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and the vacancy mechanism being equivalent to the
two "chemical reactions" A +V~ &~ A~+ V and
B +V~ ~B~+V . The reaction rates in these models
are derived in terms of the fundamental parameters of
atom movements, and are themselves order-dependent.

(6) The vacancy-interchange model has been applied
to the case of Cu3Au, which has been studied experi-
mentally by Burns and Quimby. A Bsy—mmetry was
assumed, an activation energy and a pre-exponential
factor were taken from the measurements of self-dif-
fusion in pure copper and pure gold, and the remaining
parameter of the theory was adjusted to produce
agreement with the known critical temperature for
ordering in this system. The theory then gives reason-
ably good agreement with relaxation times observed by

Burns and Quimby over the temperature range of the
experiments, 338'C to 388'C.

(7) The developments outlined above have been
concerned with homogeneous systems. The basic ap-
paratus of multiparticle distribution functions and
their equations of motion is equally applicable to
inhomogeneous systems, including cases of domains of
order in a disordered matrix, domains of antiphase
order, and diffusion in alloys.
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It is known that the free energy of an imperfect semiconductor or insulator crystal contains terms which
arise from the ionizability of these imperfections and which represent chemical interactions between imper-
fections of the same and different kinds. We show that these ionization terms, which involve the Fermi level
and the parameters of the energy band model, explain the systematic differences between e- and p-type
semiconductors in lattice vacancy concentration, in substitutional atom diffusion coe%cients, and in ampho-
teric impurity behavior. The ionization terms also explain the variation of solid-liquid impurity distribution
coefficients with the crystal growth rate of certain semiconductors, and also the well-known "charge balance"
effect in insulators.

1. INTRODUCTION IJ„=B,(p, T)+kT lnX, Er—
'T is well known'~ that the solubility of an ionizing

~ - impurity in a semiconductor is aGected by the
electron and hole-concentrations. This happens because,
roughly speaking, the free energy needed to insert, say,
a donor atom in a semiconductor lattice is reduced by
the energy liberated in the ionization of the donor, i.e.
by an electron falling from the donor level to the
Fermi level.

Reiss' has given a statistical treatment of this effect,
showing that the chemical potentials of donor and
acceptor impurities have the form

E Epi-
kT ini 1+2 exp — i, (1.1b)

kT

where X~ and X are the donor and acceptor concentra-
tions, and Ep, E~, and E, are the Fermi level, donor
level, and acceptor level, respectively. The main as-
sumptions behind (1.1) are as follows:

(a) The energy band model is adequate. (For defi-
niteness the donor and acceptor levels are assigned
statistical weight 2.)

(b) The ionization interaction provides the only de-
parture from regularity4 of the donor and acceptor
solutions.

(c) The difference between Gibbs and Helmholtz free
energy is negligible.

Using (1.1), Reiss calculated' the distribution coefii-
cient for an ionizing impurity atom between two phases,
in terms of the concentration of other ionizing impurities.
The results agree with experiment. '

In Sec. 2 of this paper, we present an alternative

pg =Bg(p, T)+kT lnXs+Er

Er E~y-
kT ln~ 1+2 exp-—- ~, (1.1a))'

4 E.A. Guggenheim, Mixtures (Oxford University Press, Oxford,
1952).

'C. Wagner and K. Grunewald, Z. Phys. Chem. B40, 455
(1938);C. Wagner, J. Chem. Phys. 18, 62 (1950),J. Chem. Phys.
19,626 (1951),K.Hauffe, JIalbleiterprobleme, edited by W. Schottky
(Friedrick Vieweg und Sohn, Hraunschweig, 1954), Chap. 5;
C. Goldberg, Phys. Rev. 88, 920 (1952); F. A. Kroger and H. J.
Vink, Physica 20, 950 (1954); C. S. Fuller and H. Reiss, Phys.
Rev. 99, 624(A) (1955).' H. Reiss, J. Chem. Phys. 21, 1209 (1953).

