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CONCLUSION

The experimental data available at present are
sufficient to permit one to attempt a theoretical treat-
ment of the intensities of « lines belonging to a single
rotational band. A problem of equal importance is to
obtain the theoretical relation between the empirical
constants in the formulas and the geometrical pa-
rameters of the nucleus.

A careful study of the « spectra of Pu??, Am?*4, and
U%3 has made it possible for the first time to carry out
a comparison of the existing formulas with experiment.

GOLDIN, NOVIKOVA, AND TRETYAKOV

Formula (4), proposed by L. D. Landau, satisfac-
torily describes the intensity of « decay to various
levels, at least for even-even nuclei. For odd nuclei the
picture is not clear.
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The equilibrium properties of uniform nuclear matter have
been studied in previous papers by using a self-consistency method
to determine two-body reaction matrices and the average effective
one-particle potential which they generate. In this paper the self-
consistency method is simply illustrated by using some explicit
examples. An investigation is also made of the previously neglected
effects of the exclusion principle on transitions to intermediate
states. A variational expression is used for the reaction matrix,
utilizing as a trial function the wave function which is exact if the
exclusion effect is neglected. Two-body potentials are used which
simulate the actual forces, i.e., square wells with a repulsive core
of 0.35 %/uc, range of 1.15 %/uc, and depth 98.3 Mev, acting on
s-states only. It is found that for effective mass values of 0.5 M
and 0.6 M, the reaction matrix is appreciably altered, particularly

I. INTRODUCTION

N previous papers an approximation method for
treating quantum mechanical systems of many
particles has been developed and applied to the deter-
mination of the equilibrium properties of nuclear
matter, such as the binding energy, equilibrium density,
surface energy, etc.!~5 We shall here develop in some
detail the procedure used to obtain approximate solu-
tions to a nuclear system of infinite extent by the
method of self-consistency. In addition, it will be shown,
by an explicit calculation of the average nuclear binding
energy using a specific two-body nuclear interaction
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for low values of relative momentum. The requirements of self-
consistency, however, almost entirely compensate for the change
in the reaction matrices so that at normal density in the effective
mass approximation the final result for the average binding energy
is precisely the same as that obtained when exclusion effects are
neglected. The reasons for this simple result are discussed.

Further approximations are discussed which are suitable for
more exact computations and which allow inclusion of the ex-
clusion effects, the departures from the effective mass approxima-
tion, and the effects of “propagation off the energy shell.” Ap-
proximation methods for a finite nucleus are discussed and a
simplified Hartree-Fock method using “pseudo-potentials” (in
the sense of Fermi) is described.

potential, how an approximation previously made in
neglecting the effects of the exclusion principle in the
intermediate states may now be removed. It is found
that the average properties of the nuclear matter are
altered only very slightly by the exclusion effects,
although there exist appreciable alterations in the
details of the reaction matrix and hence in some details
of the velocity-dependent potential.

We also show how the effects of propagation off the
energy shell in excited states can be included approxi-
mately in a simplified form of the theory suitable for
computation. The effects of the finite size of the
nuclear matter have already been studied in previous
papers.2?® Some comments are made on an alternative
method for investigating these effects.

II. FORMULATION OF THE SELF-CONSISTENCY
PROBLEM

In earlier work® it was shown that an excellent
approximation to the binding energy of extended
nuclear matter can be obtained by solving the following
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equation for the reaction matrix®

1
Kiju=vij, it 2 vijmn—————————Kmn11, (1)
mn Ek+El—Em_En

where the matrix elements are taken with respect to
the independent-particle eigenstates of a uniform
medium, i.e., plane waves. The sums over m and # are
over all empty states. The energy Ej is not the un-
perturbed kinetic energy, but includes the interaction
energy of a particle in the state k& with the rest of the
system, i.e.,

Ey=(F*/2M)+V (k), (2)
where

V (k) =2"i(Ki, ki— Kri,ir).

We assume here that the potential has the same form
in excited states as well, and neglect the effects of
propagation off the energy shell discussed in reference 5.
We shall return to these in Sec. V.

Equations (1) and (2) form a coupled set; their
solution is most simply approached using a method of
interpolation and iteration which has in previous dis-
cussions®* been called a “self-consistency’” method.
Finally, the energy of the system is

E=3 k#/2M+5 2 (Kij, 55— Kij ), 3)
i 7]

where the sums are over all filled states.

