the moment.

The most general potential of the oscillator type
which fulfills the requirement of incompressibility is

The observation that Ep(7,X) has an average curva-
ture roughly equal to the one expected from the
semiempirical mass formula has led some authors"
to conclude that EI already includes the surface e6ect.
This argument is not convincing because (1) the values
of X for which EI attains this average curvature are for
larger than those realized in nature, and (2) for such
large values of ) the conventional power series expres-
sions for EB and E& fail. In any case, the well-known
argument that the supression of nucleon-nucleon
bonding at the surface leads to a "surface-tension" is
still pertinent today, and does not hinge on the demise
of the liquid drop model. On the other hand, a literal
interpretation of the mass formula in terms of liquid
drop concepts is dangerous. To summarize, we would
say (a) that one should expect some surface energy Es
above and beyond Ep, and (b) that one should not
expect its strength to be given by the A& term in the
semiempirical mass formula.

As for the particle energy, it is given simply by

(7)

where the index i labels the ith nucleon. The factor of
one-half preceding the expectation value of V(r)
expresses the assumption that the basic interactions
which coalesce to form the collective fieM are two-body
forces."The expectation values in (7) are elementary;
one finds that

where co is the oscillator's frequency, ns the nucleon

mass, and r the position vector in the rotating co-
ordinate system. The dimensionless deformation param-
eters y,X are related to the eccentricities in the x—y
and y —s planes through

where

Ep(y, 'A) =-,'A [(e.~+ e„~-')) 1+-',m-t],

~.= & (&*'+s) 0'v= E (~a'+5),

h,„'=y4—1; h„s=X 'gP —y'). (6)

The equipotential surfaces are symmetric about the

x, y, or s axis when p=X:, X ', or j., respectively. In
the latter case X&1 corresponds to a prolate, A&1 to
an oblate spheroid.

Our aim is to find the nuclear equilibrium deformation
when the potential (5) is occupied by Z protons and

(2 —Z) neutrons. This configuration is clearly given by
those values of y and 'A which minimize the total
energy. This energy is not simply the energy of the
particles in the collective field Ep(y, X), but also has
contributions from the Coulomb repulsion and more
subtle sources such as the surface eGect." We will

designate these last two contributions to the energy
by Eo(&,X) and Es(&,X) respectively.

' Townes, Foley, and Low, Phys. Rev. ?6, 1415 (1949).
'~ D. P6rsch, Z. Physik 132, 409 (1952).
's S. Gallone and C. Salvetti, Nuovo cimento 10, 145 (1953)."M. Gursky, Phys. Rev. 98, 1205(A) (1955).
"Because of the adiabatic assumption underlying the "strong-

coupling" approximation, one may ignore the rotational energy
when determining the equilibrium energy.

A

(ii=2 Q (~,'+-', ),
i=1

and the e's are the usual oscillator quantum numbers.
For the sake of clarity, we shall now approach our

problem in a series of steps of ascending complexity.
That is, we begin by ignoring the Coulomb and surface
eBects, and allow only one species of nucleons to fill
the potential well (5). This will be followed by a
discussion where both neutrons and protons are
considered. Finally, we will study the eGect of the
Coulomb and surface energies on Q.

When EB=E&=0, the total energy is simply EI
Lsee Eq. (8)]. The values of (ys,he) which minimize

Ep(y, X) as consecutive orbitals in the X=e,+e„+n,=4
shell are filled with pairs of particles is given in Table I.
"See, e.g. , E. U. Condon and G. H. Shortley, Theory of Atomic

Spectre (Cambridge University Press, Cambridge„1935), Sec. 8.'4
If three-body forces are of importance, one would have to know
the relative strengths of the two- and three-body potentials
before one could compute EI. The author is indebted to Dr. C.
Schwartz for bringing this point to his attention.
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TABLE I. Deformation parameters as a function of A.

O',. 0'„~$ xo ~o b.,' &Q(%).

40+0 50+0 50+0 50+0 1.000
+2 +0 +0 +8 1.102

4 2 0 14 1 157
6 2 2 20 1.207
8 6 2 24 1.219

10 8 4 28 1 228
12 8 8 32 1 237
14 14 8 34 1.215
16 32 26 6 0.8149
18 32 32 8 0.8149
20 36 32 12 0.8373
22 38 34 16 0.8571
24 38 38 20 0.8745
26 40 38 26 0.9129
28 40 40 32 0.9478
30 40 40 40 1.000

1 0 0
1 0 0
1.020 0.084 0.16
1 0 0
1.035 0.148 0.35
1.032 0.133 0.26
1 0 0
1.045 0.193 0.59
1.035 0.148 —0.61
1 0 0
1.022 0.089 —0.24
1.021 0.086 —0.29
1 0 0
1.010 0.039 —0.20
1 0 0
1 0 0

a Bo (%) gives the percent change in 0 when one restricts the deformation
to axial symmetry (yo =—&).

A brief inspection of this table shows that the deviations
from axial symmetry (yoA 1) are extremely small:
when one assumes an axially symmetric deformation
(pp= 1) the resulting error in Q is always less than 1/~.
In fact, the zero-point fluctuations of p are certainly
at least as large as pp,

"and so an equilibrium deviation
from axial symmetry cannot establish itself. We should
add that most of the excited states also prefer deforma-
tions which are virtually symmetric. "

Turning now to )p as a function of the particle
number A, we note (see Table I) that the first half of
the shell prefers the prolate (Q)0), the second half
the oblate (Q&0) shape. There is no preponderance of
either positive or negative Q's; in fact Q is roughly
an odd function of A about the half-way point in the
shell (A =55). Near the middle of the shell the lowest
states with Xp&1 and P p&1 are nearly degenerate, and
here one can have a situation where yp=1 is not a
stable configuration. '4 Except for such cases, our
previous conclusion that one may put yp

——1 will hold.
Having disposed of the complications of axial

asymmetry, we now consider Q as a function of A

when both protons and neutrons occupy the orbits
belonging to (5), Coulomb and surface effects still

being ignored. It is now convenient to define O', =0'„
+ 0',„, where the sums in (9) now include both protons
and neutrons. We also define Q~ and S~ to be the
partial sums of (9) which include only the protons, i.e.,

(10)

800
~0

(a)

eiP
600—

400—
N *40

f

200—

Ni 70

60 80 ~00 i20
0 I 1 I

i40 i60 l80 200 220 240 260

-200—

Z*40

In deriving (11), we have fixed co by requiring the
mean square radius to be -,'rp A~.

Figure 1 shows how Qoi' behaves as a function of A
when Z= (2A/5). Roughly speaking, 115&A&180
corresponds to the shell which contains the rare earths,
while A=180 plays a role analogous to that of the
doubly magic nucleus Pb"'. The largest Qoi i in this
(115—180) "shell" is found to be 5.3 barns for ro 1——.20
&(10 "cm, and 7.4 barns for rp= 1.45&(10 "cm. These
values of rp correspond to the radii found in electron"
and neutron" scattering, respectively. The largest
experimental values" for 150&A&180 are approxi-
mately 9.2 barns. This very simple model, therefore, has
equilibrium deformations of the correct order of
magnitude for the smaller rp, while for the larger rp

the agreement is quite good. Which of these radii is
the correct one for this problem is open to question;
the potential which would give the proper charge
distribution (i.e., ro ——1.20X10 " cm) probably would
fail to reproduce the neutron-scattering data."