'H. Reiss and C. S. Fuller, J. Metals (to be published).
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method of derivation of Eqs. (1.1) which seems to us
more simple and direct.

In the main part of this paper we shall analyze several
other phenomena which are affected by the ionization
interaction of imperfections in semiconductors and insu-
lators. In Sec. 3 an expression is derived for the fraction
of amphoteric atoms (of a certain kind) which act as
donors and the fraction which act as acceptors, in terms
of the concentration of other ionizing imperfections.
Possible application to copper impurities in the ger-
manium lattice and germanium atoms in the gallium
arsenide lattice is considered.

In Sec. 4, the concentration of lattice vacancies is
related to the concentration of other ionizing imper-
fections, assuming the vacancies act as acceptors. It is
then shown that substitutional atom diffusion coe%-
cients should be greater in rt- than p-type semicon-

ductors, under certain conditions.
In Sec. 5, we shall show that one may introduce as

convenient intuitive concepts a chemical potential for
lattice vacancies and also a separate chemical potential
for donor amphoteric and acceptor amphoteric atoms.

In Sec. 6, we shall consider some questions concerning
the distribution coeKcients of ionizing impurities be-
tween two phases.

In Sec. 7, we shall show that the well-known phe-
nomenon of "charge balance" in insulators is a conse-

quence of the ionization interaction between impurities.
In Sec.8, we discuss the solid-liquid interface, showing

a connection between the rate of crystal growth and the
resulting nonequilibrium distribution of impurities be-
tween the two phases.

2. CHEMICAL POTENTIALS OF IONIZING IMPURITIES
IN SEMICONDUCTORS AND INSULATORS

We consider a semiconductor or insulating crystal
which has an arbitrary uniform concentration of non-

diffusing donors and acceptors in one region, a different
uniform concentration in a second region, and a much
smaller transition region' between. Now we introduce

Ã~ diffusing donor atoms and S, diGusing acceptor
atoms and calculate the equilibrium distribution of
these diffusing atoms between the two regions. From
this we shall 6nally be able to compute those parts of the
chemical potentials of the diffusing impurities which

arise from their ionizability.
The equilibrium values of Ne', Nd', N ', N, 2 (the

superscripts refer to the two regions) may be determined

by minimizing the total Helmholtz' free energy F(V,T)
which may be written as

Dr. H. Reise (private communication) has suggested that it
would be convenient to examine theoretically the chemical
potential of ionizing impurities by means of a p-n junction.' Here we neglect the difference between Helmholtz and Gibbs
free energy. The Gibbs free energy is the correct one to minimize
at constant pressure and temperature, but the Helmholtz free
energy is simpler to calculate.

F F++ N1E1 Q plE1+Q rt2E2 Q p2E2

—|t,T' (rt„t+ N,2+p 1+p 2) ln2

+ln
Ne'! (N,o' —Ne')! Nos! (N, es —Nes)!

2f

+ln
1f(N 1 N l)fN 2f(N 2 N 2)f

gs ~
lf g

2f

+Q ln
s rt 1!(g 1—rt 1) f. rt 2 f (g

2 —rt 2) f

g
1f g

2f

+P ln — . (2.&)

P
'

(g '—P ') . P "(g '—P ') '
t

In (2.1), E, is a conduction band level or donor level

(Ee); E, is a valence band level or acceptor level (E,);
e, is the electron occupation number of level F, : the
maximum of rt, is g„p& is the hole occupation number
of level E, : the maximum of pt is g, ; and N, e' is the
number of lattice sites available for donors in region 1.
The ln2 term in (2.1) comes from the assumption that
each donor may be, at most, singly occupied, but has
statistical weight 2, and that each acceptor may be, at
most, occupied by a single hole, but the statistical
weight is 2. F& is the part of F unchanged by transfer of
donors or acceptors across the junction or by changes in
the valence electronic state.