In previous studies of the coupled system of equa-
tions, use was made of the similarity of Eq. (1) for the
reaction matrix to an equation of scattering theory for
the reaction matrix. For scattering, the equation for the
reaction matrix (which we call R to avoid confusion) is

Rij, k=i, i+ 2, Vijomn Ron,ity,  (4)

e te—€en—é€n

where the energies are the kinetic energies alone, i.e.,
ex=k?/2M, and the sum over mn is over all states except

8 This equation does not give the exact energy shift due to a
two-body potential v, which is AE=K’;; ;;, where K’ is defined by
the integral equation [see Reifman, DeWitt, and Newton, Phys.
Rev. 101, 877 (1956)]

, 1-P
K’ =1, kl+mzn vii"""Ek+Ez+AEilEm~E

with Py a projection operator on the state k. K’ differs from K
of Eq. (1) by the appearance of AE in the energy denominator;
although AE (the interaction energy of a single pair) is very
small compared with the energies K, it cannot in general be
neglected if the excitation energy can take on values of the order
AE. In the case of a degenerate Fermi gas, however, the exclusion
principle requires that the excitation energy be of the order of the
Fermi energy except for states very near the Fermi momentum,
so that in this case AE can be neglected. Alternatively AE can
be expanded as a perturbation which can be shown to vanish
for large 4 as 1/4 for a degenerate Fermi gas of 4 particles (see
reference 4). Thus in the many-body fermion problem it is possible
to discuss the K matrix rather than the more complicated K’
matrix if the effects of the exclusion are properly taken into
account. The authors are indebted to Professor R. G. Newton and
Professor N. Fukuda for pointing out the difference between the
K and K’ matrices.

!
K’ yimy 11y
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the energy conserving state kl. The solution to this
integral equation is most easily obtained by solving the
related Schrodinger equation. If we ask for only the
energy-conserving part of R (which we call T'), then we
have the familiar result for central forces

-1

(2141) tand;Pi(cosd), (5)

47
M

ki— k_-,'

where 0 is the angle between k;—k; and k;—k; and &;
is the phase shift induced in the Ith partial wave by
the interaction v.

Equation (1) for K differs from Eq. (4) for R in two
respects: first, the energy differences are not solely the
result of changes in kinetic energy and second, transi-
tions to occupied states are forbidden by the exclusion
principle. The first effect can be taken approximately
into account by introducing the effective-mass approxi-
mation.? We shall discuss this in more detail in the next
section. The effect of the exclusion principle is more
difficult to correct for; in Sec. IV we shall develop a
method for taking it into account.

III. SOLUTION IN THE EFFECTIVE-MASS
APPROXIMATION

We shall outline in this section the solution to the
problem in the effective-mass approximation in more
detail than was done in previous work; we do this to
clarify the application of the methods. We shall also
obtain solutions using factorable potentials’ where again
the application of the methods is particularly simple and
instructive.

The basic procedure of the effective-mass approxima-
tion lies in an approximate reduction of the exact equa-
tion for the many-body reaction matrix [Eq. (1)] to a
corresponding equation for a two-body reaction matrix
which can be solved by using methods developed in the
study of the relatively simple two-body system. The
exact reaction matrix K ; depends explicitly on the
matrix elements v 5; of the interaction potential for
the interacting pair, and depends implicitly on all of
the remaining particles through the connection of the
energy of each interacting particle with the average
potentials V (k) of Eq. (2). For a given state of the
rest of the medium, V (k) depends explicitly on the state
of a single particle, although it of course is altered if
the state of the rest of the system is changed. Thus it is
correct if we fix our attention on only one particle at a
time, to assume that V (k) depends explicitly on the
variable k but only parametrically on the state of the
remaining particles. The form which has been taken
for V (k) is

V(k)=V(0)+bk~+cki+- -, (6)
where V(0), b, and ¢ are parameters which change if
the state of the system is altered, but are fixed for a

7The use of factorable potentials was suggested to us by Pro-
fessor K. M. Watson.
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given state. In this expression for V' (%), the odd powers
of k are absent if the medium is isotropic.

It is possible to obtain rather simply a semiquantita-
tive result for the K matrix if only the constant and the
quadratic terms in V (k) are retained. In this approxi-
mation we can write, from Eq. (2),

Ep= (B/2M)+V (0)+bk?