Though this model agrees with experiment in that
it has large deformations between closed shells, we
again note the approximate symmetry between the
positive and negative Q's. The model does robot yield
the preponderance of positive quadrupole moments
found empirically.

We also observe that the model sometimes predicts
Q to be positive just after a shell is closed (/=40,
/V=70, Z=70). In fact, , the disagreement between
Fig. 1 and the experimental situation" is rather
complete near the magic numbers. This result is a
consequence of the high degree of degeneracy which
the spectrum of the oscillator possesses at spherical
symmetry P = 1).Any small change from the oscillator
shape would lift this degeneracy of states of different

protons protons

In terms of these quantities the quadrupole moment at
minimum energy is

( SpS—Sp8 )
Qoi~&=35ZerPA

(
I spa+-', sp(9)

"See reference 4, pp. 32—34.
"All formulas not given in the text will be found in Appendix I.
'4 D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953),

Figs. 27 and 28; L. Wilets and M. Jean, Phys. Rev. 102, 788
(1956).

FrG. 1. Quadrupole moment as a function of A (number of
particles) in an anisotropic oscillator potential. The deformation
is assumed to be axially symmetric, and Coulomb repulsion and
surface tension have been neglected. The arrows indicate the
magic numbers for this model. Z=0.4A throughout.

~5K. W. Ford and D. L. Hill, Ann+a/ Reviews of lV'~clear
Science (Annual Reviews, Inc. , Stanford, 1955), Vol. 5, p. 25."S.D. Drell, Phys. Rev. 100, 97 (1955).



GROUND-STATE PROPERTIES OF NONSPHERICAL NUCLEI 102i

l (orbital angular momentum), and such a potential
would then lead to the correct behavior in the immediate
neighborhood of the magic numbers. For the large
deformations which one Ands between the magic
numbers, such a slight reshuffling of the (7&=1)-spec-
trum is of little consequence, as we shall see more
clearly in Sec. III (especially Fig. 5). One should also
remember that the "strong-coupling" approximation is
only meaningful when the equilibrium deviation is
large, and so any disagreement between our Q's and
the experimental ones is irrelevant when Xp 1 (Q~O).

This model also permits a comparison between the
quadrupole moment of the actual charge distribution
Qo& ' and that of a Uniformly charged spheroid whose
semiaxes are roA&XO & and roAi4. This latter moment
we call Qo'"'. Both these moments are plotted in Fig. 2,
which shows that they differ by &15% in the "strong-
coupling" region (126&A&166). Naturally Qo& & is
much more sensitive to the magicity of Z than Qo&~& is,
and conversely for E(see Fig. 2 for A = 116, 176).

Our final task is to incorporate the effects of the
Coulomb repulsion and surface tension. Since we have
seen that the quadrupole moments of a uniform
charge distribution approximate the exact Q very well,
we assume that the Coulomb energy Ez is also well
approximated by the expression appropriate to a
uniformly charged spheroid. As for the surface energy
Es(X), we simply assume it to be proportional to the
surface area of the spheroid, the proportionality factor
NB remaining variable. (According to the mass-formula,
eg 14 Mev. )"

The inclusion of Eg and Eg changes the equilibrium
deformation from Xo to Xp(1+&&), and consequently the

+00,
0
er,

N

TABI.E II. Dependence of Q on Coulomb and surface energy.

116
126
130
134
136
140
146
150
154
156
166
176

46
50
52
54
54
56
58
60
62
62
66
70

(' j
182
295
341
332
345
340—336—322—314—315—246—74

ug =0

186
304
354
345
359
355—354—339—332—332—263—82

I 01( )/er0&g

us =i4

174
284
332
323
335
330—322—309—301—302—237—70

ug =28

163
275
309
301
311
306—289—278—271—272—213—58

quadrupole moment from Qo&' to some other value
which we call Q~&'&. Table II shows Q~& & for Is=0, 14,
and 28 Mev. We note that the sign of Q&& & is invariably
given by that of Qo&~&, while its magnitude differs from
that of Qo&' by less than 14% for all the values of us
considered.

The prevalence of positive Q's has previously been
accredited to the surface and Coulomb energies. "We,
to the contrary, find that the approximate symmetry
between Q)0 and Q(0 is completely unaltered by
these eGects. Our failure to explain the predominance
of positive Q's can perhaps be attributed to the funda-
mental shortcomings of the independent-particle model.
A discussion of these shortcomings is presented at the
end of Sec. III.

III. INDEPENDENT-PARTICLE MOTION IN A
SPHEROIDAL POTENTIAL" "

The model investigated in the previous section does
not reproduce the magic numbers correctly, ignores
the spin-orbit interaction, and employs a collective
potential whose shape is known to be unrealistic. "At
least the erst two of these simpli6cations must be
eliminated before one can use the model to compute
such quantities as a& or the magnetic moment.

We are therefore led to consider the motion of

l20 l30 i40 l50 l60 I 70
0 I I t 'I I I. & i & I I t I

A

-100—

FIG. 2. Comparison of the quadrupole moments belonging to
the exact charge distribution for particles moving in an anisotropic
oscillator potential, and an equivalent uniform charge distribution.
The open circles are the computed values of Q0( ), the full circles
Q0(~)

2 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
{John Wiley and Sons, Inc. , New York, 1952), pp. 225-233.

'8 S. A. Moszkowski and C. H. Townes, Phys. Rev. 93, 306
(1954). The disagreement between our conclusion and theirs is,
in essence, due to the fact that these authors have, in contrast
to ourselves, assumed the orbital angular momentum of a nucleon
in the spheroidal potential to be conserved approximately.

"This and the following section are based on the author' s
doctoral thesis, Massachusetts Institute of Technology, May 16,
1955 (unpublished).

30 A calculation whose objectives and methods are similar to
those of this section has recently been published by S. G. Nilsson,
Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd. 29, No. 16,
(1955). Nilsson employs a collective potential of parabolic shape
augmented by centrifugal and spin-orbit interactions whose
strengths are chosen so that the correct magic numbers result.
Although the oscillator is not as realistic a potential as we shall
employ, it does admit to a much more accurate solution than we
were able to obtain. The final results of the work reported here
and that of Nilsson seem to be in qualitative agreement —for
more details, see references 37 and 41."S. A. Moszkowski, Phys. Rev. 99, 803 (1955), has computed
energy eigenvalues (though not wave functions} for particles
moving in a spheroidal square well of infinite depth (see also
reference 38).
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FAQfgy
in Mev

25.0
24.5
24.0

23.0

22.0

l9.5
l9.0
I8.5
l8.0
l 7.5
l7.0

t4. 5
l4.0
l3.5
l 3.0
l2.5

l0.0
9.5
9.0
8, 5

7.0

( nlj )

51&]g

2gag
-- 3d5»

2i "n

l26

apl»
— 3p hip

2i +»
2f5~z

2h &x2

2f 7~2

3s
2d &«

fl Ill~

2d '~z

f g7jp

50

lg 9~2

2p'&2

2p&r p

)f Iia

-- 2f7&p

FIG. 3.Level scheme at spherical
symmetry (X=1 or P=O). These
energies are called &„;" in the
text (Sec. III), where w= (—1)'.

course, depend on the well shape. Nevertheless, we
will show (Appendix II) that for potentials which are
Qat over the major part of the nuclear volume and then
rise to zero in a distance small compared to rod&, these
integrals can be evaluated approximately with square
well wave functions.

