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The problem of relating fundamental atom movements to the
change of the state of order of an alloy is attacked in a basic
manner by introducing an inhnite array of distribution functions
for the occupation of all possible sets of lattice sites. These dis-
tribution functions determine all the kinds of order in the lattice,
including the usual long- and short-range order. They are shown
to obey general equations of motion which are linear and in which
the kinetic parameters of atom movements occur as coefficients.

Solutions of the equations of motion must be found by approxi-
mations, and a variety of possible procedures are suggested. These
depend on expressing higher order distribution functions by com-
binations of those of lower order. The simplest of these procedures
is explored in detail for two mechanisms of atom movement,
direct interchange and vacancy interchange, and for two common
lattice types, AB b.c.c. and AB3 f.c.c. The result is a calculation

of the time dependence of long-range order in homogeneous
systems, and is expected to be reliable whenever the long-range
order is reasonably high. The simple theory leads to the Bragg-
Williams result at equilibrium, and gives a fundamental derivation
and limitation of the conception that ordering is a "chemical
reaction" of the type A +B& ~~ A&+8~. The vacancy and
direct interchange models lead to qualitatively similar, but not
identical results. Present evidence suggests predominance of the
vacancy mechanism, at least in close-packed systems.

The simple vacancy model is applied to experiments of Burns
and Quimby on electrical resistivity in Cu3Au. The observed
relaxation times, over a range of temperatures below the critical
temperature, are in reasonably good accord with theory when
parameters derived from diGusion measurements in Cu and Au
are employed.

1. INTRODUCTION
' QREVJOUS treatments of the kinetics of order-

disorder transformations can be classified as either
atomic' or chemicap —' in nature. The chemical treat-
ments, in which ordering is likened to a chemical
reaction, are able to proceed with a small number of
assumptions and with mathematical simplicity. The
assumptions, however, are rather sweeping, and their
validity is not clearly evident. Also, the parameters
which enter are phenomenological rather than funda-
mental. Recently Dienes' and Rothstein' have each
presented calculations of this sort which proceed from
somewhat diferent assumptions and arrive at diferent
results. The atomic theories with which the writer is
acquainted are devoted to rather special models and
approximational schemes. In the present paper it is
shown how a more general approach from the atomic
point of view can be formulated, and it is shown that
this approach can lead to actual calculations at a
variety of levels of approximation. A further result is
the demonstration of the degree of validity of the
chemical formulation given by Dienes, which is shown
to rest on certain specific approximations, and it is
shown how the phenomenological parameters of Dienes'
theory are related to fundamental parameters of atom
movements.

*Work done under the auspices of the U. S. Atomic Energy
Commission.' W. L. Bragg and E. J. Williams, Proc. Roy. Soc. (London)
A145, 699 (1934); W. S. Gorsky, Physik. Z. Sowjetunion 8, 443
(1935); G. Borelius, J. Inst. Metals 74, 17 (1947); S. Iida, J.
Phys. Soc. Japan 10, 769 (1955).The last paper gives an approach
much like the present one in considering the simultaneous develop-
ment of short- and Iong-range order. Attention is restricted to the
vacancy mechanism and the body-centered cubic lattice, however.

s G. J. Dienes, Acta Metallurgica 3, 549 (1955).' J. Rothstein, Phys. Rev. 94, 1429 (1954); 98, 1554 (1955);
99, 614 (1955).

4 Y. Takagi and T. Oguchi, Bull. Tokyo Inst. Technol. 83, 21I
(1950);Takagi, Oguchi, and Shirane, Bull. Tokyo Inst. Technol.
B3, 220 (1950).

The theory of ordering kinetics involves two distinct
problems. The first is to find the rate at which an atom
of given species will move from one lattice site to
another at a given temperature and with any given
population on the lattice sites in its environment. This
involves assuming one (or several) particular mecha-
nisms for atom movement, and applying the concepts
first developed in the theory of absolute reaction rates. '
The second problem is essentially a combinatorial
matter; it is to count the total number of movements
of each type occurring in unit time at a given state of
order and to relate this to the time rate of change of
that state of order. We suggest in this paper that the
convenient way to handle this is by means of a set of
multiparticle distribution functions and their first time
derivatives, and show how all likely mechanisms of
ordering can be fitted into this scheme. The general
equations cannot be solved rigorously by any known
methods, as was to have been anticipated in view of
the enormous complexity of the problem, but one is
readily led to approximations by which solutions can
be found.

These ideas are illustrated in the present paper by
working out the simplest approximation, that in which
the system is homogeneous and describable solely by
means of a long-range order parameter. Both vacancy
and direct interchange mechanisms are considered. It
is intended in a future paper to extend the solutions to
the case of short-range order, both with and without
long-range order, and to consider the special problems
connected with nucleation, growth, and coalescence of
domains of order. It is felt that the very simple ap-
proximation worked out in detail here, which, in one
form, is equivalent to the earlier Bragg and Williams

e Glasstone, Laidler, and Eyring, The Theory of Rate Processes
(McGraw-Hill Book Company, Inc. , New York, 1941);C. Zener,
in Iraperfections in Nearly Perfect Crystals, edited by W. Shockley
et al. (John Wiley and Sons, Inc.