We shall minimize F with respect to changes in E~',
Xg', E ', and X ' and also with respect to changes in
the set n, ', rt,2, p,', pf2: these two sets of occupation
numbers are coupled by three sets of constraints on the
system:

P rt '—P& p&' —Ne'+N '=const,

P, rts2 —P t P 12 Nes+N, 2= cons—t,

g~' —E~'= const,

(2.2a)

(2.2b)

(2.3a)

ge2 Nes =con—st, (2.3b)

g,'—N J=const, (2.3c)

g
'—N '= const, (2.3d)

Ne'+Nes= const, (2.4a)

N, '+N '= const. (2.4b)

The constraints (2.2) are the condition for charge
neutrality. ' The constraints (2.3) say that the addition
of a donor (acceptor) increases the capacity of the donor
(acceptor) levels by unity. ' The constraints (2.4) con-
serve the total number of donors and acceptors.

2 W. Shockley, Holes and Electrons in Semiconductors (D.
Van Nostrand Company, Inc. , New York, 1950).

The relative change in capacity of valence and conduction
band levels is only of the order of the reciprocal of the total
number of atoms, and we therefore neglect this relative change.
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Applying Stirling's approximation to (2.1) and repre-
senting the constraints (2.2) and (2.4) by Lagrange
multipliers Eg', Ep', n~, n„ the minimization of Ii is
expressed by

0= bF EF'—o(g, n '—p p ' —1V '+1V ')
2h(Q r42 Q p

2 N 2+N 2)

41d~(Ndl+Nds) 41 g(N 1+N 2) (2.5)

In (2.5) the constraints (2.3) may be introduced ex-
plicitly. Carrying this process through, one finds the
usual9 electron and hole distribution functions: lsd, EF+——kT ln(1 —Nd/gd)+ pd, (2.12a)

Substituting (2.7), (2.8), and (2.9) in (2.10), we find

is de' ls d—,'= EF' E—F'+ k T ln (1—lsd'/gd')

kT—ln(1 —nd'/gd') (2.11a)

' —p '=EF'—EF'+kT ln(1 —p '/g ')
kT ln—(1—p '/g ') (2.11b)

Remembering that the total donor and acceptor concen-
trations are arbitrary, it follows from (2.11) that

g, (E, EF)——=1+exp( [ sxd,
kr i

gd f'Ed EF'l-—= 1+-,' exp
~ ~

(donor levels),
kr )

gl—=1+exp~
~

ice,
p, & kr

(2.6b)

(2.6c)

p ~,=—0, when ionization of donors is negligible,

p„—=0, when ionization of acceptors is neglibile,

l.e.)

p, „= EF+kT—ln(1 —p,/g, )+p„(2.12b)
(2.6a)

where p~ and p, are independent of the donor and
acceptor concentration. p, ~, and y„have been defined so
that

g. (EF E.P-—=1+-,' exp
~ ~

(acceptor levels), (2.6d)
p. E kr i

pg, =—0) when EI —Eg))kT,

p, „=—0, when E,—Eg))kT.

(2.13a)

(2.13b)

for both regions, and the following diffusing donor and This means that pd and p, may be evaluated and (2.12)
acceptor distributions: rewritten as

ln—
N, d' —Nd' 1—lid'/gd'

ln
1N11 pl/gl

Qg —k p

41 +EF'

44d, =EF Ed+kT ln—2
(2.7a)

(2.7b)
44„=E.—Ep+kr ln2

(EF Ed)—
kr ln 1+2 exp—

~ ~, (2.14a)
kr )

with corresponding expressions for region 2.
Now we shall express this same equilibrium in terms

of the chemical potentials of the diGusing donors and
acceptors, which we write as

where

lsd lsd, +Is d, (do—n—ors),

Pa= isal+44 ae (aCCePtOrS) »

(2.8a)

(2.8b)

pdl Md(p, T)+kT ln[Nd/(N. d Nd) j, (2.9a)—
p, l —M, (p, T)+kT ln)N /(1V—„1V,)j. (2.9b)—

Here p~~ and p, ~ are the chemical potentials one would
calculate if ionization were negligible and if the donors
and acceptors there formed regular' solutions. That is,
in the absence of ionization effects the entropy corre-
sponds to random mixing and the energy is linear in the
numbers of solute atoms.

