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Combinatorial Problems Suggested by the Statistical Mechanics of Domains
and of Rubber-Like Molecules
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The mathematical problem of enumerating the number of connected domains that can be drawn on a plane
square lattice is studied by several methods, and results that are believed to be very nearly correct for large
domains are obtained, while a slightly modified version of the problem can be solved in closed form. Compari-
son of the various methods tried leads to conclusions which, besides their purely mathematical interest, have
a bearing on a large number of physical problems, such as ferromagnetism, order-disorder in alloys, the theory
of solutions, fusion and evaporation, the configuration of polymer molecules and gel formation. The com-
parison of the various methods also gives information on what may be expected of an approximate theory of
a phase-transition.

l. INTRODUCTION

HE writer has pointed out elsewhere" that there
~ ~ is a close relationship between the theory of

partition of numbers and a certain type of problem in
statistical mechanics, the computation of the nurqber of
ways in which a given. total quantity of energy can be
distributed among "particles" occupying a given set of
energy levels, subject to various auxiliary conditions.
Usually, the total number of "particles" is considered to
be fixed. Wannier' and Kac and Ward' have called
attention to the relationship between models of the
Ising type and the number of diagrams, consisting
entirely of closed polygons, that can be drawn on lattices
of various kinds, e.g. , the two-dimensional square
lattice, subject to no line being used twice and to the
total perimeter of all the polygons being specified. Vari-
ous other writers have studied generalizations of the
"random-walk" problem in connection with the theory
of high polymers and the properties of rubber-like
materials and proteins. Here the objective is to enumer-
ate the number of possible "random walks" in which,
however, various constraints are assumed, for example
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paths that cross themselves may be excluded, the
possible angles between two successive "steps" may be
prescribed, or one may allow only paths all of whose
"steps" lie on a specified lattice. The introduction of
such constraints vastly complicates the solution of such
problems, but the study of their effects is, nevertheless,
of considerable interest. The possible number of ways in
which, e.g., a rubber molecule can exhibit itself, is
severely limited by steric considerations, and it would be
of interest to have information on the "mathematical"
effect of applying such constraints, as opposed to the
mere collection of numerical and asymptotic results.

In this paper, we study a set of problems closely allied
both to the "semirandom" walk and to the Ising
problem. The type of problem we study is the number of
ways in which a single domain, of given perimeter and
total area, can be marked o6' on a plane square lattice.
In its full force, this problem has proved extremely
stubborn, though a partial solution of it can be given,
and a slight modification of it can be solved with ease.
Other ways in which problems of this type can be ex-
pressed are, e.g., the enumeration of "Cook's tours" of
specified types on the lattice, or the enumeration of the
ways in which e patience cards can be set out in a
tableau, each card having contact with at least one
other.

The "domain" problem may be regarded as a special
case of the "walk" problem, namely possible "domain"
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boundaries consist of "walks" that return precisely to
their starting point.

2. PHYSICAL SITUATIONS GIVING RISE TO
THE DOMAIN PROBLEM

There has been considerable controversy in recent
years on the exact state of affairs near the critical point
of a liquid, ' one of the points at issue being the question
of whether there really exists a finite region of tempera-
ture for which the surface tension vanishes and yet there
is still a measurable difference of density between the
two phases. A very important advance on the experi-
mental side was made by Schneider and Atack' who
seem to have shown quite definitely that, near the
critical region, extremely sharp density gradients can be
produced by the eGect of gravity, so that many of the
older experiments, which have been interpreted as
proving the existence of a two-density region even in the
absence of a meniscus, might have given different results
if the effect of gravity could have been eliminated.
Ordinarily, the effect of gravity on the density of a
liquid is negligibly small, but it may be necessary to take
it into consideration near the critical temperature, where
the compressibility becomes very large.

Mayer and Mayer' have attempted, on theoretical
grounds, to argue that the temperature at which surface
tension vanishes tnuy be distinct from that at which the
densities become equal, but no actual nsodel showing
such an eGect has yet been found.

Accordingly, it is of some interest to study models
which are sufficiently realistic to exhibit properties
analogous to the condensation of a gas and are at the
same time simple enough to enable their analytic conse-
quences to be worked out exactly. Yang and Lee have
called attention to the fact that the Ising model of a
ferromagnetic can be reinterpreted to describe the
"lattice gas. "The vessel is supposed to be divided into
cells, and we distinguish only between configurations in
which a given cell is empty and those in which it is
occupied by a molecule. The "vapor" phase is supposed
to consist of single molecules and small domains, while
the liquid phase contains large domains. By a domain
we mean an aggregate of molecules in cells which are in
contact with one another. This is a very crude repre-
sentation of a real gas, in that the attractions and
repulsions between molecules are only described very
roughly, but the model does show properties strongly
resembling the liquefaction of a real gas. Among other
results Yang and Lee' have proved that only oee
transition temperature is associated with the "lique-
faction"—and this last result apparently holds for a
large class of models besides the "nearest neighbor

' See, for example, the Report of the Paris Conference on Phase
Changes, {1952).' W. G. Schneider and G. Atack, J. Phys. Chem. SS, 532 (1951).

~ J. E. Mayer and M. G. Mayer, Stan'stical 3/mechanics {J'ohn
Wiley and Sons, Inc. , New York, 1940).' C. ¹ Yang and T. D. Lee, Phys. Rev. 87, 404, 410 (1952).

interaction" one that they consider explicitly. Since
Mayer and Mayer' postulate two singularities in the
partition function of a real imperfect gas, the lower
transition temperature being associated with the vanish-
ing of the surface energy between phases and the phases
remaining distinguishable up to the higher transition
temperature, it is of interest to compute the "boundary
free-energy" as a function of temperature for the
simplified models considered by Yang and Lee. ' In the
remainder of the paper we consider the two-dimensional
square lattice with interactions between nearest neigh-
bors only. The calculation of the boundary free energy
is equivalent to the enumeration, in the magnetic
version of the model, of all possible boundaries sepa-
rating a connected domain of "positive" magnets from a
similar domain of "negative" magnets. We wish to
decide whether or not the free energy associated with
the formation of a domain boundary can vanish at any
temperature below the bulk transition temperature.

A simple argument of Onsager's, quoted by Tem-
perley, ' seems to show that, for the plane square lattice,
the boundary free energy remains finite at all tempera-
tures below the bulk transition temperature. Onsager
showed that the free energy associated with the forma-
tion of a domain boundary, rest6'cted to be of a certain

type, vanished at precisely the "bulk" transition temper-
ature. This argument can, however, be criticized on the
ground that the type of path considered by Onsager is
not the most general type of path that can form a
definite domain boundary. It remains, in principle,
possible that the constraints introduced by Onsager are
too restrictive, and result in the rejection of too many
of the paths that can serve as domain boundaries. If so,
a relaxation of these constraints would lead to a signifi-
cant increase in the boundary entropy, which, in turn,
would mean that the boundary free energy would vanish
at a temperature significantly helot the bulk critical
temperature (instead of vanishing at exactly that tem-
perature, as Onsager calculates). We should then have a
model that was behaving in exactly the way envisaged
by Mayer and Mayer. ~ However, the present investiga-
tion seems to establish that, in the lattice gas model, the
boundary tension remains finite right up to the "bulk"
critical temperature.

3. DEFINITION OF A GENERATING FUNCTION,
AND ITS POSSIBLE PHYSICAL

INTERPRETATIONS

Any particular problem of this class may be held to be
completely solved if we have an expression for the
corresponding generating function. This function is such
that there is a 1—1 correspondence between each term
and each possible path. As a simple example, consider
the random-walk problem, in which each step is of fixed
length and is constrained to lie upon a two-dimensional
square lattice. There are then four possible types of step
(up, down, to the right, and to the left) which we as-
sociate respectively with the factors yc, y/e, xb, x/8
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FIG. 1. The four types of -I
step and the corresponding X d
factors.
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(Fig. 1).The function describing all possible numbers of
steps is then

[1—(x8+x8 '+ye+ye ')]—', (1)

because, if we expand the szth power of the expression in
round brackets, each term in the expansion corresponds
to the selection of just one term from each of the e
factors, that is to just one possible choice of n "legs."
The index of x corresponds to the total cumber of
horizontal "legs, " the index of 6 to the total horizontal
disp/acement between the two ends of this particular
path. The various restricted types of path and domain
that we shall study will have generating functions that
could be obtained by expanding function (1), and then
deleting all terms that describe paths which do not
conform with the restrictions.