7
= (/2% ), @

where the effective mass M* is given by
1/M*=(1/M)-+2b. )]

When the energy terms in Eq. (1) are replaced by those
modified by the velocity-dependent potentials, we have
an approximate equation for the two-body reaction
matrix, which, except for the modified mass and for the
intermediate states excluded by the exclusion principle,
is identical with the exact equation for the reaction
matrix for scattering, i.e., Eq. (4). Thus, if we neglect
the exclusion effects for the present, the diagonal ele-
ment of the reaction matrix in this approximation is
obtained from Eq. (5):

(k| K |k)= —3-— > E1(214-1) tand (M* k), (9)
* 7

where 8;(M* k) is now the phase shift induced by the
potential when the particles are moving with the
effective mass M*. The potential in the medium, V (%),
can be obtained from the relationship

V(k)=2i(Kt, ix—Kir, 1), (10)

and the predicted value of M* can be tested for self-
consistency with the input values. When the self-
consistent result is obtained for M*, the reaction mat-
rices for this value then provide a solution to the
coupled equations (1) and (2).

It is easy to solve the problem in some special cases.
First we consider the s-wave scattering from a two-body
potential with parameters which approximate to aver-
age values for the singlet and triplet wells. We also
include a repulsive core of typically assumed range.
This interaction potential is

()=  for r<r,
=—1, for R>r>r, (11)
=0 for >R,

where 7,=0.35x71, R=1.15p7%, and the depth is 1.22
times the depth which gives binding at zero energy, i.e.,

(R—70) (Muo)t=(1.22)}x/2,
or

20=0.7034=98.3 Mev, (12)

where p is the m-meson rest mass (we use the system of
units for which Z=c=1).
To proceed, we obtain the phase shifts as a function
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of & and the effective mass M* by solving the Schrod-
inger equation which is equivalent to solving Eq. (1).

For s-wave scattering, the phase shift is given by the

equation
ko cot[ko(R—7,) 1=k cot(ER+-3), (13)
where

ko= [M*vo-!-kﬂ*.
The potential V (k) defined by Eq. (10) is then given by!

k i d P 14
V= [ats an@p, a9
where
Pk(x)=2 for 0<x<%(kp—k) (15)
=[tkr*— Ghk—x)*]/kx
for

$(kr— k) <a<i(kr+k).

To determine the momentum dependence of V (), it is
simplest to evaluate V(%) at k=0 and k=kr (Fermi
momentum). At these two values,

48 pir
V()=—— f xdx tand (x),
aM*J,

(16)
V (k) 24ko4(1 x) 5(x)
=—— xax{ 1—— ) tano(x).
T, kr
Then, using Egs. (7) and (8), we find
M* krt/2M
g=—= an

M (k)20 +V (kr)—V (0)

To solve this equation for ¢, the simplest procedure is
to interpolate between values of tand(k) computed for
values of M* close to the final value. For example, for
kr=1.50 y, we find, from Eq. (16)

V(0)=—43.2 Mev
V(kr)=—29.3 Mev
V(0)=—71.9 Mev)
V(kr)=—46.7 Mev}

] fOI.' 0’1“-:‘-0.500,

(18)
fOI’ 0'2-_—0.600.

Assuming a linear dependence of V(0) and V(kr)
upon ¢ over this narrow interval (this is very close to
correct), we may write

g—01
V(0)= —[43.2+ (28.7)] Mev,
g9— 01
(19)
g—01
V(kr)= —[29.3+ (17.4)} Mev.
09— 01

These, combined with Eq. (17), give a quadratic
equation for o, which has as solution ¢=0.548. The re-
action matrix K at this value of ¢ is plotted in Fig. 2,
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from which we obtain V(0)=—56.9 Mev and V (kr)
=—37.3 Mev. These are the self-consistent solutions.
The average interaction energy is':?

Va=3{V(0)+3[V (kr)—V(0)]}=—22.6 Mev, (20)
and the binding energy per particle
E/A=g(kF2/ZM)+VAv='—79 Mev. (21)

In practice, it is necessary to carry out this procedure
as a function of kr or the density (kr=1.52 u/y, where
the density parameter 7 corresponds to a nuclear radius

=11.40X10"14% cm) and thus determine the curve of
binding energy per particle »s density. It is also neces-
sary to correct this result for the effects of the k¢ and
higher terms in V (k). This problem has been considered
in reference 3 where it was shown that the approximate
inclusion of the %* term increases the interaction energy
by about 209,. We shall not discuss this detailed prob-
lem further here.