The thermodynamic condition for the equilibrium
described by (2.7) is4

pd =pg ~

p~ =p~ .1— 2

(2.10a)

(2.10b)
4 A. H. Wilson, The Theory of Metals {Cambridge University'

Press, Cambridge, I953).

kT ln 1+2 e—xp~
~

. (2.14b)
)

This puts (2.8) in agreement with (1.1).Thus (2.14) is
the correction one must make to the chemical potential
if one wishes to account for the eGects of ionization. For
tile case EF EF= (E +Ed)/2

jV jV„
lsd. ——is..= +kT ln2

(E —Ed)
kT ln 1+2 exp~ —

~
. (2.15)

2kT

3. AMPHOTERIC IMPURITIES

If a certain impurity atom can occupy two kinds of
site in a semiconductor or insulator lattice, acting as a
donor in the one site and as an acceptor in the other,
then the fraction of such amphoteric atoms in donor
sites will depend upon the concentration of other
ionizing imperfections. %e shall calculate this depend-
ence and, finally, discuss two possible applications.



IONIZATIQN I N fE RA c T I ON

The Helmholtz free energy of the system is

F=Fi+NggWg+Ng, W,+p, N,E,—pg p,E,

We shall consider the dilute case now:

E.&»E,&,

X..»E,.
(3.7a)

(3.7b)
In this case,kT—(ng+p. ) ln2+ln

N gg! (N, g Ng—g)!
Ngg N, d 1—p./g (W Wg—2E—I )

(3.8)
N, 1 Ng—/gg & kTge.f

X +gin
Nla! (Nxu Nla) ~

(W, Wg —2Ep)—
exp'

Egg+ iV, d,

(3.9)where O' —W& is the energy to take an amphoteric
atom from donor to acceptor site, Xi~ and Ei are the
numbers of donor and acceptor amphoterics, X,~ and
1V„are the numbers of available sites for the donor and
acceptor amphoterics, and Ii& is that part of F which is
indifferent to transfer of amphoterics from donor to
acceptor sites and to change in electron occupation
numbers.

The equilibrium condition is that F be a minimum
with respect to changes in the 1Vqi, N, i and the e„p~.
These two sets of occupation numbers are coupled by
the constraints

where E~~+ is the number of ionized amphoteric donors
and Si,—is the number of ionized amphoteric acceptors.

We may compare N&z/1V&, in an exhaustion semicon-
ductor with its value Niq'/Ni, ' when the material is
intrinsic:

Ngg/1Vg, ( Ep' Ep)—
Ngg'/Ng, ' ( kT )

(3.9b)

using Eq. (A5b),

+ ~ wg~ '+~J One can see from (3.8) that the ionization interaction

gi! makes amphoteric atoms prefer minority type sites. "An

+p ln . (3 1) alternate form of (3.8) is

p~'(g~ —pi) 'i

g~—Ei~= const,

g,—E~,——const,

(3.2a)

(3.2b)

)Vied/1Vi,
t

1V (N )'
= —+ i I+1

Ngg'/Ng, ' 2n; 42e, )
(3.10a)

=n;2/N', when N»2e;, (3.10b)
(3 3)N id+ N i, const, ——

+, n, p& p—, Nid+Ni, —const. ——
where S is the total X~—E,.

As an example of an amphoteric impurity of the type
considered above, one may mention germanium in the
gallium arsenide lattice, with germanium acting as a
donor in a gallium site and as an acceptor in an arsenic
site.

As a second example, one may consider an atom which
acts as an acceptor when occupying a substitutional
site in a germanium lattice and as a donor when
occupying an interstitial site. Copper may be an im-

purity of this type.
In the latter example it may be anticipated that the

diffusion coeScient is a linear combination of an
interstitial atom coefficient and a substitutional atom
coeS.cient, with the proportion of each depending upon
the fraction of amphoterics in the two kinds of site.