Our (X= 1)-scheme is very similar to Ioinkenberg's";
it is shown in Fig. 3. The separation between levels of a
given shell are arbitrarily taken as shown, and fit in
roughly with the observed separations as given by the
data on isomerism" for nuclei near the magic numbers.
The gaps between the major shells are taken from the
experimental data" on such nuclei as Pb"'. As we have
already pointed out in Sec. II, and as we shall illustrate
below (see Fig. 5), the details of the (X=1)-scheme are
not important in the strong-coupling region; it is only
important that the levels be in the proper shells.

To each level of the (A=i)-scheme there belong
(2j+1) single particle spin-orbitals QD (ej), (e—1)
being the number of radial nodes, j the total angular
momentum of the particle, 0 the projection of j on
the symmetry axis, and w the parity (&1). These
wave functions are assumed to span a subspace of the
Hilbert space whose basis vectors are ul/ solutions of
the Schrodinger equation

PE

T+V(r) jU(r, ~,s) E„," 1to"(—ej)=0 ()I,=—1). (12)

Here 2' is the kinetic energy, V(r) is a purely central
potential, and U(r, ()s/s)V, s) represents the spin-orbit
interaction, s being the spin vector of the nucleon.
The eigenvalues E„,"are the energies shown in Fig. 3.

We now make the further assumption that for
XW1, only the potential V in the Hamiltonian of (12)
changes, but not V. This simplification is motivated
by the fact that U is much weaker than V.'4 We may
then write the ) -dependent part of the Hamiltonian as

V(r,X)= V (r)+mr" (r,e,)),
V(r, 1)= V(r),

(13)

(13')

0 being the azimuthal angle. The deformations described
by (13) are, as always, assumed to be of the spheroidal
shape. Ke have been unable to express 'N in closed
form, and are therefore forced to expand it in a power
series about X=1:

2s, fd

nucleons in a collective potential which is constant

(—Ve) throughout the interior of the nucleus, and then
rises to zero quite rapidly. One may, to a limited extent,
avoid a set of assumptions as to the well shape and
the strength and nature of the spin-orbit force by
assuming, instead, a (A=i)-level scheme. The radial
integrals required to carry out the calculation will, of

Here we have introduced Bohr's p as an expansion
parameter. Our X is related to p through

P = (4s/45):X-s (Xs—1). (15)

"M. Goldhaber and R. D. Hill, Revs. Modern Phys. 24, 179
(1952}.

"Elliott, Graham, YValker, and Wolfson, Phys. Rev. 93, 356
(1954). For a comprehensive compilation of such data, see
G. Scharff-Goldhaber, Phys. Rev. 90, 587 (1953).

34 See, e.g., Adair, Darden, and Fields, Phys. Rev. 96, 503
(1954).
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Expressions for%'» and%'2 will be found in Appendix
II, while the consequences of retaining only quadratic
terms in p are discussed at the end of this section.

We now return to the wave functions g introduced in
Sec. I.They can be written as linear combinations of the
complete set defined by (12):

xn (kP)= E ~o"(kPI+j)A"(~j)

nj

The quantum number k serves the same purpose here
as in Eq. (1).

The secular equation

+(ejQwIVP Ie'j'Qw)} =0, (17)

then determines the coefFicients Cg, and the energy
levels Eo"(k; p) in the spheroidal force field. Since the
energy only depends on the absolute value of 0, all
levels are doubly degenerate.

Clearly we cannot diagonalize the infinite matrix
defined by (17), and we have to confine ourselves to a
finite subspace. Since we will be interested in nuclei
between the magic numbers 50 and j.26, we restrict
ourselves to the subspace spanned by the states it n (ej)
lying between magic number 8 and the top of the shell
above 126. This subspace is just the one illustrated in
Fig. 3.

The radial integrals implicit in the matrix elements
of 'N still remain to be determined. These are the
integrals which we compute with square well radial
functions; the validity of this procedure is briefly
discussed in Appendix II.

The eigenvalues ED and eigenvectors Cg have been
found's for six values of P (&0.2, &0.3, &0.4), one
well depth (Vs=35 Mev), and one radius [Re=1.45
X(170)'X10 " cmj. The energy levels are shown in
Fig. 4, but because of limitations of space, the coefFi-

cients Cg are not reproduced here."
A glance at Fig. 4 shows that the deformation

completely destroys the shell structure of the (p=0)-
scheme. As we have remarked above, the level scheme
for large deformations depends only on the gross
features of the (p=0)-scheme, and not its details.
To illustrate this point, we have carried out the
computations for a set of IQI=-', states which are
grouped into (a) completely degenerate, and (b)

35The diagonalization was carried out on Whirlwind, MIT's
digital computor. We would like to thank Mr. F. J. Corbato and
Dr. A. Meckler for supplying the necessary programs.

'6Tables of Cg have been deposited as Document number 4881
with the ADI Auxiliary Publications Project, Photoduplication
Service, Library of Congress, Washington 2S, D. C. A copy may
be secured by citing the Document number and by remitting
$1.25 for photoprints, or $1.25 for 35 mm microfilm. Advance
payment is required. Make checks or money orders payable to.
Chief, Photoduplication Service, Library of Congress.

separated shells, when p=0. The results are given in
Fig. 5. We see that for the larger values of p(&0.2),
the two sets of levels agree extremely well.

An inspection of the tables" of the Cg's reveals that
for the majority of states these quantities are rather
slowly varying functions of P, once P &0.2. This means
that a~ and the magnetic moments will not, in general,
depend sensitively on p in the strong-coupling region.
There are exceptions to this rule, of course; for example,
xg+(k=8, P)0) and zg+(k=13, P)0) have very
rapidly changing coefIicients. This behavior is a
consequence of the Wigner-von 5eumann no-crossing
theorem, which states that any pair of levels having
the same parity and 0 cannot cross, and that their
expansion coefBcients will be exchanged as one passes
from one side of the point of closest approach to the
other.

Before we consider any applications of the levels
scheme and wave functions, we must discuss the
implications of the various approximations we have
made. The three basic errors in the procedure outlined
so far are due to (i) the deletion of a minority of the
bound states (those below magic number 8) as well as
the complete continuum; (ii) the truncation of i'll as
expressed by Eq. (14); (iii) the basic assumptions
listed at the end of Sec. I. Ke shall not discuss the
latter again except as they affect (i) and (ii).

It is relatively easy to estimate the importance of the
neglected bound states by simply enlarging the matrix
by a few steps and repeating the diagonalization. This
has been done for one case, and one Ands that the
quoted results are reliable, except at the top of the
energy scale (see Fig. 4), where most of the levels
rise to sharply and would be forced down by the
states above. "Most of the nuclei with which we are
concerned are found not to occupy these unreliable
levels, and so we are justi6ed in deleting some of the
bound states. It is much more dificult to estimate the
effect of the continuum; all we can say is that it will
tend to push all the computed levels downward, i.e.,
add a negative term to each level roughly quadratic in
p. One would expect the continuum to depress a set of
neighboring states by roughly the same amount, and
since only relative positions of levels are of importance,
only the fluctuations of these depressions would be of
consequence. We may therefore hope that the deletion
of the continuum also does not introduce any appreci-
able errors.