Let us consider the one-dimensional version of ex-
pression (1), (putting y=0). Its expansion may be
written

y(x, 3) =p„p„p„,„x"3-,

where p„, represents the number of different paths
made up of m legs, whose beginning and end are nz steps
apart. If, as here, @ is a known function, it may be
possible to determine an algebraic expression for p„
from it. (In more complicated cases, it may be necessary
to resort to the method of steepest descents or some
similar technique). For many purposes, it is convenient
to work with the generating function itself rather than
with the individual p's. Suppose, as a simple example,
that we wish to determine the average value of m' for all
paths of fixed total length e. This may be written

Av m~ nm m nmq

which is equal to the ratio of the coefFicient of x" in
P(B/B3)]'p to the coefficient of x" in p, the variable 3

being set equal to unity after the differentiations. It is
very often easier to obtain results of this type from the
function p itself rather than to attempt summations
involving the p„,„,'s directly, the function p acting as a
sort of "packaged" form of the p„, ,„'s. It is this fact that
makes the generating function technique a valuable one,
and it was much used by Cayley, Sylvester, and
MaclVlahon in their work on partition of numbers and
similar problems, and also by Mayer and Mayer~ in
their investigations on the statistical mechanics of an
imperfect gas and related problems in statistical me-
chanics. As another simple example, we may want to
study just those paths that return exactly to their

starting point. The generating function for these special
paths is simply

p„p„,ex"= terms independent of h in p(x,8).

We can carry out similar operations for paths in two
and three dimensions, if we have a compact expression
for the generating function, and we now consider some
of these.

(a) We may study the variation, with n the number
of steps, of the mean path "spread" (distance between
beginning and end of path) and the distribution of path
spreads about this mean value. For any given term in
the expansion of (1), the square of the path spread can
be obtained by applying the operator Ll(B/B3)]'
+[e(B/Be)]'. It is well known that, for generating
function (1), the mean spread is proportional to nl for
large e, and that the distribution about this mean ap-
proaches the normal type. It has been one major ob-
jective to find out whether such general results still hold
if restrictions are placed on the types of permitted path,
restrictions of the kind imposed in practice on rubber-
like molecules. See Wall' and Wall et al."

(b) We may select from the expansion of a generating
function such as (1) only those terms corresponding to
closed paths —that is, the terms in the expanded function
independent of both 6 and e. This will usually be done by
replacing 8 and e by the imaginary exponentials e'"', e'"'
and then integrating with respect to co~, and co2. We call
this operation D. The indices of x and y keep a record
of the perimeter of each domain, and we sometimes also
want to study domains enclosing different areas of the
lattice, our problem then becoming a "lattice-point"
one. To take care of this further requirement, we should
have to take a "path" function such as (1), perform
operation D on it, examine each closed path in turn, and
multiply the corresponding term in the generating
function by s, where m is the number of squares
enclosed by the path.

In practice, it may frequently happen that we are able
to calculate the "path" function but not the comp/ete
"domain" generating function complete with s factor,
or, again, we may possess the "domain" function and
yet be unable to calculate the function generating
"open" paths. It is usually much more difficult to derive
a "domain" function if we want a record of both the
perimeter and the enclosed area.

In the application of such results to statistical me-
chanics, we have always to consider two types of
physical situations associated with any one of the
"selector" variables x, y, and s.

(a) We may have a situation in which we are only
interested in terms with a fixed index, e.g. , we might
have the problem of the number of ways in which a fixed
number of squares can be arranged to form a connected
domain. This form of problem occurs when we are

s F. T. Wall, J. Chem. Phys. 21, 1914 (1953).
~0 Wall, Hiller, and Wheeler, J. Chem. Phys. 22, 1036 (1954);

Wall, Hiller, and Atchison, J. Chem. Phys. 23, 2314 (1955).
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applying the Ising model to the theory of solutions or
order-disorder problems, or to the theory of an im-

perfect gas when we prescribe the number of atoms in an
enclosure. The corresponding mathematical operation is
to select a particular power of s from the domain
generating function.

Again, we might ask for the number of ways in which
we can, subject to certain constraints, form a path
consisting of m horizontal steps and e vertical steps. For
this we should select the coefficient of x y" from the
appropriate generating function. There is an obvious
extension of this to the case in which m and e are not
specified separately, but only their sum ttt+n. This
corresponds to the problem of enumerating paths con-
sisting of a specified total number of "steps, "or domains
of a specified perimeter.

(b) We may have a situation, e.g. , in the ferromag-
netic or adsorption problem, in which we are interested
in al/ powers of one of the variables such as z. In such
problems, instead of prescribing a particular power of z,
we ascribe a definite numerical value to this variable,
and then seek to evaluate the generating function and
its derivatives. Assigning a definite value to s would
assign diferent probabt7itt'cs to domains of different
sizes, thus taking account, e.g., of the eGect of an applied
magnetic field. We might be interested in, e.g., the
average size of a domain or the mean total length of its
boundary. (We have to consider ctl/ powers of our
selector variable in problems of this type, because, in
the magnetic case, we have to allow for the elementary
magnets "Gipping over" from one orientation to another,
while, in the adsorption case, it is customary to consider
an array of adsorption sites in equilibrium. with a gas
phase. The probability that a given site is occupied or
empty depends on the gas pressure, but all configura-
tions from completely full to completely empty are, in
principle, possible. )

Such problems are solved if we can calculate various
derivatives of the generating function as a function of
the selector variable. For a full discussion of the
relationship between these two types of problem, corre-
sponding respectively to the "ordinary" and "grand"
partition functions, the reader is referred to Rush-
brooke. "In practice, we shall be mainly concerned with
this second type of application. In the ferromagnetic
problem we shall be interested in locating the values of
the variables for which the mean boundary length of a
domain begins to increase very rapidly, that is, at which
the generating function, considered as a function of the
selector variables, first becomes singular. This will
correspond to the possibility of large "reversed" do-
mains appearing in the spontaneously magnetized
ferromagnetic, to the breakdown of long-range order in
an alloy, and to the possible occurrence of large vapor
bubbles in the liquid phase at no cost in free energy,
which we interpret as the vanishing of surface tension.

"G. S. Rnshbrooke, Statistica/ Mechanics (Oxford University
Press, Oxford, 1949),

In other words, we ask whether the partition function
associated with a single connected domain becomes
singular for the same values of the variables as does the
more general partition function, in which any number of
domains may be present. As we shall. see below, the
answer to such a question is by no means obvious or
trivial. This kind of investigation is physically relevant
only below the bulk critical temperature, because the
probability of two "reversed" domains being near one
another is then small. Above the bulk critical tempera-
ture, a multitude of domains of all sizes are simultane-
ously present, and the growth of one is bound to be
influenced by the proximity or lack of proximity of
others.

0 FIG. 2. One type of "for-
bidden" domain.

A

4. STATEMENT OF THE PROBLEM, AND STEPS
TOWARDS ITS SOLUTION

The actual problem whose solution is required is the
enumeration of domains of various perimeters and
areas, any boundary of which

(A) does not cross itself;
(8) does not "double back, " i.e., an R step may not

be immediately followed or preceded by an I step;
(C) does not use any "leg" twice (in the manner

shown in Fig. 2). As stated previously, we have ob-
tained what are believed to be correct asymptotic results
(valid therefore for very long boundaries) for the case
where the perimeters, (but not the areas) of the domains
are specified. We shall first consider some similar
problems which are distinctly easier to solve, and may
be regarded as approximations to the above problem. .
We shall divide them into groups according to the
following criterion.

Group I: Not all of restrictions A, 8, and C are
properly satisfied.

Group II: Restrictions A, 8, and C are all satisfied,
and some other constraint is imposed as well.

In Group II we shall clearly get an underestimate of
the number of possible paths of given lengths, while
Group I will usually give us an overestimate. There is,
at present, no known way of telling whether such errors
are likely to alter the analytic nature of the singularity
of the generating function, to cause a significant shift in
the location of the singularity, or both. Experience with
the Ising model has been that nearly all approximation
methods fail badly in bo/h these respects. It is hoped
that a further study of these rather simpler problems
may throw some light on this important question of
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finding new criteria for assessing theories of phase
transitions from this point of view:

We now consider various simplified versions of the
actual problem.