(3.4)

Equations (3.2) state that when an amphoteric changes
from donor to acceptor site the number of donor levels
decreases by unity and the number of acceptor levels
increases by unity. Equation (3.3) conserves the total
number of amphoteric atoms. Equation (3.4) is a form
of the charge neutrality condition. v Representing con-
straints (3.3) and (3.4) by Lagrange parameters p and
Ep, the minimization condition is

0=8F y8 (1Vgd, +Ng,)—
—Epl(Q, e,—Q g pg

—¹g+Ng.), (3.5)

in which (3.2) must be introduced explicitly. From this
process there result the usual electron distribution
functions (2.6) and the amphoteric atom distribution
functions:

4. LATTICE VACANCIES AND DIFFUSION

In those semiconductors and insulators in which
lattice vacancies act as acceptors, it may be expected
that the equilibrium vacancy concentration will depend
upon the concentration of other ionizing imperfections.
We shall calculate this dependence and then discuss how
it affects the diffusion of substitutional impurity atoms.

(3.6b) (The corresponding results for vacancies which act as
donors may be obtained by similar arguments. )

(Ni~(1 ~d/ga) )
kT in'

i

= —(Wd+Ep y), —
N, g

—N)g )

(Ni. (1—p.
kT in( i

= —(W EF p). — —
(-N, —Ng, )
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N„/N. '=N./~ (4.11b)

(4.12a)

(4.12b)

When

one finds

F=F,+N„W„+Q, e,E, Q—g p(E( E=—E&—X,—lV «—n.

N„/1V„'= n;/(N, r+N„).kT—(es+p, ) ln2+ln
N„!(N.-N„)!

Consider the relevance of the foregoing to diGusion
theory. If one assumes that the diGusion of substitu-
tional impurities proceeds by the vacancy mechanism, "
then the diffusion coefficient will be proportional to the
vacancy concentration. If the vacancy concentration
has its equilibrium value" it will be greater in n-type
than in p-type semicoriductors. Under these assump-
tions, one may then expect systematically greater
substitutional atom diGusion coefFicients in n-type than
p-type material. ""Such a systematic difference can be
seen in data taken by Dunlap. "

Finally, we consider the analog of (4.10) for insulators,
i.e., we calculate the ratio of E, to its value X,=E~

N, i when N—=O (N, i=1V, N„—and —Es=Es when-
N=0).

+P ln +Q ln ~
~ ~(4.1)

&'(g —&)' ' p~'(g~ —p~). ~

Here S; is the energy of formation of a vacancy, E, is
the number of lattice points which may be vacant, and
Fi is the part of F which is independent of 1V„, e„p~. We
are ignoring, for simplicity, the change in vibrational
free energy" caused by changes in E,. The minimization
of F is with respect to changes in 1V„and p~, I,. These
occupation numbers are coupled by the constraints

(4.2)

(4.3)

g,—E,= const,

P.n, P~—p~+N„= const.

The equilibrium number of vacancies, S„ is calcu- one Ands
lated by minimizing the free energy, which we write as

Equation (4.2) is the assumption that each new vacancy
adds one new acceptor level (of weight 2). Equation
(4.3) is the condition of charge neutrality. r

If (4.3) is represented by a Lagrange parameter Er,
and (4.2) introduced explicitly, the minimization is
expressed by

Using (ASa)

N„/N„= exp[(Eg Ep)/kT j. — (4.13)

X, 1
[Nea"+ (N'ea+16N, Nd) &] (4.14).

4S,

0 5F E b(p + p p yN ) (4 4) Now consider tile case whel'e N )16NdN, e a: we find

From (4.4), there result the usual electron distribution
functions (2.6) and

N„/N, = {1+(1—p,/g, ) exp[(W„—Es)/kTj} '. (4.5)

N„/N„= 1Ves"/21V, .

Because t,~" is so large, we must have

1V/N, 0,

(4.15)

Plainly the equilibrium number of vacancies is greater
in e-type than p-type semiconductors.