"B.R. Mottelson and S. G, Nilsson have also assigned spins
in this region, using Nilsson's level scheme. The agreement with
experiment seems to be as extensive as ours. A comparison of
our level schemes show that they have many characteristics in
common and differ mainly in the details of level ordering up to
the middle of the 82-126 shell. Above this point (defined roughly
by the Hf isotopes) we differ considerably, as is to be expected
since the deletion of the continuum becomes rapidly less justifiable
as the top of the discrete spectrum is reached. A more detailed
comparison of our schemes will be possible when Nilsson's results
concerning moments, ar, etc. , are published. LIn this connection,
see also B. R. Mottelson and S. G. Nilsson, Z. Physik 141, 217
(1955)for a discussion of Tm'", and compare with our Table III.)
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as P—+0 in the manner indicated. The
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have also been computed, but are not
shown because the calculation is un-
reliable for E&10 Mev, 8&—7 Mev,
where E designates the energy scale
of the graph. The zero of the E-scale
is arbitrarily taken at the level (P= 0,
m=1, j=9/2, e =+1).
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As for the expansion of %", there is no practical way
of estimating the importance of the cubic and higher
terms. In the case of the oscillator model, this expansion
results in energy levels and wave functions which agree
quite well with the exact solutions (see Fig. 6). On the
other hand, these same approximate levels lead to a
strong favoring of positive quadrupole moments. As we

know, this is not true of the exact solutions.
We therefore believe that our method will give energy

eigenvalues" and wave functions which are suKciently
accurate for level assignments and the computation of
such quantities as a~, the magnetic moments, and
transition probabilities. Our energy levels are, unfor-

n3*0

n3=l

n3&l

n3~2

COMPAMRM QDBSQ4ERATE ANOI NON-OEGENERNE SHELLS

A1l tevels

-25

s Og2

~ 4
-0 9 -0.6 -0.5 0 OB 0.6 Q9

FIG. 6. Comparison of exact and approximate levels in a
deformed oscillator potential (X=4) shell. The approximation
corresponds to an expansion in powers of P up to and including
quadratic terms.

-l5

Q 912

Q3 C14

Fzo. 5. Comparison of degenerate and nondegenerate shells
for (D~ =xm re=+1. The solid curves are taken from Fig. 4.
The broken curves show the levels one obtains when one assumes
completely degenerate shells at P=O. The quantum numbers of
the levels when P =0 are shown on the left.

"J.Uretsky t Ph.D. thesis, Massachusetts Institute of Tech-
nology, May, 1956 (unpublished)g has computed eigenvalues for
the spheroidal square wall of finite depth, but mitholt spin-orbit
interaction. He finds that Moszkowski's approximation method
(reference 31) yields more accurate results for energy levels
than does an expansion oi our type Lsee Eq. (14)j. Any further
comparison between our work and that of Moszkowski is difBcult,
since he has not computed wave functions and therefore cannot
determine many quantities such as the magnetic moments. As
for the equilibrium deformations, Moszkowski's calculations do
not extend into the heavy-element region. Because of the deletion
of the spin-orbit coupling, Uretsky's results can also not be
compared directly with ours, nor with the experimental data.

tunately, too crude to determine the equilibrium
deformation P& and the associated quadrupole moment.

This failure to predict Ps is seen in a somewhat better
light" if one remembers that the determination of the
equilibrium deformation is, in essence, dependent upon
a knowledge of the total binding energy as a function
of P. That such knowledge cannot be extracted from
the independent particle model is well known. Let us

briefly review the reasons for this last observation, and
rephrase the argument for our purposes. "If we assume
that the spherically symmetric potential V(r) which

appears in Eqs. (12) and (13') is the result of a Hartree-
I'ock calculation, we have implicitly assumed that the
spatial dependence of the fundamental nuclear forces
are such as to lead to weak correlations (little particle
clustering). For the sake of argument, let us agree that
this implicit assumption is justified. When we deform
V(r) as previously outlined, the resultant potential
V(r, X) is not self-consistent, even if V(r) was. That is
to say, the value of Ps determined in the naive fashion
of Sec. II will not necessarily minimize the expectation
valve of the many-body Hamiltonian with our states z
as trial functions. We should also note that the inclusion
of a surface tension is merely a symptom of the lack of

» We should point out that the levels of Fig. 4 do lead to large
equilibrium deformations between the magic numbers. They are
too crude to reliably determine Po's actual value or sign, but are
completely consistent with the fact that 0.2&P &0.4 for the
nuclei of interest.

~ See reference P7, pp. 278—292. K. A. Brueckner, Phys. Rev.
100, 36 (1955).
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self-consistency: a truly self-consistent procedure would
automatically account for the depletion of bonding as
the surface area is increased. It is to be expected that a
classical surface tension can, to a certain extent,
compensate for the lack of self-consistency.

Even if we ignore all the fundamental shortcomings
of our method, and boldly assume that V(r,X) is the
self-consistent potential for an A-body system
interacting through two-body forces, our computational
difhculties are still not resolved. For, as we had seen in
Sec. II," in addition to the energy levels, one must
also know the expectation value of V(r,X) in all the
states y. The evaluation of these expectation values is
a formidable computational task which we have not
undertaken. Finally, a proper calculation of Q as a
function of A would require a set of level schemes such

as the one of Fig. 4 for a variety of nuclear radii. 4'

The shell model scheme is employed only as a guide
in assigning spins and estimating magnetic moments and

decay probabilities. It is not intended for computing
binding energies. Our scheme has similar limitations.
It does not claim an essentially broader area of applic-
ability than the shell model does, and is to be treated
as a replacement of the latter whenever the deviations
from spherical shape are large.

(18)

Under the assumptions stated above, the magnetic
moment is given by the expectation value of the
operator

t .,= g&N;+gtl, .+g.s, (19)

4' Nilsson's model (reference 30) has a great advantage in that
one may easily compute the spectrum as a function of A (i.e.,
radius). The greater accuracy of his solution has enabled B. R.

ottelson and S. G. Nilsson LPhys. Rev. 99, 1615 (1955)g to
compute the equilibrium deformation as a function of A, the
agreement with the experimental data being excellent. One should
remember, however, that the fundamental diKculty (i.e., lack
of self-consistency) which we have discussed is common to all
existing calculations.

~A. Bohr, Rotational States of Atomic Argctef, doctoral thesis
(E. Munksgaars Forlag, Copenhagen, $9/4),

IV. GROUND-STATE SPINS AND
MAGNETIC MOMENTS

In the strong-coupling limit, and with the assumption
of independent-particle motion in the deformed

potential, the spin, parity, and magnetic moment of
nuclear states are easily determined. For even-even

nuclei, the ground state has spin zero and even parity,
since all levels are degenerate in &0, and filled pair-wise.
The magnetic moment, spin, and parity of the ground
state of odd-A nuclei are completely determined by
the odd nucleon. The parity is that of the level occupied

by the odd particle, and the spin Io equals the 0 value
of this level, unless IQ I

=-,', in which case Is depends on
az". The matrix element which defines aI, Lsee Eq. (4)j
is readily evaluated in terms of our wave functions p.
One finds that4'

in the strong-coupling state (1) with M=I. In (19)
S, , I, , and s, are the projections of the collective,
odd-particle orbital, and odd-particle spin angular
momenta on the space-fixed s'-axis, respectively go
is the g-factor for the collective rotation and is presum-
ably of order Z/A ( 0.4), although there is some
evidence that gq might be smaller than this. 4' The
other g-factors have their usual meaning: g~

——0 or 1,
g, = —3.83 or 5.59, depending on whether the odd
nucleon is a neutron or proton, respectively. %e may
eliminate X,. and /, from (19), and write the magnetic
moment as

t =gd+ (g i gc)—(j. )sr=i+ (g. gt) (—s;)sf r=(2o)
The expectation values appearing in (20) have been
evaluated elsewhere, ""and are listed in Appendix III.