As a second illustration, we consider a factorable
potential which allows an exact solution for the re-
action matrix. It is known from the work of Yamaguchi®
that it is possible to represent accurately the scattering
from zero to 100 Mev by using such potentials. We shall
not consider the problem here with tensor force in-
cluded; we instead take only averaged central singlet
and triplet potentials which fit the scattering but, of
course, not the quadrupole moment. The integral
equation to be solved is

(k’IKlk)=(k’lvlk)+f(k’lv$k”)

"

@@ Vo @
If v is assumed to have the form
(K'|v| k)= f(k) f ('), (23)
then it is easily shown that the solution for K}is
(K| K|k) PO dk”
~sw0s) / (130 2= o) @

For s-waves we shall take here a simple form for f2(k)
since we are not interested in numerical accuracy. A
suitable choice is

PB=N E+F).

To give reasonable depth and range, we take B=pu
(r-meson mass), and A= —4xus/M. For a bound state
at zero energy, s=1; we take s=1.22 as a reasonable
average for singlet and triplet states.

(25)

8Y. Yamaguchi, Phys. Rev. 95, 1629 (1954); Y. Yamaguchi
and Y. Yamaguchi, Phys. Rev. 95, 1635 (1954).
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The integration for K then gives for the diagonal

element y
4rus/ M
(k| K|k)=— )
a?+-k?

where o?=p?(1—0s). It is also possible to carry out the
integrations for V (k) explicitly ; we find

24 uSkF 2(1 kF
V(0)=—— [1——— tan‘l(——)],
T M kr 2a

(26)

(27)

[ () (53]
———tan— .
2 kp ka Oé2

Thus we must solve a transcendental equation to
determine the self-consistent solution for the effective
mass M*=ocM. At normal density of the nuclear
matter, the solution is 0=0.480; at this value we obtain

V(0)=—76.7 Mev, V(kp)=—50.3 Mev, (28)
and the binding energy per particle is found to be
E/A=}(ke/2M)+3{V 0)+[V (kr)—V (0) ]} 29)

= (14.7—30.4) Mev=—15.7 Mev.

This method can easily be extended to other forms of
factorable potentials.

IV. CORRECTION FOR THE EXCLUSION PRINCIPLE

In the previous sections, as in the earlier work on
the saturation problem, we have neglected the effects
of the exclusion principle in intermediate states. This
neglect has previously been justified by two arguments.?
The first of these makes use of the fact that, because of
the great depth of the potentials (due in part to the
presence of repulsive cores), the interacting particles
will usually be at momenta considerably greater than
the Fermi momentum and thus not be appreciably
affected by the exclusion of states of low momentum.
For example, for the square wells with repulsive cores
considered in the last section, the well depth is about
100 Mev compared with 15 Mev for the mean kinetic
energy. The second argument arises from a partial
cancellation of the intermediate state exclusion effects
when the expectation value of the total interaction
energy is taken with respect to properly antisym-
metrized states. To see this effect in detail, consider
the second-order term in the reaction matrix Kgj i
which is

2| Vi mal* : (30)
mn .E-,:+Ej—Em_En

Here the sum over m# runs only over unfilled states;



1012

we thus write

2=[X - X IXx- X 1]

mn m(all) m(filled) =x(all) n(filled)

(31)

where in each factor the sums run over all and over
only the filled states, respectively. To compute the
total interaction energy, we evaluate the sum over all
filled states,

24K, 4, (32)
to which the second-order contribution is
2 X X X |vimal? (33)

ki<kF kj<kP km>kF kn>kF E+E;—E.—E,
For the case in which the total momentum of the inter-
acting pair vanishes, the allowed regions of the relative
momenta k;; and k., are the interior and the exterior
of a sphere of radius kr, respectively. For this case the
above expression becomes

kr o kR 1
f k lJ2dk j [ f km n2dkmn - f km nzdkm n]—_——'
0 0 0 k,‘jg - k 2

mn

X (k|| Knal), (34)
where f(|ki;|,|kmn|) is a symmetric function of the
arguments. The second term would vanish because of
the antisymmetry of the energy denominator in k;; and
kmn. Thus, we make no error in the second order term
in neglecting the exclusion principle when the total
momentum of the interacting pair is vanishingly small
in comparison to the relative momenta of the pair in
the intermediate states. The cancellation can also be
expected to persist to some extent even when this
condition is not satisfied. The effect is, of course, not so
simple in the actual solution of the integral equation for
K;; i;; we expect, however, that some of this cancella-
tion of effects will still occur. On the basis of these two
arguments, it was concluded in the earlier studies that
the exclusion effects could be safely neglected, the error
introduced being small. We shall now proceed to make
a quantitative study of the exclusion effects which will
bear out the qualitative arguments we have just made.
The answer to these questions is, of course, immedi-
ately obvious if a solution is obtained to the integral
equation for the reaction matrix K. This is not in
general a simple procedure, however, and we shall first
use an approximate method to obtain a semiquantitative
determination of the exclusion effects. We make use of
the fact that in the absence of the exclusion effects, it
is relatively simple to obtain K by solving the related
differential equation. To make this more explicit, we
note that the integral equation for K, i.e., Eq. (1), can

be written
K ti=2_ 05, mnmn, k1,

mn

(35)
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where the wave matrix Q satisfies the integral equation?