Model O. (Onsager Type Boundary)

We modify function (1) in the following ways: (i) No
I. steps are ever allowed. (ii) Each group of U or D steps
is preceded and followed by at least one R step. As is
shown by Temperley, ' the generating function for a
single R step, followed either by further R steps, or by
any number of successive V steps, or any number of
successive D steps, is

parison with the exact problem (model R below) shows
that the location of the singularity is correct, but that its
analytic form is wrong.

Model P
We prohibit "doubling back, " that is, an R step may

never be followed by an I. step, etc. This means that the
path may turn through angles of 0' or 90' at each point,
but never the full 180'. We are thus taking somme account
of steric eGects between neighbors in a polymer chain
but are still allowing portions of the path to cross or to
lie side by side. The conditions A and C are therefore
not satisfied and the model belongs to group I.

Consider the following 4&(4 matrix:

R step R step R step
and U steps and D steps

x(1+y) R
x5

o,
—'x&y-e

0
Qx+y'6

U
nXsyz8

0. 'Xsysb '
0

I.
0

D
o, 'x'y'6

0
(3)

x8

so that the generating function for all possible numbers
of E. steps is

x(1+y)1—
1—y

(2)

's L. Onsager, Phys. Rev. 65, 117 (1944).

(We have dropped the variables 6 and e because this
boundary cannot enclose a finite domain). This function
has a singulari'ty for x= (1—y)((1+y), which is pre-
cisely the same as Onsager's relation" for the Curie
temperature in the two-dimensional Ising model. x is the
Boltzmann factor associated with an unlike horizontal
nearest-neighbor pair, the energy of a like pair being
taken as zero. In Onsager's" notation, x= exp( —2H'). y
is the similar factor associated with the vertical inter-
action and is equal to exp( —2II).

We are assuming both horizontal and vertical inter-
actions to be in the "ferromagnetic" direction (favoring
like pairs of nearest neighbors), so that x and y are both
less than unity. For antiferromagnetic interactions,
unlike pairs of nearest neighbors are favored, and the
type of domain that forms below T, will have an alter-
nating structure. Domain boundaries will now represent
breaks in this alternating structure, that is, will contain
pairs of like nearest neighbors, and the Boltzmann
factor associated with a domain boundary is again less
than unity. What we are always studying is the question
whether the number of ways of realizing a boundary of
given length is enough to compensate for the fact that,
whichever the sign of the interaction, we always have to
expend energy in order to create a domain boundary. If
the free energy associated with a boundary vanishes, it
is to be expected that a large number of such domains
will appear.

Onsager's type of boundary clearly belongs to group
II. All three relations A, 8, and C are satisfi. ed, but the
complete avoidance of L steps is too restrictive. Com-

In this, we associate the element Pgg with an R step
that is about to be followed by another R step, the
element PL,& with an I. step about to be followed by a
U step and so on. If we write down the eth power of this
matrix, the rule of matrix multiplication ensures that
each term in the trace of this matrix corresponds to a
possible choice of path e steps long. If, for example, an
element with second suffix R appears in any term, it can
be followed only by one of the three elements P», P&&,
or I'irD with a 6rst suffix R and reference to (3) shows
that any such product contains the factor x8 associated
with an R step. If, further, we restrict ourselves to the
trace of any power of P, we only allow terms such as
P~gPg~P~g whose initial and final suffixes are identical.
This term contains the factor xbx:y:6x:y:c which is the
same as the factor x'yPe called for, according to (1), by
the three steps RUR. It can readily be verified that,
with the choice of terms given by (3), a similar result
holds for paths of any number of steps. The factors n
and o. ' enable us, if we wish, to keep a record of the net
number of right-angled bends (those taken in counter-
clockwise sense being positive) as we travel along the
path. For the present, we shall put o.= 1.

We have still to determine how to treat the non-
diagonal elements of the matrix P". A nondiagonal
element does not correspond properly with any path e
steps long; for example, consider the element P'g~
when rl,=3, which contains, among others, the term
P'&&P&zPz&. This cannot properly be associated with
the path ORB shown in Fig. 3(a) because the first and
last steps have only been assigned factors x:, y' and
also because the factor bob is appropriate to a path
beginning at 0 and ending at A. The diagonal elements
do, however, all correspond with such paths; for example
the term P~~P~gP~~ does correspond to the path be-
tween 0 and 3, because the redundant factor x: as-
sociated with P&z exactly replaces the x' lacked by the
leg starting from O. We therefore take the trace of P".
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=A C- -"B

0- --"A

(b)

Fxo. 3. (a) Typical
path enumerated by
Tr P". (b) Typical
path not so enu-
merated.

an appropriate factor (xb ' for the element RL), and
use these to enumerate paths e steps long, whose initial
and final legs are in opposed senses. The complete gen-
erating function for all possible lengths of path is thus

P(x,y) =1+Tr P P.+xb—'(P P")~,+xb (P P"),,
1 1 I

This, however, fails to enumerate one type of path,
namely that, e.g., beginning with an E step and ending
with an L step. In Fig. 3(b) the path OHMIC calls for
factors P~zPUL„but we cannot follow these with Pl,~
because no such term exists in the matrix. We can,
however take terms such as (P" ')zz, , multiply each by

+y& (Q P )UD+y&(Z Pn)DU
1 1

As long as the generating function converges, we may
replace p1" P"by P(1—P) ', which can be obtained by
a straightforward process of inverting the matrix 1—P.
The final results are

1—x' —y'+9x'y' —2xy2(8+6 ') —2x2y(e+e ')
1+Tr P Pn

1+*'+y'—3x2y2 —x(1—y') (b+b ') —y(1 —x') (e+2 ')

2xy2 (b+b 1)+2x2y (&+& 1) Qx2y2

Remaining terms=
1+x2+y2 3x2y2 x(1 y2)(b+b —1) y(1 x2)(6+6—1)

Adding these two results together gives us the "path"-
generating function. The "domain"-generating function
P(x,y) is obtained by applying the operation D (selec-
tion of the terms independent of 8 and e) to 1+Tr p 1"P".
(Incorporating the remaining terms here would mean
admitting domains, e.g., that begin with an E. step and
end with an L step, which are not allowed. ) If x= y, it is
readily seen that the generating function becomes
singular as soon as x reaches the value ~~. This function
does not seem to have any direct application to the
ferromagnetic, adsorption, or liquefaction problems, be-
cause "domains" in which a given "leg" is used more
than once have no direct physical interpretation. It may,
however, be applicable to some "long-chain" problems.

unity, while the right-hand one is associated with the
factor 0.4, so the two cancel out in the generating func-
tion. For a similar reason, unwanted domains of the type
shown in Fig. 5 are eliminated, but it is readily seen that
domains of the type shown in Fig. 2 are rot eliminated.
The inner domain in Fig. 2 is necessarily always de-
scribed in the same sense as is the outer domain, be-
cause, if they were described in opposite senses, we could
not avoid having an R step immediately followed by an

FIG. 5. Another type of
"forbidden" domain.

Mod. el P'

We might, following the suggestion of Kac and Ward, 4

put n'= —1 in matrix P, and then proceed as before.
The object of this is to secure that domain boundaries
that cross themselves at right angles are eliminated.
This occurs because such boundaries can be described in
several senses, which, with the above choice of o., cancel
out in pairs. Thus, in Fig. 4, the left-hand method of
describing the polygons is associated with the factor

JI IL

FIG. 4. Mutual cancellation of certain types of
"forbidden" domain.

I. step when we came to the particular leg AB in Fig. 2

that is used twice. Furthermore, with this form of
generating function, the presence of the n's introduces a,

factor —1 for each rotation though 2x and the number
of boundaries of the type shown in Fig. 2 (enclosing an
even number of separate domains) is subtrocted from,
not added to, the number of paths in which the number
of separate domains (each touching one or more others
along at least one leg) is odd. Thus, the freedom from
"cross-overs, " and from boundaries such as that shown
in Fig. 5 has been somewhat dearly bought, and no
physical application of this generating function seems
possible unless we can 6nd a way of eliminating dia-
grams such as that shown in Fig. 2. It is believed that
this can be done, at least for the limiting case of a large
domain, but we defer description of the method used
until we have discussed another model. Meanwhile, we
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record the result for closed domains described by P'.
(We have not considered the use of this function for
enumerating paths, because paths that spira/ round the

I

origin would clearly not be enumerated properly because
of the presence of the factors n and n—' which introduce a
factor —1 each time the path rotates through 2s..)