One of the interesting properties of the strong-
coupling magnetic moments is that they always lie
inside the Schmidt lines. s Another most striking
feature of these moments is that they do not have the
simple connection with the parity that the shell model
moments do. This is immediately understood if one
recalls that our state y is composed of orbitals ttn" (nj)
belonging to opposite Schmidt lines. From this it
follows that in the regions of strong deformation the
proximity of the magnetic moment to the - Schmidt
lines does not determine the parity of the nuclear
ground state. This fact makes the determination of
the absolute parity of nuclear states very diKcult (see
Appendix III).

We have assigned spins and parities to the nuclei
in the region 150&A&190 by 6lling our level scheme
(Fig. 4) with the required number of particles, and
noting the quantum numbers of the level occupied by
the odd nucleon. " The magnetic numbers are then
computed with the coefficients C&, as are the quantities
a~. The results are collected in Table III.

The assigned level is not always the very lowest
state according to the detailed scheme of Fig. 4, but
might be either a level just above, or below the obvious
assignment. This is done, admittedly, to improve the
agreement with experiment. One attempts to justify
this by arguing that the detailed ordering of levels in
our scheme is not completely reliable, while the coeffi-
cients C& should be more trustworthy. This can be
seen by referring to Fig. 5, which shows that the
details of the assumed level scheme (Fig. 3) have only
small effects on a set of levels having one particular
value of IQI, and that these levels are well separated
for large P. The relative positions of levels with different

I
0

I
are not so independent of the detailed assumptions.

We also noted that the coefFicients CD are, with only a
few exceptions, qualitatively independent of P, and so
the C&'s are expected to be fairly insensitive to the
detailed assumptions.

In Table III we have graded the assignment as
"excellent" when the level assigned is determined by a
literal interpretation of our level schem" i.e., the
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TABLE III. Spins and magnetic moments. '

Eu151
EU153
Tb159
HO165
Tm'"
Lu'75
Tal81
Rel85
RelSZ
Ir191,3
Gd155
Qd15Z
Erl67
Qbl71
Yb173

H f177

H f179

+7183
Ps189
Pd105
Ag109

Z=63
63
65
67
69
71
73
75
75
77

%=91
93
99

101
103
105
107
109
113
59

Z=47

Nucleus Odd-part.
Assignment

(k lol)P

(7,5/2) 0.2
(5,5/2) 0.4
(6,3/2)
(7,7/2)
(8,1/2) 0.4
(7,7/2) 0.4
(5,7/2) 0.4
(6,5/2) 0.2
{6,5/2) 0.2

(10,3/2) 0.2
( 8,3/2) 0.4*
(11,3/2) 0.4
{13,7/2) 0.4
(12,1/2) 0.3
(11,5/2) 0.3
(10,7/2)
(13',9/2)

?
(14,1/2) 0.2
(7,5/2) 0.2
(3,1/2) 0.2*

exc.
exc.
exc.
exc.
exc.
good
exc.
exc.
exc.
exc.
good
good
exc.
exc.
exc.
exc.
exc.

exc.
exc.
good

Remark

b
b,c

f
b
b
b
g

1

3

b,k
l
m, l

Iobs (I M)sh

5/2 (5/2)—
5/2 (5/2)+
3/2 (3/2)+
7/2 (7/2)—
1/2 (1/2)+
7/2 (7/2)—
7/2 (7/2)+
5/2 (5/2)+
5/2 (5/2)+
3/2 (3/2)—
3/2 (3/2) +

(3/2)—
7/2 (7/2)+
1/2 (1/2)—
5/2 (5/2)—
7/2 (7/2)—
9/2 (9/2)+
1/2 7 +
1/2 (1/2)—
5/2 (5/2)—
1/2 {1/2)—

pobs

3.4
1.5

1.5~0.4
?—0.2

2.9~0.5
2.1
3.17
3.20
0.2—0.3—0.4—0.5
0.45—0.66
?
?
0.09
0.71—0.57—0.13

3.15
0.69
2.34

—0.32
4.5
1.46
3.22
3.22
0.69—0.07

—0.95
0.62—0.87

/th
(ii)

3.00
0.86
2.19

—0.25
4.3
1.66
3.07
3.07
0.74—0.07—0.61—0.83
0.52—0.76

2.90
0.43
2.35

—0.39
4.3
1.30
2.96
2.96
0.47—0.16—0.81—1.07
0.63—0.97

(iv)

2.74
0.60
2.20

—0.32
4.2
1.50
2.81
2.81
0.52—0.13—0.71—0.95
0.56—0.86

0.82 0.76 0.76 0.69—0.64 —0.55 —0.74 —0.65—0.33 —0.24 —0.37 —0.28

a The theoretical magnetic moments correspond to the following variety of g-factors; (i) gp =0.40, g& unquenched; (ii) ge =0.40, g& quenched 10%;
(iii) gc =0.25, gs unquenched; (iv) gc =0.25, gs quenched 10%. The asterisk (+) after an assignment indicates that the state in question has coefBcients
Cg which are sensitive to variations of P. For a compilation of experimental spins and moments see R. J. Blin-Stoyle, Revs. Modern Phys. 28, 75 (1956).

b See reference 43.
e This nucleus has states of intrinsic excitation at 97 kev and 103 kev; the first decays to ground via E1, the second via M1 radiation PN. Marty,

Compt. rend. 238, 2516 (1954)j.The first of these excited states could correspond to our orbit (7,7/2, -), the second to (6,3/2, +).
d The observed value of a7, = —0.74, while we obtain —0.56. For a detailed discussion of this nucleus see B. R. Mottelson and S. G. Nilsson, Z.

Physik 141, 217 (1955).
e If one uses Eq. (C6) of Appendix III, one finds that the observed values of afs and p, are not compatible with 2' = —1. One should note, however,

that this nucleus has a rotational spectrum which does not obey Eqs. (2}and (3) (Sec. I) even when corrections for the rotation-vibration interaction have
been applied. A. K. Kerman I Kgl. Danske Videnskab. Selskab, Mat. -Fys. Medd. 30, No. 15 (1956)j has successfully interpreted this as an eBect of
a rotational perturbation which destroys the constancy of Q. The spectrum of Wigg is such that this perturbation will not change the ground state moment,
but it will alter ag and its relationship with p,.

& Excited states with I =$ (612 kev) and I =5/2 (480 kev) have been observed (see Alaga et al.m). Our scheme does not provide for an (I =q)-state in
this region, since ass for both (9,1/2, +) and (11,1/2, -) is such that I WQ. On the other hand, the decay scheme is not completely understood, since
the 612-kev level has two unresolved components LR. V. Pound and A. Sunyar (private communications) g.