an.lal= 1mn, kl+z

78 €kl mn

(36)

Umn, raQrs, kly

writing Ex+E;— En— En,=€r,mn. Neglecting exclusion
effects we can thus determine © in the usual manner by
solving the matrix equation

(Ek+Ez—Em—En)9mn,kl=z Uman, rsQrs,kl; (37)

which on transformation from momentum to coordinate
space, is the usual Schrédinger equation for the wave
function. This simple method for determining K cannot
be used in the presence of the exclusion principle since
1/e is no longer the Green’s function for the operator e.
To circumvent this difficulty, we make use of a varia-
tional equation for K in which the wave function
determined neglecting the exclusion effects is used as
a trial function. Since the corrections to K turn out
to be rather small, this procedure should be quite
accurate.

We use the Schwinger variation principle for K.°
We start from the equation defining K in terms of »
and Q,

K 1= (9i;,2Q011)
= (@s,Wr1),

where ¢;; and ¢x; are free-particle wave functions and
¥ri is related to ¢r: by the wave matrix

(38)

‘)[/klz Z 50mn9mn, 122 (39)
It then follows that
(@i5,0r1)*
i, K=
CORD)
(40)
(pijyvdrr)?

- Warsid) — [Wiso (1/ &) ogns]

where the last expression follows from the integral
equation satisfied by ¢;;. In this form, K is unaltered
by first order errors in y; this expression also has the
useful property of being independent of the normaliza-
tion of Y. We now proceed to determine the corrections
due to the exclusion effects.

For an example, we take the square well potential
considered in Sec. ITI. It will prove simplest first to
take the repulsive core as having a finite height v; and
then let »;—o. The wave function ¢ in coordinate

9 For a more detailed discussion of the following see, for ex-
ample, C. M. Mgller, Kgl. Danske Videnskab. Selskab, Mat-fys.
Medd. 23, 1 (1945).

1 B. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
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space is, in the effective mass approximation, for large v; 0
e~2" sinhar sind,
V() =————— for r<r.
kor -1.0
(41) '
sinko(r—7.+0.)
=————— for 7r.<r<R,
ko?’
where -2.0
= (M*v %"
a= (M%) W o
ko= (M*‘Uo+kk12)%-

The phase shift §,, which vanishes as v >, is deter-
mined by matching boundary conditions at r=r., and
is given for large v; by

ds=ko/a. (43) -401- /" -
’
The second term in the denominator for K of Eq. (40) ol
may be written [
-5.0 | 1
[xbij,v(l/e)vxlxkz] () 05 - 1.0 1.5
V2 1 . . . .
F1c. 1. Reaction matrices as functions of the relative mo-
= P f ('U\bij[ kmkn)dkmdkn (kmknlwkl)’ (44) mentum k. Solid curves are with exclusion effects and dotted
(27") €kl,mn (I;}l;ves are without. Curves ¢ and e’ are for ¢=0.500, and b and
or o=0.600.
where V is the normalization volume. The Fourier
transform of w which is required is where
(k| 0di2) 1 I-kklz—kmn2
) ) Ai(lmn) = SINEpa? e
g ikm 11 g—ikn 12 koz_kmnzl_ M*kmn
=f - - o(|t—r2[ Yu(|ri—r2|)
2
Vo .
i stk }(ritr) —— sinko(R—7.) COSEmnR
X*V—dndl‘z 0
Y0
4 +— cosko(R—7,) sinkmnR]. (46)
= Ok -+, kk+k[; e

We also need another integral,

r2dr

7e g~a"e ginhar Sind, Sinkmar
X
0

kor Ronn? dmvy B
Wiisii)o, >0 = Yy f sin?ko(r—7c)dr
0 Te

R sinko(r—7.49.) sinkmar
—17 f 7?drt. (45)

c kor kmnf

2o sin2ko(R—7.)
= ——I;Oz—(R—rc)[l—-—————————]. 4n

Dropping the Kronecker delta function this is, as s— ), 2ko(R—r.)
(kks | 0W2) =4_7r Ay (ks Introducing these results into the variational expression
’ for K of Eq. (40), we find
(Ar/V)ko?A i (ksz)
K ii= - (48)

sin2ko(R—1.) ] 2M*ke? f”Aijz(k’)k’de' a
0

w-%'t)dR—-f,,)[l—— —
2ko(R—7) ki — k"™ 47

T
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(o} 05 1.0 15
kp-!