( 1—x2—y~ —3x2y2 —2xy'2 ($+.$ &) —2x&y (g+ e
—

&)

(1+x2+.y2gx2y2 x(1 y2) ($+$—
1) y(1 x2) (e+e—i) )

(6)

This function still has a singularity, but it is of a less
violent type than those previously encountered. The
denominator now vanishes owly when e= 8= 1 aed
y= (1—x)/(1+x), that is, it only vanishes at the single

point co~= co2= 0 in the. range of integration prescribed by
the operation D. The numerator in (6) vanishes at this
point also. The effect of this is that the generating
function is itself continuous everywhere (0&x, y(1)
and that its erst derivatives with respect to x or y are
also continuous, but become logarithmically infinite
when y= (1—x)/(1+x). The analytic behavior of this
domain-generating function is thus, as one might expect,
closely similar to that of Onsager's" partition function
for the Ising model. The "mean boundary length" of a
domain thus becomes infinite at the critical temperature
since it depends on the first derivatives, with respect to x
and y, of the logarithm of the generating function.

If we regard (6) as an approximation to the true
domain-generating function, it is clear that it satisfies
restrictions 3 and 8 alone but not restriction C, in that
domains of the type shown in Fig. 2, containing any
number of "loops, " are allowed. Nevertheless, it seems
certain that expression (6) underestimates the entropy,
that is, underestimates the number of single domains of
a prescribed path-length. In expression (6), domains
consisting of a single loop are reckoned negatively
(these are the ones sought) while those consisting of two

loops are reckoned positively, those of three loops
negatively and so on. For a given length of perimeter the
number of domains of two loops almost certainly ex-
ceeds the number with three loops and so on. If this is so,
the numerical value of any coefficient in expression (6)
(the sum over loops of all sizes) is less than the number
of single-loop domains.

Before considering the question of the removal of
these unwanted "multiloop" domains from the gener-

ating function, we shall consider another model, which is
admittedly an approximation to the true domain gener-

ating function that we are looking for, but, seems to
"mimic" its behavior extremely closely, not only
reproducing many of the early terms accurately, but
apparently having a singularity in the correct place and
of nearly the correct analytical type. The smallest two-

loop domain consists of a single square described twice,
which means that expression (6) reproduces the terms
of the exact generating function only as far as terms like
x'y4 but gives the wrong coefficient for x4y4, while the
model about to be considered does not break down until
we reach a term like x'y'.

Model Q

We can obtain definite results for a particular type of
domain in the square lattice, by a somewhat diQ'erent

method, as follows: tA'e restrict ourselves to domains
which can be built up column by column as follows:
(a) Each column consists either of a single square, or of a
number of squares in a continuous straight line. (b)
Each column must overlap those to the left and right of
it by at least one lattice distance. These conditions
clearly secure that we have a convected domain, but are
too restrictive, because it is obviously possible to have a
connected domain with gaps in some or all of the
columns. Nevertheless, this model is of interest, because
a record can be kept of both the area and per&meter of the
domain, and many results can be obtained in 6nite
terms. The model clearly belongs to group II, as it is too
restrictive.

I,et g„be the generating function for a domain whose
left-hand column contains exactly r squares. The next
column to the right may contain 0, 1, 2, squares.
The left-hand column, by itself, would call for a term
z'y'"s", because its perimeter contains two horizontal
lines and 2r vertical ones. If, however, the next column
to the right is a single square, it can touch the 6rst one in
r diGerent places, and the two together wouM call for a
term rx4y"s"+'. If, however, this column were a doublet
and r) 1, the two columns could overlap in r+1 differ-
ent ways. In two of these cases, the perimeter is
described by the factor z4y'"+' while in the remaining
r—1 cases, the perimeter is described by x4y'". Pro-
ceeding in this way, imagining the domain built up,
column by column from left to right, and taking account
of the various possible overlaps between adjacent
columns, we find the following set of equations for
the g„'s.

gy=x y s+x s[gy+2g2+3gs+4g4+ . j,
g2

——x'y4s'+x's'L2y'g&+ (1+2y')g,+ (2+2y') g&+ (3+2y') g +
g3=x'y's'+x's'$3y'g&+ (2y'+2y')g2+ (1+2y'+2y')g3+ (2+2y'+2y')g4+

g4
——x'y's'+x's4L4y'g&+(3y'+2y')g2+(2y'+2y'+2y')g8+(1+2y'+2y4+2y')g, + j.
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It is readily seen that these quantities satisfy the
following difference equation arrived at by subtracting
the equation for sy'g, from that for g„+~, and repeating
the process on the resulting equations:

gr —2y zgr i+y—z gr s-
=x'z" (1—2y'+y') (g.+2g.+i+3g.+s+ ") (8)

Applying a similar process twice more, the factor this
time being s, we get:

g +s 2z—(1+y )g +i+z (1+4y +y )g
—2"(y'+y')g -i+zYg -s=x'z '(1—y')'g' (9)

These equations are completely soluble in finite terms
in two important special cases: y=1, corresponding to
the case where we do not specify the total perimeter but
the x and s variables remain available to specify the
number of columns and the total area of the domain,
and a=1, in which we no longer specify the area of the
domain, but do specify its perimeter.

For y= 1, we have, from Eq. (8),

gr 2zgr 1+z gr 2——

the general solution of which is

g„=A (z,x)z "+B(z,x)rz' (10)

gi =zA+», G= Az/(1 —z)+Bz/(1 —z)',

g, =z'A+2z'8, H=Az/(1 —z)s+Ilz(1+z)/(1 —z)s,

From Eqs. (7) (first two), we get

gi =x'z+ x'zH,

gs ——x'z'+ x'z'(G+H),

leading to the following expression for 6:

by an argument similar to that used for linear differ-
ential equations. A and 8 are arbitrary functions of x
and s but are independent of r. They can be determined
from the first two of Eqs. (7) as follows: Define G and H
as follows, G=P, g„H=+, rg„(G is the complete
generating function for a domain with a first column of
any length. g„ is the generating function if the 6rst
column is krtorcrt to be r units long). From Eq. (10) we
have

x'z(1 —z)'
6=

1—(x'+4)z+ (x'+6)z' —(x4—x'+4)z'+ (1—x') z4

(X—1)'(X—y')' —X'x'(1 —y')'= 0. (12)

~3 J. G. Kirkwood and J. E. Monroe, J. Chem. Phys. 9, 514
(j.94I)."P. J. Flory, Prsneeples of Polymer Chemestry (Cornell Uni-
versity Press, ithaca, 1953), Chap. 9.

It is remarkable that the exact generating function for
this fairly complicated problem can be expressed in
closed algebraic form. If we put x=1, this expression
diverges when s is approximately 4. This result seems to
give us insight into the reason for the curious result
found by Kirkwood and Monroe. " According to this
result, a liquid consisting of rigid spheres may be ex-
pected to "freeze" into an ordered lattice as soon as its
density exceeds a certain value, even though the
spheres do not attract one another. We attempt to
represent the liquid by the lattice model (Yang and
Lee), by dividing our vessel up into cells, and dis-

tinguishing only between configurations in which a given
cell is empty or contains just one molecule. Result (11)
appears to mean that, if the probability of occupation of
each cell exceeds a certain value, there will be a gain in

entropy if two or more isolated domains join up to form
one connected domain. It also seems to be closely related
to the fact that a branching polymer may be expected to
form a gel if the probability of forming branches exceeds
a certain value. "

We may use Eq. (9) in the special case in which z= 1,
that is, in which we are enumerating domain boundaries
but not domain areas. As before, we look for solutions of
the type g, =HA, ", and obtain the following equation
for X:

It is readily shown that X never attains unity for any
relevant values of x and y, and that any pair of complex
conjugate roots necessarily has a modulus equal to y
which is less than unity. Now the most general possible
solution of (9) leads to the result

G(x,y) =P, g,=A ihi/(1 —Xi)+Asks/(1 —Xs)+

where Xi. X& are the roots of Eq. (12) and Ai, As, As,
A4, are arbitrary functions, which can be determined
from the first four of Eqs. (7).Now, in view of the above
information about the X s, it might appear at first sight
that the generating function G(x,y) can only diverge, if
at all, for a reason analogous to that leading to the
divergence of G in (11), that is as a result of the form of
functions Ai A4. However, the function G(x,y) catt
have an infinite derivative with respect to x or y if two
roots of Eq. (12) become equal, the condition for which
is

1+y'ax(1 —y') = a2y,
x= (1—y)/(1+y) being the only case that is physically
relevant. If x is near this critical value x,—5 (say), it is
easily shown that, although the X's are all finite, cia~/Bx
is proportional to 8: for the two X's that are nearly
equal. Thus, G itself is continuous, but it has infinite
derivatives as x or y passes through the critical value.