When

then

or

E,&&S.,

N„exp[(Es —W„)/kT j
1 p./g. —

1V„ /N, =exp[(EI W„)/kT j, —

(4.6)

(4.7)

(4.g)

where E, is the number of ionized vacancies.
It is interesting to compare E„ for an exhaustion

semiconductor with its value S„' when the semicon-
ductor is intrinsic. In an exhaustion semiconductor,

p /g. «1, so that

N„/N„'= exp[(EI —EI ')/kT j.
Using (ASa), one finds

(4 9)

N. /1V„'= N/2;+ [(N/2 )'+1]'* (4 10).
Ã=—1V&—E.,—S,&&n;, (4.11a)

' N. F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals (Oxford University Press, New York, 1940).

i.e.,
Ãg —Ã, g

—S, 0, (4.16)

so that the vacancy density must very nearly cancel out
the net unbalance of donors and other acceptors. We
discuss the significance of this result for "charge
balance" in Sec. 7.

S. AMPHOTERIC IMPURITY ATOM AND LATTICE
VACANCY CHEMICAL POTENTIALS

We shall show, in this section, that one may introduce,
as convenient concepts, a chemical potential for lattice

"F.Seitz, Phase Transformations in Solids, edited by Smolu-
chowski, Mayer, and Weyl (John Wiley and Sons, Inc., New
York, 1951)."J.Bardeen and C. Herring, Imperfections in Pearly Perfect
Crystals, edited by W. Shockley (John Wiley and Sons, Inc. , New
York, 1952)."R.L. Longini, Phys. Rev. 99, 636(A) (1955).

'4 At a colloquium given at the University of Pittsburgh
(October 1955), C. Ramasastry reported that a group at Uni-
versity of Illinois (J. Bardeen et al.) have measured the coefficient
of self diffusion of germanium at 800'C and found it greater in
n-type than p-type material. Assuming the vacancy mechanism of
diffusion operating, they concluded that the vacancy concentration
was higher in the n-type material because of the interaction,
through the Fermi level, between donor impurities and vacancies
acting as acceptors.

"W. C. Dunlap, Jr., Phys. Rev. 94, 1531 (1954l;
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P pi= jM P gs) (5.1a)

vacancies, a chemical potential for donor amphoteric
atoms, and also a chemical potential for amphoteric
atoms in acceptor states.

Denoting the chemical potential for an amphgteric
atom by p, , we dehne

For lattice vacancies, we define a "chemical potential"

Pav=P avl+Pav el (5.7)

where P „, is defined by (2.14b) and P,„l has the form
(2.9b). (Again we assume the vacancy acts as an
acceptor. If it acts as a donor quite similar arguments
can be made. )

P a1=P P as) (5.1b)
p,„=p„l+E„Ep+—kT ln2

with Pd, and P„defined by (2.14). The equilibrium
condition (3.6) may be written now as

Pdl Pal =Ea+Ed

(E, Ep)—
kT ln —1+2 expl

1T

(EP Ed)—
+AT ln 1+2 expl I

. (5,2)
E uT )

(Ea Ep 'l-—kTln 1+2 expl l
. (5.8)

uT )
From (4.7), the dilute case, and (2.6d)

pN„y E~ W„— )E.—EFp
lnl l

= +ln 1+2 expl l, (5.9)
&N ) kT & kT )

and, from (5.8)

Now using (2.6), the condition that the electron distri-
bution function also be that of equilibrium, (3.6)
becomes

(N. ) W„P,,+—E„—
lnl

KN, ) kT
—ln2.

Comparing this with the intrinsic case

(5.10)

kT ln
X,g —S1,

&.a—&1a

+1a
t Nv ) Pave Pave

ln
(N. ') kT

(5.11)

(E~—Ed)—
2Ep+W—, Wd+kT —ln 1+2 expl—

uT )
(E,—Ep)—kT ln 1+2 expl

yT )

Now for the case

EP=EF=(E +Ed)/2, —
(5.4) becomes [using (2.15)]

kT ln
¹d N, . Nl. —

= W, —Wd, —2Ep.
N. d

—¹d Ni.