I Gd»5 has two nucleonic excited states at 86 kev and 105 kev, both of which go to ground via Ei transitions LE. L. Church, Bull. Am, Phys. Soc. Ser.
II, 1, 180 (1956)1. One of these could be the incorrectly assigned Q =3/2 level, the other any of the orbits (13,5/2, +), (13,1/2, +) or (12,1/2, —).

h The theoretical value of aI, =1.2.
l The experimental level scheme t'Marmier, Boehm, and DuMond, Phys. Rev. 98, 280(A) (1955)j indicates that the ground state has I0 =7/2; this is

confirmed by the recent spectroscopic measurements of D. R. Speck and F. A. Jenkins, Phys. Rev. 101, 1831 (1956).There is an intrinsic excitation at 320
kev which is tentatively assigned as I =9/2, with opposite parity to that of the ground state. This excited state would correspond to our orbital (13,9/2, 1)
which lies just above (10,7/2, —) in Fig. 4. For a discussion of the magnetic moment, see footnote j.

& The spin of Hf»9 has also been determined by D. R. Speck and F. A. Jenkins, Phys. Rev. 101, 1831 (1956).Furthermore, they find that R =p, (Hf»7)/
p, (Hf»9) = —1.28. With the assignments as shown, we find that Rheo = -1.47. The theoretical moments which lead to this are p(177) =1.56, p, (179) = -1.06,
for gp =0.40, g& unquenched.

& The theoretical value of aI ~ -0.35.
& The strong-coupling approximation is probably not valid for this nucleus.
m The experimental information concerning this nucleus will be found in Alaga, Alder, Bohr, and Mottelson, Kgl. Danske Videnskab. Selskab,

Mat. -fys. Medd. 29, No. 9 (1955). If one interprets the levels observed in Coulomb excitation as a rotational band, one finds that ap(obs) =0.67, while the
theoretical value is 0.65. There is also an excited nucleonic state at 88 kev which decays by emitting E3 radiation. This level would be our state (4,7/2, +)
which is seen to lie just above (3,1/2, -) for p =0,2. The El transition from the 400-kev rotational state to this (7/2, +)-state is 106 times slower than the
single-particle estimate. This is partially due to K-forbiddeness, but can also be attributed to the fact that our state (4,7/2, +) is almost a pure (96%)
(j=9/2)-state, while the ground state has only 1% of (j=9/2) and (j=7/2) in it. There is therefore a very important suppression of the nucleonic E1
matrix element. As for the isomeric transition, the suppression is not nearly so drastic, since about 20% of the ground state can be connected to
the (7/2, +)-state by the E3 operator.

detailed ordering of Fig. 4 is taken at face value. There
is only one qualification here, which is that we put
assignments under the "excellent" category when the
higher of two levels which cross each other is occupied
first, as for example the pair of orbits (5,5/2, +) and
(7,5/2, —). This is justified since we do not expect our
calculation to give us the exact crossing point, and also
because we do not know P too well from the experimental
data. When one has to go somewhat astray to attain a
reasonable assignment, the grading is "good."Thus the
"excellent" assignment for Lu"' would be (8,1/2, +) or
(10,3/2, —), while the assignment which has the
correct spin is (5,7/2, +) and is termed "good."

In the strong-coupling region~ there are fifteen
43 The lower limit of this region is quite well defined by Sm'~ '"

LG. Scharff-Goldhaber and J. Weneser, Phys. Rev. 98, 212
(1955)j. The upper limit is somewhat ambiguous but appears
to lie between W'sr LMurray, Boehm, Marmier, and DuMond,

odd-A nuclei whose spin is known, and we are able to
assign eleven in the category "excellent, " three in
"good, " and for one (W'~) no level which has the
correct spin and a reasonable value of p, or a~ is available.

In addition to assigning spins, we have also computed
p, for these nuclei. The agreement between theory and
experiment is more limited here. This was to be expected
since p, is sensitive to the structure of the wave function
xg. We thus find serious disagreement between p, tl,
and p,,b, for Eu'" tu"', and of course W'~. In some
other cases, the value of p&1, leaves something to be
desired. Nevertheless, there are a number of important
successes. Thus the great difference between the
moments of the two europium isotopes is reproduced,

Phys. Rev. 97, 1007 (1955)] and Os'" /Johns, McMullen,
Williams, and Nablo, Can. J. Phys. 34, 69 (1956)g. The data of
the last reference would appear to indicate that the strong-coupling
approximation is not valid for Re'».
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a fact that the shell model is unable to explain. 4' There
is also reasonably good agreement between theory and
experiment for both ai, and li in Tm"' (see footnote d
of Table III).

Besides these nuclei which are almost certainly in
the strong-coupling region, there are a small number of
examples which may lie outside that region. For three
nuclei of this latter class (Re'"'" Os"'), "excellent"
assignments which lead to extremely good values of
p, t~ are available. For the Ir isotopes an "excellent"
spin assignment is also possible.

The spins and moments for two lighter nuclei (Pdm',
Ag"') have also been evaluated, and are listed in
Table III. The strong-coupling approximation is
probably not applicable to these nuclei, since the
quadrupole moments found in their neighborhood are
not suKciently large.

Lastly, we have calculated these moments not only
with go ——(Z/A)=0. 40 and the free-space g,-factors,
but also with go ——0.25 and 10% quenched nucleon
g-factors. 4' The results are given in the last three
columns of Table III. These changes in the g-factors
e8ect the value of p, slightly, but it is difficult to discern
any systematic improvement due to such alterations.
It would appear that there is a very doubtful improve-
ment with go ——0.40 and g, 10% quenched. This should
not be taken too seriously, however, since (li», -li,h)
is often much greater than (litq-li'th).

We believe that the spin assignments based on our
level scheme are much more successful and eGortless
than those of the shell model. " In the latter there are
simply too many states of high spin in this region of the
isotope chart, and so one must resort to rather uncon-
vincing level assignments to obtain the very large
number of low spins demanded by the data. In the
strong-coupling approximation, on the other hand, the
majority of states will necessarily have low spins,
since every state of the P =0 scheme has a substate with
0=-,', etc,

One should note that our scheme invariably assigns
the correct spin for 63 &&Z&~77 (except for Z=71,
which falls under "good"), and similarly for 99~&/
~&105. For g=107 we have the important Qaw of
W'",4' which is probably due to the fact that our
calculation should be quite unreliable for states near
the top of the well. '~ To summarize the information
contained in Table III, we would therefore say that
our scheme must be essentially correct for the strongly
deformed nuclei whose odd particles lie in the 50—82
shell or the lower part of the 82—126 shell.

Finally, we should remember that the assumption of
completely independent particle motion is a rather
drastic simplification. The nucleon mean free path as

~A. Arima and H. Boric, Progr. Theoret. Phys. (Japan} 12,
623 (1954}.

4s F. Bloch, Phys. Rev. 83, 839 {1951);A. de'„Shalit, Helv.
Phys. Acta 24, 296 (1951}.

4'A detailed investigation of this nucleus has been made by
A. K. Kerman, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 30, No. 15 {1956).

deduced from the optical model" indicates that the
residual interactions are by no means negligible,
though considerably smaller than one thought them to
be before the advent of the shell model. One might hope
that the inclusion of internucleon forces would not be
too important for the determination of the essential
features of the level scheme of Fig. 4, but they would
undoubtedly eGect the wave functions and therefore
the magnetic moments.

The author takes great pleasure in acknowledging
the helpful guidance, friendly interest, and constructive
criticism with which Professor Victor Weisskopf has
always been so liberal. He is indebted to Professor
Felix Villars for numerous discussions concerning all
facets of this problem, and to Professor Aage Bohr
for a very informative conversation during the early
stages of the work. Dr. E. Church, Dr. A. Sunyar, and
Dr. M. Goldhaber kindly brought some of the experi-
mental information discussed in Table III to the
author's attention.