It is most unlikely that any singularities have been
missed, because this model is, in fact, based on taking
just the domains that can be enclosed between Neo

Onsager-type boundaries (model 0) which are permitted
to cross at no more than two points and the only
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singularities for model 0 are known. The model seems
worth considering, because of the fact that so many
results can be obtained in finite terms, and also because
its generating function is probably a close "mimic" of
the true one. Not only does it, as we shall see below,
diverge at the same place as the true one, but it repro-
duces a great many of the early terms of the true
generating function exactly. The smallest domain that
is not enumerated by this model is shown in Fig. 6,
which calls for a factor z'x'y'; all previous domains are
reproduced accurately. In this respect it is decidedly
better than model I", which also diverges at the right
place but already departs from the true generating
function at the term s'x'y' (a single square being
spuriously encircled twice, according to this latter
model).

Models R and S. The Exact Problem

We now show that model I"can be improved further,
confining ourselves to the case y=x. The generating
function (6) for domains is incorrect for two reasons:
(a) It permits the same domain to be described any
number of times in the same sense (each fresh repetition
introducing a new factor —1 because of the presence of
the n's). Thus, a single square, corresponding to a term
x4 in the true generating function, contributes to func-
tion (6) the terms —x'+x' —x"+x"— . (b) It
allows "multiloop" domains of which Fig. 2 is a typical
example.

We now assume that we possessed the exact generating
function for "single loop" domains, and then ask how
this function would have to be modified in order to
reproduce the krone generating function for model I",
which we call g(x) for the case x= y and which is defined

by Eq. (6). In other words we shall try to derive a

functional equation for the unknown generating function
in terms of the known one. It is convenient to intro-
duce a slight generalization of our problem at this
stage. We define the true generating function f(n, v)

P „A „u"i", where A „is the number of single-
loop domains whose perimeter has e right-angled
bends (corresponding to elements like RU, DL, etc. , in
matrix I' or E') and m "straights" (corresponding to
elements like RR, LI., etc.) We confine our attention
to just one such domain, N steps long, which we
call domain N, which corresponds to just one term
(m+n=lV) of f(N, v), and set up a correspondence be-
tween this term and some of the terms of g(x). To allow
for the possible repeated description of domain N,
together with the alternation of signs introduced by
g(x), we replace f(u, e) by an associated function h(u, n)

defined by h(N, n) =P P„[A „I"e"/1+I"v )$. We
call this intermediate model, in which "single loop"
domains may be described repeatedly, but domains such
as those shown in Fig. 2 are still not allowed, as model S.
The two generating functions are related in the same
way as are Taylor and Lambert series, and, if one series
is known for all m and n up to some given value of m+ n,

FIG. 6. Smallest domain not enu-
merated by Model Q.

all the corresponding terms of the other can be
calculated.

We now allow for the fact that g(x) allows each of the
points of domain N to be made the starting point from
which further closed domains can be described in the
manner shown in Fig. 2. Thus, if the outer rectangle of
Fig. 2, with Z as the starting and finishing point, is
domain E, we may, according to g(x), leave domain X
at a point such as 8, then describe an additional closed
domain such as the small square, finally returning to 8
in such a way that the last leg, A8, of the additional
domain belongs to domain N. After returning to 8, we
continue to describe domain N. When we arrive at C we
have a similar option of proceeding to D, or of leaving
N, describing another closed domain, returning to C and
then proceeding to D, and so on. In Fig. 2, we consider
that the subsidiary domain "begins" at 8 rather than at
A, because, when we arrive at A we have to proceed to
8 whether we are going to describe the small square or
remain on N, and it is not until we arrive at 8 that we
have to leave N and begin to describe the small square.

It is already clear that any one term in f(up) is going
to be associated with infinitely many terms in g(x),
because any point in the typical domain N can be made
the starting and finishing point of a subsidiary domain,
and the same is true of any point in Fig. 2, and so on for
more and more complicated domains. We shall show that
all the possible subsidiary domains that begin and end
at a point such as 8 in Fig. 2, can be described by an
appropriate selection of terms from g(x) (not the whole
of g(x) because there are restrictions on the directions
of the starting and finishing "legs"), and we shall show
how to write down these subsidiary generating functions
in terms of the matrix I".This process has to be carried
out for each point in the typical domain N and the
result summed over all such domains in order to arrive
at g(x).

At this point we should remark that boundaries which
cross themselves make the same total contributions (if
any) to both g(x) as originally defined, and to g(x) as
we are proposing to construct it from f(u, n). To begin
with, it is clear that graphs such as that shown in Fig. 2
are included in both cases, and these such as Figs. 4 and
5 are excluded. Now consider Fig. 7 (the description of
the figure being supposed to begin at the bottom left
hand corner). If the common leg is described twice in

opposite senses, there is no total contribution to g(x) if
we consider all possible methods of drawing this graph
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I'io. 7. "Forbidden" domain
enumerated by g(x).

u, v=xfi+~g(x)}, (13)

which we arrive at by the following argument. The
outer domain in Fig. 2 represents a typical term of

f(u, v). Suppose that we have reached 8 in Fig. 2. The
6rst term, x, in the proposed expression (13) for u or v,

corresponds to proceeding just to C in Fig. 2. A term

xg(x), inserted into f in place of u, would correspond to
describing any closed domain starting and finishing at
8, then proceeding to C. The factor ~ allows for the fact
that not all possible closed domains enumerated by g(x)
are suitable for introduction between the legs AB and

BC, since we are limited to domains whose initial leg
diBers from SC but can follow AB, while the final leg
must be capable of being followed immediately by BC.
In Fig. 2, the initial leg must be U or D and the final leg

must not be L nor must it be opposed to the initial leg.
Even now, the argument is not quite right, and we have

(just as there is none irom Fig. 5), nor is there any term
in f(u, v) corresponding to a primary domain from which
we could construct any of these graphs according to the
rules laid down. If the common leg is described twice in
the scuse sense, then the other legs must be described in
the senses shown by the arrows in Fig. 7 (or all in

exactly the opposite senses). Now Fig. 7 can be split up
into a "primary" and a "subsidiary" domain in four
diferent ways. These contribute four different terms to
g(x) because they correspond to different perrnutations
of the same set of legs, and arise from four different
terms of f(u, v), because each of them represents a
different choice of primary domain. Again, graphs such
as Fig. 8 are retained by both constructions of the
generating function, subject to the proviso that the
smaller domains are described separately, e.g., we start
at the bottom left-hand corner, proceed to A, describe
one of the smaller domains, return to A, proceed to 8
along the outer domain, describe the other smaller
domain, return to 8, and then complete the outer
domain. It can be verified that some paths, which

correspond to the Neicursal description of the two
smaller domains (e.g. , starting at A and returning to A

after describing both), cancel out in pairs, while others
persist in both forms of the generating function.

While it has not yet been formally proved, the (1—1)
correspondence between the terms of g(x) and the

proposed equivalent generating function has been veri-
fied in a large class of cases. It seems unlikely that the
exceptional cases, even if any exist, will be numerous

enough to upset the asymptotic results. Our work sug-

gests that g(x) might be obtainable from f(u, v) or h(u, v)

by a transformation of the following kind:

to improve it further. In the first place, care is necessary
with the terms in h(u, v) corresponding to repetition of
the same domain. It would not be correct to apply the
transformation (13) to u and v wherever they appear in

h(u, v). Consider, for example, a term in g(g) corre-
sponding to p repetitions of the same domain X, a
departure from this domain during the (p+1)th circuit,
the tracing of a subsidiary domain, the completion of
the (p+1)th circuit of E, followed by q further circuits
of E.If domain Ã contains m "straights" and e "angles, "
it is described by one term, u"v", from f(u, v) If a.

subsidiary domain is put in during the first circuit, we

apply a transformation such as (13) to one of the
factors u or v. If, however, the domain E is described p
times before we first leave it to form a subsidiary do-
main, the corresponding term in g(x) is (x x")&u"v". If
we now apply transformation (13) to u and v, this takes
account of the fact that subsidiary domains may be
formed anywhere during the (p+1)th circuit of N. It
would, however, be redundant to take explicit account
of any of the q subseqleet circuits of Ã. For the term
4xg(x) in (13) automatically describes, not only the
introduction at any point of Ã of a single subsidiary
domain, but also the introduction of any closed domain,
including, as a particular case, a single subsidiary do-
main followed by g further circuits of E. A little con-
sideration shows that all possibilities are covered if we
write,

urn
(14)

where we have still to determine the correct trans-
formations of u and v to describe the insertion of
subsidiary domains. They are of the same type as ex-
pression (13),but slightly more complicated. Expression
(14) implies that, in the event of repeated description of
a domain E, it is only the complete circuits that occur
before the first departure from S that need be specified
explicitly, the remaining circuits, if any, already being
implied by the introduction of g(x) into (13).