Thus

+18+ed +1d +la +ca +1a
kT ln ¹dN d Nld Nl N„Nl, — —

Comparing (5.3) with (5.2), we see that

E1g E, —E1,
kT In

+la
=W, Wd+Pdi P,i —E, Ed— — —

p =p

Using (2.8) and (2.9) again

(6.1)

which corresponds to Eq. (4.9).
Thus also in the case of lattice vacancies, when their

density is small compared to the density of lattice sites,
we can again use the simple electronic chemical poten-
tial approach.

6. REMARKS ON DISTRIBUTION COEFFICIENTS

Reiss and Fuller' have calculated distribution coefFi-
cients for donor (acceptor) atoms between two phases
when the acceptor (donor) concentrations are)axed. We
wish to remark that lattice vacancies may form an
appreciable fraction of the net imbalance of ionizing
imperfections and that this fraction is not 6xed but
depends (in equilibrium) upon the position of the Fermi
level. Therefore it would be preferable to express the
equilibrium distribution coefficients in terms of the
Fermi level directly. This is easily done.

We wish to compare the number, F', of impurity
atoms in the solid with the. number, N", which would be
in equilibrium with the same liquid if the solid were
intrinsic. Denoting the chemical potentials of this im-

purity atom by p' and p" in those two cases, we must
have

Pdl Pal Pae Pde (5 6)

This is just what one would expect on the basis of a
naive use of separate chemical potentials, Pdl+P .and
P, ,l+P „,for donor and acceptor amphoteric atoms.

and
ve+p 'Le

p e+p e

/s Q s gss-
kT ln Pe+Pe'

(6.2)

(6.3)
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Now using (2.14) we have, for donors

f E~ EF '1—
=Es' EF k—T ln —1+2 exp~ —

~
. (6.4b)

kT

These formulas may be reduced to Reiss' and Fuller's
formula' (2.10), for the special case of exha, ustion
semiconductors using (A5).

The distribution coefficients, E=C,/Cr„ in —semicon-
ductors are ordinarily measured for intrinsic materials.
In the dilute case N'«N, ' and Eq. (6.3) reduces to

in(E/E') = (p ' p, )/kT. —

'7. CHARGE BALANCE IN INSULATORS

(6.5)

Charge balance in insulators (i.e., the number of
donor impurities equals the number of acceptor im-
purities) is a condition that has long been in current
usage. " We shall here show that charge balance is a
thermodynamic equilibrium condition which arises from
the ionization interaction between impurities and from
the presence of a large energy gap.

In an insulator, ~Ei E~ ~ &&kT even —for only slight
imbalance of donor and acceptor concentrations, ac-
cording to (AS). But when (Ei EF)»kT, say,—the
crystal will strongly tend to "suck in" acceptor imper-
fections in order to lower its free energy. Acceptor
imperfections may be available in the form of impurity
atoms, in which case (6.4) is relevant, or as lattice
vacancies, in which case (4.16) and accompanying re-
marks are relevant. Thus, an insulator decreases its free
energy strongly by moving its Fermi level toward the
gap center, thereby suppressing the free carrier density.
Thus an insulator will remain insulating even with high-
impurity concentrations.

8. SOLID-LIQUID INTERFACE AND
CRYSTAL GROWTH

The Fermi level is displaced relative to the center of
the energy gap by unbalance in impurity type. Then,
since in equilibrium the Fermi level is the same in solid
and liquid phase, it is clear that there is a variable step
in electric potential of magnitude ~Es' Ei

~
at the-

interface between solid and liquid (metallic) impure
germanium. (This is in addition to the potential step
arising from difference in work function in the intrinsic
case.)