&
New York, 1952), pp. 289—314.
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theory, is adequate to bring out most of the broad
features of ordering kinetics in homogeneous systems,
and that it is advisable to investigate these features
before becoming deeply embroiled in higher approxi-
mations to the combinatorial problem. The formulation
presented here is also capable of extension to problems
of diffusion in multicomponent systems and of stress-
induced ordering, to which we hope to devote attention
in future publications.

2. MULTIPARTICLE DISTRIBUTION FUNCTIONS

The ordering process can be conveniently described
in terms of a set of multiparticle distribution functions. '
Consider atoms of several types, A, 8, C, etc. , (in
general, T;) which are to be distributed over the sites of
a crystal lattice. Let r~, r2. r„bean arbitrary set of
e lattice sites. Define Prirs. ..r„(ri,rs, .r„)as the
probability that the e lattice sites be simultaneously
occupied by e atoms of specified types, type Tj on site

r&, type T2 on site r&, etc. These distribution functions
characterize the ordering system, and are in general
time dependent. The occurrence of lattice vacancies
can be fitted into the formalism by regarding vacancies
as a species of atom. Interstitials could likewise be
allowed for if the lattice were enlarged to include all
interstitial positions, some of which would be occupied

by ordinary atoms, others by vacancies, but this com-

plication will not be taken up here. Dislocations and
linear compressions of the sort proposed by Paneth, '
since they involve alterations in the lattice topology,
cannot be incorporated without modifying basic ideas;
it will be assumed that they are not of importance in

the ordering process.
These multiparticle distribution functions obey

certain identities. Summation of an e-site distribution
function over all types of atoms present in the crystal
gives an (I—1)-site distribution function. Thus

P P~(r) =1,

P P~~ (ri, rs) =P~(ri),
A'

Q PA'A(rl rs) PA(r2)
Al

Q PAA. 'A" (ri r2 r3) PAA'(rl r2)

Summation over all sites in the crystal gives a simple

Such distribution functions were apparently erst introduced
into order-disorder problems (in the equilibrium case) by T.
Murakami and S. Ono, Mem. Fac. Eng. , Kyushu Imp. Univ. 12,
309 (1951).' Notice that these are probabilities for certain types of atoms
to be on particular sites, not probabilities for particular atoms to
be on certain types of sites. For convenience in later work we
admit redundant distribution functions by obvious de6nitions of
the type Pzz(r, r)=P&(r), etc., and self-contradictory distri-
bution functions such as Pge(r, r) (where A WB), all of which are
de6ned to be zero.

'H. R. Paneth, Phys Rev. S.P, 708 (1950).

result only with one-site distribution functions:

P* P~(r) =&~, (2)

PAA'(ri rs) PA (rl)PA'(r2) (3a)

P~~ ~ (ri, rr, rs) - Pgg (ri, rs)Pg" (rs), (3b)

etc.
The one-site distribution functions are related to the

usual long-range order parameter, S, and the two-site
distribution functions for neighboring sites are related
to Bethe's short-range order parameter, ' r. For the
case of a two-component alloy with stoichiometric
composition, one finds

where f~ is the fraction of atoms of A-type, and r
denotes any n-type site. The case of 0. is somewhat
more complicated. For the body-centered cubic alloy
of composition AB, one can show that

and for the face-centered cubic alloy of composition
AB3 one Ands

tr=16(Pgn(r, r+8))—3. (6)

Here 6 denotes any nearest neighbor distance and the
angular brackets indicate averaging over r (which may
be omitted if long range order is absent).

In order to carry the calculations to useful conclusion
it will be necessary to make approximations. The
general scheme which will prove useful is to express
the distribution functions of higher order in terms of
those of lowest order. One form of this is a superposition
approximation, ' analogous to that employed in the
theory of Quids. The most drastic approximation which

9 F. C. ¹ix and W. Shockley, Revs. Modern Phys. 1P, 1 (1938).

where Ã~ is the total number of A-type atoms in the
crystal.

In addition there are the same symmetries (including
periodicities) in the distribution functions as in the
crystalline superlattice. Indeed, the symmetry of these
distribution functions de6nes the superlattice.

In what we shall call a homogeneous system the dis-
tribution functions are invariant to translation by any
vector of the super-lattice, that is, a family of relations
such as Pz(r+R) =Pz(r) are valid, where r is any
lattice vector and R is any superlattice vector. In an
inhomogeneous system the distribution functions vary
as one moves down the lattice, and domains of anti-
phase order, for example, would be reflected in the
values taken by the distribution functions.