There is still one remaining difFiculty that forces us to
modify expression (13), and, in fact, we find that the
required transformation is slightly diferent for the
"straights" and "angles" in the typical domain E. To

8. "Forbidden"
domain giving a 6nite
contribution to g(xl.
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see the nature of the difhculty, consider a graph such as
that shown in Fig. 9, in which a subsidiary domain has
two or more successive legs in common with domain g.
(A graph such as that shown in Fig. 10 does not cause
this trouble, and is covered by what we have already
done. ) The difficulty is that, in Fig. 9, the extra loop
could, according to the transformation (13), be inserted
between legs BC and CD or between CD and DI; of the
domain T, and these two possibilities would be reckoned
separately if we applied (13) to expression (14), though
both of them correspond to precisely the same set of
successive choices of terms from the enumerating
matrix P'. Consider the terms of P' corresponding to
passing from A to E. in Fig. 9, taking ih. the subsidiary
domain en route.

Leg AB BC CD DH HI IB BC CD DE
Termof P' DR RE. RR RU UL, LL, LD DE. RR RR

This choice of terms is independent of whether we sup-
pose the subsidiary domain to "start" at C or at D,
whereas applying (13) to (14) would list these two cases
as separate possibilities. We therefore modify (13) so
that the starting point of the subsidiary domain is
uniquely located at D in Fig. 9 but so that any point in
domain X can still be used as a starting point for a new
domain.

The required correction can be made as follows. We
are deriving all the terms of g(x) corresponding to a
particular "main" domain E. In deriving them, we

have, at each step of E, the option of remaining on E or
of beginning a subsidiary domain. Now, we cannot say
that we have "begun" a new domain until we have
"departed" from the old one, that is, until we have
reached a point such as D in Fig. 9 and taken a step like
DH which is definitely different from DE. Thus, given
the steps CD and DE in the large domain Ã, we wish to
enumerate all those domains for which:

(a) The first step is different from DE. In Fig. 9 it has
to be a U or D step. (It cannot be an I. step because this
cannot follow CD.)

(b) The last step can close on to the first step to
make a domain, i.e., if the first step is U, the last step
must not be D. Also, it must be followed directly by DE.
In Fig. 9 this means that we want all the domains,
specified by P' or g(x) which can be followed by an R
step and begin with either a U or a D step. We can select
these in the same way that we selected domains of
various kinds enumerated by the matrix P' or P. (The
discussion is less complicated, because we are not now

FI:G. 9. Subsidiary do-
main has successive legs
in common with do-
main E.

FIG. 10. Subsidiary domain
has nonsuccessive legs in com-
mon with domain X.

A B

interested in open paths, and we do not encounter the
difFiculties associated with the end steps not having
their proper factors. ) The possible subsidiary domains
must begin with P'g~ orP 'g~ and must be closed and
must not end with an L step. Thus, for the point D in
Fig. 9 (a "straight") the R step and possible subsidiary
domains are enumerated by

Pg~D[(1 P) i]ii—~+PgDD[(1 P ) jD~, (15)

and, for such a point, we can replace 4 g(x) in (13) by the
above expression. P'g~ specifies an R step about to be
followed by an upward step, while (1—P') ii~-' specifies
paths of arbitrary length beginning with a U step, the
end step about to be followed by an R step, while
application of the operator D restricts us to closed
domains.

Ke can carry through a similar discussion for the
various possible types of point that may occur in a
domain boundary, corresponding to the twelve non-
vanishing elements of P'. In the case x=y, expression
(15) is numerically the same for all four types of
"straight" points (described by the elements RR, II.,
etc. , of P'), and we find that a similar result holds for all
the "angle" type points. Consider, for example, an
"angle" of the type RU. If a subsidiary domain is to
begin at such a point, its first leg must be either R or D
(i.e., different from U but not I, since L cannot follow
immediately after R), while the last leg must be R. For
this case (15) is replaced by

P'I pD[(1 P') ']zv+P'z—z»[(1 P') ']no, (15—)'

which is to replace xixg(x) in (13).
Evaluating the elements of (1 P') ', and usin—g ex-

pressions (15) and (15)' to correct transformation (13),
we find

2x 27K

1=x 1+
4n' ~0

do)iCku2(2x'+2x' cos(oi cosco2)
X

(1+x')' —2x (1—x') (coscui+ cos~2)

~2+
p

2n.

x 1+42 „J,
dkoida&~(x'+x' cos&oi cos~2)

X
(1+x')' —2x (1—x') (cos~i+ cos&o2)
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TABLE I. Asymptotic behavior of domain-generating functions.

Model

Unrestricted
I'
Q
yl
S
R

Generating
function

Expression (1)
Expressions (4) and (5)
G(x,x). Expression (9)
g(x). Expression (6)
h(~, ~)
f($',x)

W2 —1
v2 —1

~& V2 —1
~& v2 —1

Asymptotic behavior
of generating function

(x =x,+6)

logb
logb
g+$

Constant +8 logB
Uncertain
Uncertain

Remarks

"Doubling-back" forbidden
Some domains omitted
"Multi-loop" domains
Repetitions allowed

the desired functional equation for f(u, v) then being
found by substitution of these relations into (14) leading
to g(x) = f(l,v) —f(lx,vx)+ f(ux', vx') . —The re-

sulting relation seems to be the only piece of analytic
information that is at present available about this
generating function, f It is n. ot theoretically sufhcient
to determine it, because we have had to introduce the
two variables u and v into the definition of f, whereas

g(x) only involves one variable. We do not know the
function corresponding to g(x) in the case where
"straights" and "angles" occur with differing proba-
bilities because the mutual cancellation of domains like
those shown in Figs. 4 and 5 only holds strictly when

these probabilities are equal. The more general gener-
ating function is, however, probably closely related to
the corresponding generalization of the matrix P, which

we put on record in the Appendix on account of possible
physical applications.

5. ANALYTIC BEHAVIOR OF THESE GENERATING
FUNCTIONS NEAR THEIR SINGULARITIES.

COMPARISON WITH NUMERICAL EVIDENCE
FROM MACHINE RUNS

It is of interest to compare the analytic behavior of
these domain generating functions as we apply various

types of constraint, The evaluation of the double
integrals (corresponding to the operation D) in terms of
elliptic integrals is standard and calls for no comment.
(The singularities arise from the logarithmic divergence
of the integral E(k) as k—+1.) We exhibit the results in

Table I, omitting numerical coefficients and confining
ourselves to the case x=y. In Table I, x, is the critical
value of the selector variable x. These results make it
extremely probable that the singularity is in the same

place for the domain-generating function and for the
corresponding Ising problem. Further light is thrown on

the corresponding question for other lattices by the
work of Wall and others' " on the generation of non-

intersecting random walks on various lattices. It is
shown in Sec. 8 that the number of such domains,
or paths, 'of S legs is asymptotically proportional
to x, ~, where x, is the singularity in the domain
generating function. 1/x, may thus be regarded as the
"eGective number of choices" associated with the par-
ticular lattice. At every step, a certain actual number of
choices is possible (3 in the plane square lattice if
the backward step is excluded) but a certain percentage
of all the paths then intersect themselves and have

to be deleted. The above work indicates that this
effective number of choices is almost certainly 1/(v2 —1)
=2.412 . Wall and others'" define an "attrition
coefFicient" describing this loss of paths at each step,
and they find that it settles down to a nearly con-
stant value while the paths are still quite short. It
is of interest to compare the x,'s calculated from the
attrition coefIicients (the attrition coeKcient being
the ratio of the eGective number of choices to the
actual number of choices) with the positions of the
singularities estimated for the corresponding Ising
lattices Lfrom data collected by Domb and Potts. "jIn
their notation, x,=tanh(J/kT, ). This comparison is
shown in Table II.