APPENDIX I
The particle energy E&(y,)t) (see Eq. (8)j is minim-

ized for

and the corresponding value of EI is

Ei (yo, )to) = (9/4)2 —'Ate(o, zO!„{B)1. (A2)

For each value of 3 one must determine which levels
should be occupied so as to get the lowest possible
minimum energy. The solution of this problem is
greatly facilitated if one studies the equilibrium energy
Ei (yI,)te) as a function of Q,„O',„, and 5l, and not the
original expression (8).

Let us now consider the three-parameter symbol
(S„S„,{l3) which characterizes each state. If (for
fixed A) two states have symbols which dilfer only by
a permutation of the three entries, the states are
identical and should not be counted as two distinct
states. This remark follows from the observation that
two such states differ only by a redefinition of the
x, y, or s axis in the rotating coordinate system, and are
therefore one and the same physical state.

We assume that we have completely filled the
orbitals belonging to the shells E=O, 1, 2, , k—1
with pairs of particles. The total number of particles
is then

Ai t ——P (s+1)(s+2).

We now proceed to fill the shell N=k. It then follows
from (A2) that for any A &A& the lowest state is
realized when only orbits belonging to the shell E=k
are occupied. That is to say, by raising particles to
higher shells (X)k) we always construct an excited
state. This means that if one is only interested in the
ground state, 8„8„,and S are not independent
variables, since for all occupations that have to be
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considered, where X~ is the Compton wavelength of the nucleon.
If we now substitute (A5,8) into (A7), we find the
expression for Qpi'& given in the text.

The other quadrupole moment Qp& ' defined in the
text is obtained directly from (A4, 5) with b~=0,
R=rpA&:

e.+e,„+-,'$=e= p (Ã+-;).

Evidently 6 depends only on A and not on the quantum
numbers n, n,„,g, of the last occupied levels.

It will now be convenient to introduce new variables
i& and )by

Q "'= -'ero'A1Z(e'$)-1($' —CP)

The surface energy is given by6)= 8„—8, 8&)=1o$—pC,

in terms of which (A2) becomes

~2+&(2+r)($2 &&2) 6(2

with

sin 'p (h)1)
Es(h) =-', iisA'* h '+c 'h'*X (A10)

(A3) sinh 'p (h &1)

= e(A/mo&)ho *'($iho1 ez). — (A7)

The requirement that the mean square charge radius is
given by —,'rp'A& determines A~ to be

Aced = (5/3) mc'(K»&/rp)'A —1Z-'(e'$)-1
X (8~a+-', $~$), (A8)

47 Perhaps we should point out that this and all other formulas
given in this paper for Q refer to the quadrupole moment of the
charge distribution as seen in the rotating frame. The relationship
between our Q's and the spectroscopically observed value is
(&.„=L3Z —I(I+1)gg(I+ 1)(2I+3)P'(&.

(R'= (4/27) —i (8E /9('&&&co)'.

Since ~i)~, ~)~&&1, (A3) is approximately an ellipse.
The larger the semiaxes ((R,v3(R), the lower is the
energy. It is then a simple matter to compute R for
each possible state of A particles; the state with
largest (R is the ground state. The results quoted in
Table I were obtained in this way.

Having determined (yp, hp), one then computes the
quadrupole moment by assuming the charge Ze to be
uniformly distributed throughout an ellipsoid whose
semiaxes are (Ryp 'hp='*, Ryphp '*, Rhp). This moment is
given by4'

Q=-.'«R'(vo'ho) 'L(ho' —Vo')+ (Vo' —1) (ho' —o Vo') j,
which, for small deviations from axial symmetry, is
well approximated by

Q~ooZeR'ho '[(hp' —1)—-', b~„'+ ]. (A4)

Here, as before, b „'=yp4 —1. The last column of
Table I is computed from (A4).

With the restriction to cylindrical symmetry (go=1),
the equilibrium value of X becomes

),= ($/e)-*, (e—= e,+o;„), (A5)

and the corresponding energy is

E»(ho) = (9/8)h (O,'$)1. (A6)

The most advantageous level occupations are obtained
if one adheres to the simple rule that for X& 1 states of
highest n, are filled first, and vice versa for P (1.

The quadrupole moment of the charge distribution
belonging to the wave function is

z
Qoi &=eQ (2s,o—x,o —y,o);

When we add E8 and E& to the particle energy, the
equilibrium point is shifted from hp to hp(1+~). For
~K~&&1, we find that

with

8
[Ecol'c(ho) —puaA *'I'e(ho) j,

3$A(u
(A12)

1
)2h'a+3' -', ln

I'c(h)= —c '+~ ~X~ 1—o

( 2ho~o i
'.tan 'e (h &1)

(hpc. —3) sin 'p (h)1)r, (h) =; (3-2.)y ~( h1o.o ) sinh 'o (h&1)
and

c=h '(h' —1). (A13)

The approximate expression (A12) is adequate since
we find that ~it:( &4X10 ' for Is&28 Mev.

The total energy at equilibrium is

Er(hi) =Ep(hi)+ Es(hi)/Ec(hi) [hi=ho(1+K) j
(1—-', ~')Ep(hp)+Es(hp)+Ec(hp). (A14)

The factor (1—i4~') preceding E»(hp) in (A14) must be
taken into account. Its neglect leads to the erroneous
conclusion that Ez tends to favor positive quadrupole
moments. One must also use the closed expressions
(A10,11) for E8 and Ec, for the values of h considered,
the expansions in powers of 0. are inadequate.

The correction to Qpi'& due to the shift ho~hi is
found by simply replacing hp by hp(1+~) in (A7). We
obtain

($i $+-,'CL~O', )
Qii'&=Qp'& 1+~i — i+O(g') (A15)($»$—R&8, )

"See, e.g. , K. Woeste, Z. Physik 141, 643 (1955).

where the eccentricity e is defined by

.=+[~h- (h' —1) (
g1.

The Coulomb energy for a uniformly charged spheroid
s4S

pi »(1+p)(1—p)-' (»1)
Ec(h) =Eco(ho) —'X

(h&1)
(A11)

Ec' (3Z'e'/5——r pA ')
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or
(r V'(r)) =2(2'), (86)

IE.t I
= [(&).«o-'0:. (87)

Equation (86) holds for any well shape; the relation

(rtllrV'(r) lrt'l')=2( —1) —'[(T)„,(T)„,ff, (88)
which follows from (84,7), is only rigorously true for
the square well. If we could show that (88) holds to a
good approximation for wells which are not square,
we would have a rather shape-independent method for

IKnel AS A FUNCTION OF BINDING ENERGY

I,p- IKI

0.9—
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07-
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O.I—

0-
0

Binding Energy in Mev

I I I I I I I I

4 7.5 IP I 5 20 24 30 36

Fzo. 7. E'„g, the radial integral defined in Appendix II, as a
function of binding energy,

APPENDIX II

The potential V(r, )i) can be rewritten as

V(r,X)= V[r(1—o)-"'(1—o cos'8) ff (81)
where o. is defined by (A13). By expanding (81) in
powers of 0-, we 6nd that

m, (r,e) =-V„(e)rV'(r), (82)
&,(r,8) = (5/4s. )[1—2(4n/5)'P'gp(0) jrV'(r)

+[»(t7)3'['V"()—V'()j, (8 )
where F20 is a normalized spherical harmonic, and
primes indicate diGerentiations with respect to the
argument. If V(r) is assumed to be a square well,
the required radial integrals are

(rtl I
rV'(r)

I
et7)= 2 VpE„tE„ t (84)

= —(5+8 t+J „ t )
—'(nllr'V"(r)

—rV'(r)
I
rt'I'), (85)

where F„g is the logarithmic derivative of the radial
function on the nuclear surface, and the E & are readily
expressed in terms of Hankel and Bessel functions. "
The quantity E & is found to vary smoothly and slowly
as a function of binding energy in the well, and to
depend only slightly on the well depth and the quantum
numbers. It is plotted in Fig. 7 for two values of Vo.
The simple dependence of E & on the binding energy is
readily understood in terms of the virial theorem:

estimating the radial integrals from a knowledge of
the level scheme.