F16. 2. Reaction matrices as functions of the relative mo-
mentum k. Curve @ corresponds to the self-consistent solution
(effective mass M*=0.606M1) with exclusion effects included, and
curve b corresponds to the self-consistent solution (M*=0.548M)
neglecting exclusion effects.

The exclusion principle requires that

where P=k;+k;. In neglect of this requirement, it is
easily shown that Kj ;; is given by the usual expression

[Eq. (9)]:
4
K i=———(kip) ™" tand (M* k).
M*

(49)

(50)

Carrying out first the integration over the angles of
k' and taking into account the region in momentum
space forbidden by the exclusion principle, we obtain

@)
—=fp(E),
47

where

fr(k)=0 for ¥’ < (kp*—1P%)3,
=[K2+1P*—k2]/PE  for
(k=PI <K <kr+3P,
=1 for Kk >krt+3P.

Thus, the final result for the reaction matrix K will
depend explicitly upon the center-of-mass momentum
P=|k;+k;| ; we will suppress this dependence by re-
placing P by its average value compatible with a given
value of the relative momentum k;. An elementary
computation shows that, to a very good approximation,

1(POn=2kr*(1—k:j/ k). (52)
One further comment is necessary with regard to the
effects of the exclusion principle; when %;; is close to

the Fermi momentum kg, one finds (P?)n— 0. At
this point the integral over k; becomes logarithmically

(51)
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infinite, being of the form
fw S)¥
kp k Fz—klz
This singularity is, of course, without physical content;
it is the result of the breakdown of these approximation
methods in describing states very near the Fermi
momentum. An explicit evaluation of the effect of this
singularity on the energy shows that it is extremely
small and consequently can be safely neglected. Thus,
we shall not investigate here the problem of making a
more accurate treatment of these states.

The result of the evaluation of K given by Eq. (48)
are shown in Fig. 1 for two values of the effective mass.
It is apparent that, as expected, the alteration of the
reaction matrix is most pronounced for low momentum
values, since it is for these that on the average the
exclusion effect is most important. To obtain a solution
to the self-consistency problem, we again, as in the last
section, use an interpolation procedure. At the two

values of the effective mass ratio ¢=0.500 and 0.600,
the integrals for V(0) and V (kr) give

V(0)=—38.0 Mev
V(kr)=—24.6 Mev
V(0)=—53.3 Mev
V(kp)=—238.1 Mev

It is to be noted that the singularity in the reaction
matrix K has no effect on V(kr) since the integrand
contains a factor which vanishes at kr [see Eq. (16)].
Solving the equation for the effective mass leads to the
self-consistent result that ¢=0.606. The reaction ma-
trix K at this self-consistent value of ¢ is plotted in
Fig. 2 together with the corresponding reaction matrix
in neglect of the exclusion effects (Sec. III). We then
obtain

V(0)=—54.6 Mev, V(kr)=—238.9 Mev. (55)

The average interaction energy (V) and the binding
energy per particle at the normal nuclear density then
turn out to be —22.6 Mev and — 7.9 Mev, respectively.
These values are compared in Table I with the values
previously obtained neglecting exclusion effects; it is
apparent that the result has been altered very little by
the exclusion effects.

The surprisingly small alteration of the interaction
energy is due partly to the previously mentioned partial
cancellation of the exclusion effects which can be ex-
pected to occur when the expectation values of the
sum of the expansion terms of the reaction matrix in
powers of the interaction potential is taken with re-
spect to the antisymmetrized wave functions for the
system. In our study, the cancellation is due to the
increase in magnitude of the reaction matrix for large
momentum values which tend to compensate for the
decrease for low momentum values. Even more im-

(53)

} for ¢:=0.500,
(54)
} for 2=0.600.
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portant, however, is the shift in the self-consistent
value of the effective mass. The exclusion effect reduces
the variation of the reaction matrix K with momentum,
as is apparent from Fig. 1. Thus, for a given value of
M*, the predicted velocity dependence of the potential
is less than the previously obtained result. This upsets
the self-consistency of the solution, which can be re-
established only if the effective mass is increased. (The
increase in the effective mass can be understood on the
basis that the exclusion effects act as a weak repulsive
potential). This alteration of M* also increases the
over-all magnitude of the reaction matrix so that the
final self-consistent result, as Table I shows, is very
“close to that obtained when the exclusion effects are
neglected. It must be emphasized, however, that
although the average effect is very small, there are
appreciable alterations in detail, not only in the ve-
locity dependence of the potential, but also in the
reaction matrix for momenta very close to kr.