S.d' —Eg' E~"

(EF Ed)—=E, E—," kT—ln 1+2 exp~ -- ~, (6.4a)
kT i

and, for acceptors

g s g 2's-

kT ln

This potential step is smoothed over a layer of about
10 ' cm in the semiconductor (rather than in the metal)
phase. The spatial variation in potential produces a
diGerence in equilibrium impurity concentration in the
surface layer from the bulk. The surface layer concen-
tration is, in fact, nearly independent of the bulk
concentration.

It is clear that too rapid crystal growth will result in a
nonequilibrium bulk concentration, ~i&., some compro-
mise between the surface layer and equilibrium bulk
concentration determined by the relative speed of
crystal growth and diGusion. This eGect is intensified
when the impurity-produced potential step has the
same sign as the intrinsic step and weakened when the
two steps have opposite sign. Indeed such a dependence
of distribution coe%cient upon growth rate is observed"
in ts-type but not p-type germanium. This suggests that
the intrinsic potential step makes the surface layer
p-type by about 0.15 ev. (See Fig. 1.) It may also be

Solid l iquid

Type
P

E~ intrinsic
n

——Fermi Level

P
E, Intrinsic

n

FEG. 1. Band model for solid-liquid interface in germanium.

APPENDIX: THE POSITION OF THE FERMI LEVEL
IN THE BAND STRUCTURE

The position of the Fermi level relative to the band
structure is determined by the donor and acceptor
populations, E& and E„through the charge neutrality
equation, '

—Q, n, +Qg pi=Nd N.=N, (A1—)—
together with the formulas (2.6a), (2.6b), (2.6c), (2.6d).

"R.N. Hall, Phys. Rev. 88, 139 (1952).

noted that diGusion of acceptor type impurities from the
surface layer to the bulk is aided by the potential step
while the diGusion of donor-type impurities is impeded.
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(Slightly different formulas would result from different
assumptions concerning the donor and acceptor de-
generacies. ) Solving the resulting transcendental equa-
tion for Er is complicated, (the case of nondegenerate
donor and acceptor levels has been reviewed by
Blakemore") but simple expressions for Er can be got in
two important cases: the exhaustion semiconductor
having nondegenerate carriers, and the insulator.

In the exhaustion semiconductor (A1) reduces to

N=e, p„— (A2)

where e, is the conduction band electron population and

p„ is the valence band hole population. If these obey
nondegenerate statistics

e,=e, exp(Er Ei ')/kT—, (A3a)

p„=I; exp(EF' Er )/kT, — (A3b)

where e, is the value of e, when Ed= Ã =0 and where

0)
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In an insulator, in addition to a large energy gap, one
has

.8

e, lV, (Ii g —E,p
exp I

—I((1,
ne Ne E kT )

(A6a)

p„N. &E,, E,.i—
exp I

—I((1,
p. N.

(A6b)

/Zn so that (A2) becomes

2.0
IO I2 14 I6

Log N

IS 20 22 N=nd p, — (A7)

FIo. 2. Fermi levels in semiconductors. The conduction band
energy, E„is taken as reference level for all semiconductors.

Ep' is the corresponding' value of Ep.

Ep' ——(E,+E„)/2+kT ln(N, /N„), (A4)

where E, and E„are the effective~ number of states in
the conduction and valence bands. Putting (A3) into
{A2) gives

Vsing (2.6b) and (2.6d) in (A7), one finds

&E,—E)
exp

l I
= Lien" + (N'e~+16N, )1Ng] (Aga)

kT J 4N.

&Ep —E)
!exp &kT)

or

&E& E&'q iV
&

iV—q'
expl — I= + I I+1

kT ) (A5a)

where

=4Ne[ Ne~"+(lV'e~+1—6N,Ne)*'j ' (Agb)

&Ep &F'~-
exp! — I= — +

I I +1
kT 3 2N, &2n)

(See Fig. 2.)
"J.S. Blakemore, Elec. Commun. 29, 131—153 (1952).

(A5b)
and

(See Fig. 3.)

E= (E,+Ee)/2—

(E. E.)/kT. — —

(A9a)

(A9b)