To see whether such a method is feasible, consider a
potential which is —Vs for r &~(Rs—a) and then rises
with constant slope to zero at r= (As+a). By using
perturbation theory, one can show"" that the radial
integral (84) is approximately

(—1)" "'[(T)„t(T)„t ]"(1+DE+ ), (89)
where 8= (u/Rs). From an estimate of D and the fact
that E„& is a slowly varying function of the binding
energy, we conclude that if. 8&0.1, one may determine
the radial intergrals of rV'(r) from (84). The value of
E„iwhich is used in (84) is taken from Fig. / in con-
junction with our ad hoc level scheme of Fig. 3, it
being assumed that the level 3d; is just bound.

In order to simplify the construction of the matrix
of Eq. (17), we dropped the term of '9l7s proportional
to [Fso(0)$', and corrected the eigenvalues obtained
from the diagonalization by computing the expectation
value of this term with the states xg. These corrections
turn out to be very small, and so this procedure would
appear to be justi6ed. The levels shown in Fig. 4
already include this correction. "

We have
APPENDIX III

(s, )sr=i= Q (2t+ 1) '
/+1 ol

x {QI
c."(t+-',) I' —Q

I c.-(l—-', ) I

—2[(lyQ+-,') (1—Qy-,')]'
xc.-(~+-',)c.-(i——,)); (c3)

An error in reference 29, relevant to Fq. (I19), hs, s kindly
been brought to our attention by K. Kumar.

"ftt ote added in proof. —Several criticisms of the approximation
embodied in Eq. (14) have kindly been brought to the author' s
attention by Mr. K. Kumar. The most important of these is
that for 8&30' the quadratic approximation has strong Auctua-
tions, which the exact potential does not possess. The author has
therefore computed several matrix elements of the type which
appear in Eq. (17), by using the exact expression fEq. (31)g, and
also the approximate one LEq. (14)j, the potential being the one
used to describe elastic proton scattering. He finds that if one
interprets Eq. (14) as the description of a prolate deformation
which differs but slightly from a spheroid, the expansion gives
results which agree tolerably well with those obtained from a
correspondingly changed but closed expression. These changes
in the details of the shape of the equipotential surfaces are com-
pletely compatible with present experimental evidence. The author
therefore concludes that the final results (see Table III) are not
effected by the shortcomings of Eq. {14).It is, however, quite
probable that this approximation is quite poor for P& —0.2.
Professor J. D. Jackson's help in this matter is gratefully
acknowledged.

(j.) = =I'(I+1) ' (Q=E=I&—), (c1)
=-'(I+1) 'L-' —(—I)":(I+l) j

(Q=E=-', ). (C2)

In the following we shall supress the indices k,e in
Cn~(kPlrtj), as well as the variable P, and rePlace j
by (l+-', ). Then for Q=EQ-', ,



GROUND-STATE PROPERTIES OF NONSPHERI CAL NUCLEI 103i

while for 0=E=$,

(s")~-r= (I+&) '(xE-t(2i+&) '{lCi"(i+s) I'
—

I c,-(t—-,')
l
—49(i+~)j'ci"(t+k)

XCi"(t—s)) —s~(—&)'+'(I+ s)
xp. (2&+ &)-'L&&ci"(t——',)

-(i+Oict-(i+-, )] ) (c4)
When I=~s (C4) reduces to

sP t(2l+1) '((2t+3) lCi" (t+-', ) l'
+(2i—~) lci (i—l) I'

—&Li(&+&)pic;"(&+))ci"(&
——',)} (cs)

for m=1, and is simply equal to —~~ when m= —1.
In the latter case, we simply get Nilsson's result"

tt= sf(gt gc—)at+i t+gc sfej (C6)

This formula makes it possible to determine the
parity of some rotational bands which have Io=~.
For if one knows both p, and a~, and finds that they
are not related through (C6), one can conclude that
w=+1. It is in this way that we have assigned even

parity to the ground states of W'" and Tm"' see
Table III, footnote e.
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Inelastic Scattering of Neutrons*

IRA L. MORGAN
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Inelastic scattering of fast neutrons in Al, Na, S, Fe, Cu, I, and Cd has been detected by observing the
gamma radiation from the excited states. The cross sections for gamma-ray production at energies well
above threshold in Fe and Al have been measured. The gamma-ray energies observed correspond to known
levels, transitions between levels, or de-excitation from neutron capture.

INTRODUCTION

A WELL-KNOWN method for investigating the
levels in light, medium, and heavy nuclei is by

the inelastic scattering of neutrons. This process in-
volves the interaction of a neutron with the nucleus in
which the de-excitation of the nucleus is by gamma-ray
emission accompanied by an inelastically scattered
neutron. If the level of excitation is high enough,
cascade between levels may occur. Competing processes
also have a direct inQuence on the excitation curve,
Many investigators' ' have studied the resulting gamma
radiation due to inelastically scattered neutrons. In
general this has been at one energy or in the region of
threshold for production of the gamma radiation. In the
present investigation, the shape of the excitation curves
at energies well above threshold has been obtained in
order to study the eGect of additional cascading from
higher levels, as well as competing reactions. The energy
of the gamma radiation observed in this work is con-
sistent with known energy levels, capture processes, or
cascades between levels.

EXPERIMENTAL PROCEDURE

The University of Texas Van de GraaG generator
was used to produce the reactions D(d, st)Hes and
Lis(P, ss)Bes, providing neutrons in the energy range

*Assisted by the U. S. Atomic Energy Commission.
'M. A. Rothman and C. E. Mandeville, Phys. Rev. 93, 796

(1954).
~ R. M. Kiehn and C. Goodman, Phys. Rev. 92, 652 (1953).' Scherrer, Allison, and Faust, Phys. Rev. 96, 386 (1954).' J. J. Van Loci and D. A. Lind, Phys. Rev. 101, 103 (1956).
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FIG. 1.Pulse-height distribution of the gamma rays produced
by 800-kev neutron bombardment of Na.

required. A deuterium gas cell was used which was 2 cm
in depth with a 0.0001-in. Ni foil covering the entrance
hole which passed the deuteron beam. The Li~ target
was evaporated on a silver backing and was found to be
35 kev thick as measured by the threshold method.

A "ring" geometry was used and found to be con-
venient for those elements studied, producing high
intensities and a low background. Metallic Na was
shaped in the form of a ring and contained in kerosene,
except during periods of bombardment. Sulfur was
melted and molded into a ring, while iodine in the form
of crystals was packed in a thin-wall hollow Al ring.
The other elements were easily machined. The attenu-
ators, which were conical in shape, were of paraKn or