V. IMPROVED APPROXIMATION TO THE K MATRIX

In the last two sections, some simple procedures were
outlined for obtaining approximate solutions to the
equations for the K matrix and the average potential.
In this section we shall outline further procedures
suitable for numerical computations with fast comput-
ing techniques. We return to the exact system of
equations for the K matrices and for the average
potential.

The energies given by Egs. (1) and (2), E;, and E,,
in the ground state are given in terms of the diagonal
elements of the K matrix as defined by Eq. (2); the
excited energies E,, and E, are, however, modified by
being the energies appropriate to virtual states, i.e.,
they are for particles propagating off the energy shell.
As shown in reference (5), they are given by

km?
Em(kl,nm) = EA—["}‘Z (K*'ms,ms_ K*ms, sm), (56)

where K* now depends on the state of excitation of the
system compared with the ground state. Since particles
in states k! have made transitions to the states nm, K*
in this state is given by

* —
K m’s’,ms™ Um’s’, ms

1
+Z Um!s?, wv
uy Ek+El+Es"'Eu'_Eu*Ev

K*uv,ms‘ (57)

As has been previously pointed out, in many circum-
stances the dependence of E,.(kl,mn) on &, I, n is weak.
This is true if the kinetic energy is large compared with
the potential energy as is the case for strong inter-
actions, or if the Born approximation is roughly valid,
since then K* does not depend on &, I, #. The effect can
also be expected to be small since it is a high order
correction to the ground state energies, appearing only
in fourth order in a perturbation expansion. For these
reasons we shall content ourselves with an approxima-
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Tasre I. The self-consistent effective mass and energies
(Mev) per particle at normal nuclear density with and without
exclusion eftects.

Bind.
M*/M V() V (kr) Vav energy
Without exclu-
sion effects 0548 —569 —37.3 —226 79
With exclusion
effects 0606 —546 —389 —226 —7.9

tion which reproduces the general effects of going off
the energy shell but shall not try to do so in an exact
way. The approximation we propose is to replace the
exact equation for K*, i.e., Eq. (57), by the approximate
equation, assumed valid for any state,

* = P
K m’s’,ms—‘vm’s',ms+ Um’ s, uv
uv

1

X K*yomsy,  (58)
E(k[w,km) +E(klr,ks) - Eu'_ Ev
where we take E(krp,kn) to be
E(kpkn)=E(bn) i |ka|<kr (59)
=E(kr) i |kn|>kr,

and kr is the Fermi momentum. This form for K is
continuous with the result valid on the energy shell;
it reproduces in a semiquantitative way the restriction
that the unexcited particles occupied states below the
Fermi momentum. The error made by this approxima-
tion can be accurately determined by eventually treat-
Ing the difference between the exact and approximate
off-the-energy-shell K’s as a perturbation.

Equation (58) for the K matrix together with Eq. (2)
for the potential are now suitable for computation; it
is, however, useful to introduce a further approxima-
tion, the validity of which is based on the smallness of
certain corrections to the energy. We expect, on the
basis of the studies of NS ITI (reference 3) and of this
paper, that the effective-mass approximation neglecting
exclusion effects is a quite good first approximation to
the K matrix. This suggests that we introduce certain
simplification in the equation for K. First, in the re-
duced-mass approximation, a typical energy of ex-
citation is

Em""En_Eu_Ev
=2[EG(Kn—K.)—EG(K.—K,))]. (60)

This result does not hold if the energy depends on the
state other than through a constant and a quadratic
term; it is approximately satisfied, however, if in the
quartic and higher terms in &, we neglect the center-of-
mass momentum compared with the relative momen-
tum. The validity of this approximation derives from
the fact that the terms of higher order in % than quad-
ratic are important only for considerable excitation
where the relative momentum takes on quite large
values. At the same time, the total momentum is
restricted to values of the order of the mean Fermi
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momentum corresponding to kinetic energy of 15 or
20 Mev. Thus we shall assume that Eq. (60) is valid
even if E(k) has a general momentum dependence. We
also, as in Sec. V, treat approximately the exclusion
effects in introducing the function fi(k’) defined by
Eq. (51). This eliminates correctly transitions to the
filled states, but averages over the dependence of the
exclusion effect on the total momentum. The final
result of these approximations is to replace Egs. (1)
for K by the approximate equation (we call the approxi-
mate reaction matrix K,)