The agreement is in all cases reasonable, bearing in
mind the fact that the exact value of 1/x, is known only
for certain two-dimensional lattices and the values in
some of the three-dimensional cases are in considerable
doubt. The values from the machine are nearly all
higher than these for the Ising model, and thisis in the
direction consistent with the existence of lower critical
temperatures of Mayer type. Equally it could mean that
the measured" attrition coefficients are all slightly
higher than the limiting values appropriate to very long
paths.

The process used by Montroll" removes only paths
containing one or more simple square loops, leaving all
other types of self-crossing paths containing loops of
more than four legs each. It therefore only gives an
upper bound to the entropy.

6. THE "SPREAD" OF A LONG PATH AS A FUNCTION
OF THE NUMBER OF "LEGS"

In the generating function (1) (no constraints), the
direction of each step is completely independent of what
previous steps may have been taken; generating func-
tion (2) describes a path in which one direction of step
is forbidden completely, while function (5) introduces
correlations between successive steps, "doubling-back"
being forbidden. Generating function (6) introduces
what one might call "long-distance" correlation. As we
have seen, this function does not enumerate any path
that crosses itself at right angles, so that the direction of
any given step depends, to some extent, on all the steps
that preceded it. Considerable study has been given to
"C. Domb and R. B.Potts, Proc. Roy. Soc. (London) A210, 125

(1952).' E. W. Montroll, J. Chem. Phys. 18, 734 (1950).
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the question of how constraints of this last kind may be
expected to affect the mean "spread" (distance between
the two ends) of paths consisting of a fixed number of
legs. It is obvious that, of two paths of equal length, one
with small spread is more likely to cross itself than is one
with large spread, and therefore that the introduction of
such constraints will increase the mean spread.

For the completely unconstrained path, it is well

known that the mean spread is proportional to the
square root of the number of legs when this number
becomes large, and it is of some interest to decide
whether the introduction of constraints merely alters
the constant of proportionality in the law

(spread)' ~ total length, (17)

or whether the analytic form of the law is changed. This
question arises in the study of high polymers, where

self-crossing configurations are not physically permis-
sible. The theoretical and numerical evidence bearing on
this question has recently been summarized by WaIl
et u/. '" It is probable, but not quite certain, that the
situation is essentially diGerent in two dimensions and
in three dimensions, as is known to be the case for a
completely random path. We study the asymptotic
behavior of the spread of long paths called for by the
path-generating functions that we have described above.

Since a generating function describes all possible

paths, it contains implicitly the desired information
about spread, and it seems worth showing explicitly
some of the possible ways in which departure from a law
of the type (17) can be associated with the analytic form
of the generating function. If we put x=y, the most
general type of generating function that we have met
with in this paper may be expressed in the form

ating function expanded in the form

l(x, e)= Q P„, x"e™, (19)

What we want to calculate as a function of e is the mean
value of m', averaged over all possible paths of total
length e, that is,

(m')A, =P m'p„, /P p„, (fixed rs). (21)

The denominator and numerator of this fraction can be
calculated from expressions (20) and (21), respectively, e

being set equal to unity after the di6erentiations. If
e=e'", (eB/Be)'= —B'/Boi'. This work is readily ex-
tended to two or three dimensions, the square of the
length of any path simply being the sum of nz ', m„'
and ns, '.

Carrying out this work for the generating function
given in (18), we find

where, as before, n represents the total number of, steps
and m the algebraic separation of the ends of the path.
By symmetry, we necessarily have p„=p„. In
practice, if we have a generating function as complicated
as (18) it may be necessary to resort to the method of
steepest descents in order to get asymptotic estimates of

p„, , which is the first step in calculating the mean
spread. (For the generating functions considered in this

paper, the desired results can be obtained algebraically. )
Equation (19) is equivalent to the statement

p„,„e = coeff of x" in /(x, e). (20)

Differentiating Eq. (20) twice with respect to e, we have

t' Bl'
P rrPp„, e =

~

e—
~

[coeff of x" in l(x,e)]
m

'

l, Be)

x (x)+$(x) (coscd 1+cosce2)

1 $(x) (cosMi+ cosois)
(18)

x+24
Q p„, =coeff of x" in-
m 1—2'

where x, P, and g are algebraic functions of various
kinds. To illustrate the method of deriving the relation
between spread and path length, we refer first to the
one-dimensional problem. We may suppose the gener-

P nz'p„, =coeff of x" in

and the expansions can be performed by partial frac-
tions if p, x, and P are known algebraic functions.

TABLE II. Comparison of machine and analytic results for various lattices.

Lattice

3 choice square

honeycomb
triangular
simple cubic
simple cubic
diamond
body-centered
face-centered

2 choice
5 choice
4 choice
5 choice
3 choice
7 choice

11 choice

2 choice square

Attrition
coef5cient

0.798

0.888

0.931
0.840
0.902
0.941
0.972
0.933
0.917

By machine

1.60

2.66

1.86
4.20
3.61
4.71
2.92
6.53

10.09

Estimates of 1/xc
From Ising model

2.41 (exact)

1.73 (exact)
3.37 (exact)
3.08 (interpolated)
4.71 (estimated from series)
2.41 (interpolated)
~3.67 (estimated from series)

10.49 (estimated from series)

Other

(1.62 (Montroll)
1.41 (Temperley, unpublished)

&~ 2.41 (this paper)
&2.77 (Temperley, Montroll method)
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TABLE III. Comparison of entropy and spread for various path-generating functions.

Model

Unrestricted

pl

Z p,.
1/(1 —4x)

(1+x)/(1 —3x)

(1+2x+3x')/(1 —2x—x')

Z~ m2pm, ~xn

4x/(1 —4x)'

4x(1+x)/(1 —x) (1—3x)'

4x(1+x') (1+2x—x')

(1—2x—x')'

(m')Av Entropy

k log4

k log3

k log(1+v2)

In Table III we compare three diGerent types of path,
the unrestricted path [expression (1)), the path in
which doubling back is forbidden [model P, expressions
(4) and (5)), and the path in which "crossovers" are
prevented [model P', expression (6)j. We have seen
that this last expression is not satisfactory as a path-
generating function (because certain types of looped
path are still included, and also because paths that
spiral one or more times around the origin will not be
properly counted), but it is of interest to examine ex-
pression (6) as if it were a proper path-generating func-
tion, as we thereby gain insight into possible mathe-
matical peculiarities of the generating function which
would imply breakdown of law (17). The different
analytic behavior of models I' and I" is associated with
the fact that, in model I', the smallest positive root of
1—2&=0 is a single root, while in model P it is a
repeated root. This is the same peculiarity that is
responsible for the diQ'erent analytic behavior of the
domain-generating functions near the critical tempera-
ture that we have already discussed. Quite similar
behavior is to be expected for the two-dimensional
triangular and honeycomb attices. Wall et al.'" give
evidence that, in the two-dimensional lattice (re)s„/e
does diverge in two-dimensional lattices if we reject
"loop" paths.

Our conclusion is the common sense one that, in two
or more dimensions, short-range correlation between
legs, e.g. , between successive legs only [as in generating
function (4)j, cannot affect the forns of the law (17)"
(though it does increase the numerical coefficient), but
that an alteration in the form of the law may quite
easily occur if we introduce a correlation between a
given leg and all preceding legs, as in generating function
(6), model P'. The latter type of correlation is what is
called for by the physics of high-polymer chains.

7'. COMPARISON OF VARIOUS APPROXIMATIONS

Inspection of Table I shows that, as the approxi-
mation is progressively improved, we 6rst get an im-

provement in the location of the transition temperature,
then the singularity approaches more and more nearly
to the right form. Concurrently, we And that the ap-
proximate generating function reproduces more and
more of the early terms of the exact series, though an
approximation that reproduces a great many of the

r' C, M, Tchen, J. Chem, Phys. 20, 214 (1952).

early terms is rot necessarily the one that best describes
the behavior near the transition temperature. (Kramers
and Wannier, "discussing various approximations to the
Ising partition function, also found that they could not
be placed in any NNique "order of merit". ) It is of
interest to compare these successive approximations
with some recent work on the liquid distribution func-
tion by Rushbrooke and Scoins,"and by Nijboer and
Fieschi. ' Better treatments, reproducing correctly
Mayer cluster integrals of progressively higher order,
have been developed by these authors, and have been
checked by comparison with the "rigid sphere liquid"
for which some precise numerical information is avail-
able. The present position is somewhat disappointing, as
it seems that each successive improvement in the ap-
proximate methods used only results in reproducing
about one more term of the virial series correctly, so we
are still almost without information on the analytic
form of the singularity in the virial series, which should
correspond to the onset of liquefaction.