(k'| Ko| k)= (K'| o] )

o]y 2 ED
+2 Kol B —EGE)]

where in fr,kr and E(k,kr) we take the momentum
equal to % if & is below the Fermi momentum and equal
to kg if k is above the Fermi momentum. The energy
is finally

(k"| Kq|k), (61)

E(k):zlj; lrzl (k_zkﬂK,,{k_zk‘)—exchange}, (62)

valid for any state.

These approximations treat to a moderate accuracy
the effects of the exclusion principle, the departure of
E(k) from the reduced mass approximation, and the
effects of “propagation off the energy shell.” Since these
effects collectively alter the K matrix by only the order
of (109, to 20%,), and since their effect is reproduced
in a semiquantitative way, the final result is estimated
to be accurate to within a few percent. This can be
further checked by finally treating the difference be-
tween the exact expressions and the approximation as
a perturbation on the approximate solution.

These equations are now being studied at Los Alamos
Scientific Laboratory and at the AEC computing
facility at New York University. The results of the
studies will be reported in a separate communication.

VI. APPROXIMATION METHOD FOR FINITE SYSTEMS

In the discussions of this paper and in most of the
previous studies, the nuclear medium was considered
to be of infinite extent. This approximation was useful
primarily in that surface effects could be neglected and
in that plane waves could be used as independent-
particle states. In a previous paper* a method was
outlined for dealing with a finite system, which is
restated in the following in somewhat greater detail
than before.!!

A. Assume a potential W® (“0” for the zeroth
approximation) in which the nucleons move inde-
pendently. This potential will in general be nonlocal in
coordinate space; it will also depend on the energy-
momentum relation of the particle. When a particle is
excited to a virtual state, for example, the potential it
sees must be such as to confine it to the nuclear volume.

1t Alternate methods for dealing with finite systems have been
discussed by R. J. Eden and by H. Bethe (to be published).
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These effects can easily be approximated in the first
input W®,  and will automatically follow in higher
iterates from the approximation of Sec. V.

B. Determine eigenstates ¢; and energy eigen-
values E; for this potential.

C. In this representation, determine the reaction
matrices defined by the equation:

Kij.kz(°)=’v¢j,kz+z Vij,mn
mn
1
X
EO4+FE®—F,©—F,©

D. Finally determine from

Kon, 1. (63)

Vi®=3(Kij, " — Ky, i) (64)
the first iterate for W
WO =5 (0,04, 0:9). (65)

The self-consistency procedure then is to adjust the
input iterate W until it is equal to the output W+,

It is apparent that this procedure is extremely diffi-
cult to carry out in practice, the complication arising
from the need to construct a set of single-particle wave
functions and eigenvalues for each W (. It seems prob-
able, however, that the procedure may be very much
shortened by the following approximation. At the first
state, determine the reaction matrices K;j r: in a uni-
form medium. From these it is then possible to construct
two-body interaction ‘“pseudo-potentials” given by the
equation

(rllr2,lvs| 111‘2)

-z

7, kl

0¥ (1) o* (1) Kij, kiow(r1) @i(12)
Xdrﬂh‘zdrl'drg'. (66)

These are then potentials defined in the sense of
Fermi,”* who first introduced similar concepts in the
theory of proton scattering in molecular hydrogen. The
second step is to follow the usual Hartree-Fock pro-
cedure for a finite system by replacing the usual local
two-body potentials by the nonlocal “pseudo-poten-
tials.”” This procedure differs from that outlined above in
that the alteration of the reaction matrix in going from
a uniform medium of infinite extent to a finite system is
neglected. This neglect can be partially corrected for
by solving the reaction matrices as functions of density
(the medium is still assumed uniform in density).
For this case, the “pseudo-potential” v, would also
depend on the density; in the case of the finite (and
varying density) medium, it would be reasonable to
evaluate v, at the local value of the density.!

The procedure outlined here together with the
approximation of Sec. V provides a relatively simple
method for studying finite systems; its applications to
specific nuclear problems will be discussed in other
papers.

2 E. Fermi, Ricerca sci. 7, 13 (1936).

13 A similar idea has been independently proposed by T. H. R.
Skyrme (to be published).