8. ENTROPY OF PATHS AND DOMAINS.
PROBABILITY OF RING CLOSURE

The entropy of a system such as a single magnetic
domain, a connected cluster of adsorbed atoms, or a gas-
bubble in a liquid can be calculated according to this
type of model, simply by identifying the corresponding
generating function with the partition function for a
single domain, the selector variable being associated
with the appropriate variable, e.g., magnetic field, in the
way outlined in Sec. 3. The free energy and entropy per
domain then follow from the partition function ac-
cording to the standard formulas of statistical me-
chanics. If we want the entropy of a path of a fixed
number of steps, or of a domain of a fixed perimeter, we
must, in general, resort to the method of steepest
descents in order to select the appropriate term from the
generating function. However, this procedure is not
necessary for the simple path-generating functions
enumerated in Table III because they can be split into
partial fractions and the coe%cient of x"written down in
closed form, k times the logarithm of this coeScient
being the entropy. For a long chain, only the factor
corresponding to the smallest zero of the denominator

' H. C. Kramers and G. H. Wannier, Phys. Rev. 60, 252, 263
(1941)."G. S. Rushbroolre and H. I. Scoins, Phil. Mag. 42, 582 (1951);
43, 1276 (1952); Proc. Roy. Soc. (London) A216, 203 (1953}.~ B.R. A. Nijboer and R, Fieschi, Physica 19, 545 (1953).
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1—2p of the generating function contributes significantly
to the entropy,

If we are discussing the entropy of a domain of known

perimeter, we have either to use the method of steepest
descents or to use appropriate expansions of the double
integrals listed in Table I. Asymptotically, the entropy
per leg of a domain is the same as that per leg of the
corresponding path. This is a consequence of the fact
that the domain generating function and the path
generating function both become singular at the same
value, x„of the selector variable. The path-generating
function behaves in all cases like (1—x/x, ) ', which

implies an entropy of —ek logs, for a path of e steps.
The domain generating function can also be expanded
near x=x, in powers of x/x„but the coefficient of

(x/g, )" is now itself a function of e. The contribution to
the entropy due to this coefficient is, in general, of the
order of k loge and this can be neglected compared
with ek for large e.

Wall et al."have collected numerical evidence on the
"probability of ring closure" for walks on certain types
of lattice. Their "initial probability of ring closure" is

simply the ratio of the number of domains of perimeter m

to the total number of permitted paths of length e and is
directly obtainable from our data. (The form of the
connection of their "limiting probability of ring closure"
with the present work has not yet been found. ) Wall
e] al."find empirically that, in two or three dimensions,
the probability of closure on to the origin after e steps
probably varies as e ' for a restricted walk, in compari-
son with the known laws e ', e ', e ' for unrestricted
walks on one-, two-, and three-dimensional lattices re-

spectively. The corresponding information for our model

can be obtained from the analytic behavior of the
domain-generating function near its singularity already
listed in Table I. Consider, for example, Model P. The
number of paths is given by (constant independent of e)
Xx, "(e large). The form logh for the domain-generating
function implies that its principal term near the singu-

larity behaves like log(x, —x) so that the number of

domains is given, by expanding the logarithm, as
constant Xx, "/e; so that, for model I', the probability
of ring closure is proportional to 1/m, as it is for the
unrestricted model in two dimensions, a result that we

might have anticipated.
For model P' the corresponding result is that the

limiting probability of closure is 1/n'. The difference

between P and P' arises from the diGerent behavior of
the domain-generating function, which in turn, arises
from the form of the function g(g), which now goes

through a maximum exactly at x=z, . The similar law

found empirically for the two- and three-dimensional
lattices by Wall et al. ' seems to foreshadow a similar

property of the domain-generating functions. Such be-
havior would be entirely consistent with what is already
known about the Ising problem in two and three
dlIQenslons.

9. CONCLUSIONS

(a) Our results are in complete agreement with the
conclusions from other work (see, for example, Yang
and Lee)' that for the Ising plane square lattice, the
boundary energy for a single domain persists right up to
the "bulk" transition temperature, and that no lower
transition temperature exists. This is also in accord,
with the known fact" that the spontaneous magnetiza-
tion in the Ising model persists right up to the bulk
transition temperature.

(b) Our work indicates that it may often be possible
to take account of constraints (limiting possible types of
path or domain) by leaving the form of the generating
function unaGected, but transforming the selector vari-
ables, and possibly introducing into the generating
function a multiplying factor. As an example of such a
process, we may mention the Ising model, the removal
of unwanted graphs being accomplished4 by transform-
ing the enumerating variable from x to@(1—x')/(1+@')'.
The mathematical significance of such transformations
is far from clear, but there seems to be some deep reason
for their existence.

(c) The comparison of the exact model R with models
I" and Q, the two entirely different approximations to
it, illustrates a state of affairs that is not particularly
surprising from a mathematical point of view, but which
does not yet seem to have occurred in any physical
theory of a phase-transition. We have already noted
that P' agrees with E. up to and including six-sided
domains, while Q agrees with E up to and including ten-
sided ones. We have also noted that both models give a
singularity of the correct kited, the generating function
itself continuous, the derivative with respect to x being
infinite. The precise analytic behavior of the two models
differs slightly, Q not being quite right. We also notice
that both Q and I"locate the correct transition tempera-
ture. Experience with the Ising model (for which some
exact solutions are known) indicates that plausible ap-
proximations nearly always fail badly near the transi-
tion temperature, and that they sometimes also fail to
give more than a few terms of the appropriate "high"
and "low" temperature expressions.

Evidently, the mathematical reason why model P' is
so good an approximation to R is the fortunate fact that
"multiloop" paths tend to cancel out, while the success
of model Q may be due to the fact that it considers
explicitly a satisfactorily representative selection from
the total number of possible domains that satisfy the
constraints.

(d) These results may have a bearing on some recent
investigations on approximations to the liquid distribu-
tion function, ""since we have shown that an approxi-
mation may reproduce the "transition" behavior quite
properly, and yet may fail to reproduce more than a few
of the early terms of a series expansion. This divers
from the behavior of many of the approximations in the

s' Q. N, Yang, Phys, Rev. 85, 808 (1952l.
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Ising model, which often reproduce the early terms well,
but fail to predict the transition behavior properly.

(e) The elimination of paths which cross one another
may lead to the breakdown of law (17), and a study of
various generating functions has given us a clue to the
possible mathematical reasons for such an occurrence,
and for the closely related empirical fact that the
"probability of path closure" becomes quite diferent, in
the restricted case, even in three dimensions, from that
for the unrestricted walk.

APPENDIX

We put on record the generating function that follows
from the matrix I', a distinction now being made be-
tween diagonal and nondiagonal elements. Besides the
application we have just made, this matrix may have
others, more directly physical in type. In discussing
problems connected with polymers, for example, it may
be necessary not only to prevent paths from crossing one
another, but to consider short-range correlation eGects
in addition. Thus, there is evidence that long-chain
hydrocarbons up to about 30 atoms prefer to exist
mainly in the "straightest" possible configuration,
though a large number of "twisted" configurations are,
in principle, available. This suggests some correlation
between the directions of C—C valencies between
neighboring "links, " some configurations being ener-
getically more probable than others, a situation that is
theoretically quite likely.

The analytic eGect of such a situation can be in-
vestigated in our model if we suppose that two succes-
sive links are more likely to form a "straight" than a
"right-angle. "We could take care of such a situation by
supposing that in matrix I", the diagonal and non-
diagonal elements contain respectively u and e instead
of the single selector variable g, but that I and v are in a
fixed ratio (associated with the postulated energy differ-
ence between the two types of configuration). The
denominator of the generating function is then found to
be

1+2u'+N4 —4u'v'+4v'
—(2N+ 2u' —4v'u) (cosa&,+cosa, )

+4(Q —'v ) cosui cosco2. (A1)

The analytic behavior of this rather formidable ex-
pression does not appear to diAer very much from that
of the simpler one in (6), to which it reduces when e= v.
It is readily found that this quantity will vanish only if
v= (1&u)(v2 or u= (1+2v')'*

These three cases arise from the possibilities

coscoy= cosh)o= 1) cosMy= cosM2= —1) cosh)y' cosh)2= 1)

but only the first of these seems to be physically relevant.
In all three of these cases we have the same feature (the
function becoming a perfect square for

( cosMi
~

=
( coscv2

~

=1), which we have already noticed as the feature
responsible for the differences between the "restricted"
and "unrestricted" walk problem.