On physical grounds one would expect that the
occupation of lattice sites sufficiently far away from
one another would be uncorrelated, so hereafter it will

always be assumed that relations such as the following
are valid:
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will sometimes be necessary will be called the com-
position approximation, and consists of using relations
similar to Eqs. (3) but for lattice points which are not
widely separated. In its most extreme form this approxi-
mation gives

PT1T2 ~ ~ T (11 r2 ' ' I' ) PT—1(rl)PT2(rs) ' ' PT '(1' ). (7)

This reduces the short-range order to an amount
dependent entirely on the long-range order, giving for
both the simple lattices cited above (AB b.c.c. and
ABs f.c.c.) o =S'. Above the critical temperature this
approximation would be much too drastic, but for S
near 1 it is reasonably good, as is shown by x-ray data. "
A rough lower limit of S for the use of this approxi-
mation is S=0.5.

3. EQUATIONS OF MOTION

Away from equilibrium all of the distribution func-
tions will be changing with time as the atoms exchange
places on the lattice. Many different mechanisms of
atom movements can be imagined, but the following
work will take up just two in detail, namely, direct
interchange and interchange with vacancies. Present
evidence, mainly from diGusion data, but also from
direct calculation, favors the vacancy mechanism of
atom movement in many common systems. Because
it is theoretically simpler, however, and because it is
useful to contrast the behavior to be expected from
several diGerent models, calculations will also be made
on the assumption that direct interchange is the pre-
dominant mechanism.

Consider a pair consisting of an A atom on site r and
a B atom on a neighboring site r+S. At a given tem-
perature and with any given set of atoms in the sites
around this pair, there exists a certain rate at which
the AB pair will reverse itself so that the 8 atom moves
to r and simultaneously the A atom moves to r+S.
The inAuence of the environmental population must be
taken into account, else no tendency toward ordering
will be found. Suppose, for simplicity, that only those
atoms which are nearest neighbors to the pair exert an
infiuence (more distant neighbors could be taken into
account in an obvious way), and let {X}denote the
particular set of atoms in these neighboring sites. Then
by Rzz({X})we will denote the rate at which the AB
pair interchanges under these circumstances. Likewise
let the rate of interchange of a BA pair, similarly
situated and with environmental set {X},be denoted
R»({X}).{X}is an ordered set of atoms occupying
sites with definite positions around r and r+6; this
set of sites will subsequently be denoted {x}.From the
context. it will always be clear which pair of (ordered)
neighbors determines {x}.Since consideration will be
limited to lattices in which all sites are geometrically
similar, R~s({X})and Rii~({X})do not depend on r

"J.M. Cowley, J. Appl. Phys. 21, 24 (1950); Phys. Rev. 72,
669 (1950);B.W. Roberts and G. H. Uineyard, J.Appl. Phys. 27,
203 (1956).

PA(r) =Z 2 Pii~ lxl (r, r+~, {x})RBA'{X}
dt 6 «x~

—P P P~ri(r, r+5, {xj)R~p({X}). (9)
«xJ

Interchanging A and 8 gives an equation for
dPii(r)/dt This is seen t. o be the negative of dP~(r)/dt,
as is already demanded by the identity P&(r)+P&(r)

In a binary system with two types of lattice sites,
and with homogeneous order, the identities (1) and (2)
show that P~(r) for a single value of r determines all
other single site distribution functions. Thus, letting r„
be an n site and rp a P site, one finds

P&(rp) = (f~/fp) (f-/fp)P~(r-—)

Pii(r ) =1—Pg(r.),
and

Pri(rp) =1 f~/fp+ (f /fp)—Pg(r ),

(1o)

(11)

where f~ and fii are the fractions of the atoms which
are of types A and B, respectively, and f and fp are
the fractions of the sites which are of types a and P,
respectively (f&+f& f,+fp 1, but ——it is not n——ecessary
that f& f ). Thus, Eq.——(9) with r taken equal to r,
say, exhausts the possible equations of motion for one

body probabilities in the homogeneous binary case.
In this same case, all two-particle distribution func-

and S. Related to each {X}is a set giving the same
occupation of sites about —6 as {X}gives of sites
about S. Call this conjugate set {X},. Then, clearly,

R»({X}.)=Radii({X}). (g)

Consider now a binary system, in which direct
interchange is the predominant mechanism. The prob-
ability of finding an A atom on r, a B atom on r+fi,
and the set {X} on the neighboring sites {x}, is
PAB lx) (r, r+ 6, {x}). In the case of the b.c.c. lattice
this is a 16-particle distribution function; in the f.c.c.
case it is a 20-particle function. The rate, on the average,
at which A atoms are disappearing from site r by
interchange with a neighbor at r+6, when the sur-
rounding atoms comprise the set {X},is

P~rr[x) (r, r+8, {x})R+ii({X}).
The total rate, on the average, at which A atoms are
disappearing from site r is the summation of this over
all possible sets of neighbors {X}and over all sites
which are nearest neighbors to r,

PAB ix) (r, r+~, {x})Ras( {X}).
~ «x)

A quite similar expression gives the average rate at
which A-type atoms are appearing on site r, and the
diGerence of these equals the net rate of increase of
probability that site r be occupied by an atom of type A.
Thus, one finds the basic equation
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tions referring to two sites of given separation y may
be shown to depend on a two-particle distribution
function of this type, say P»(r, r +y), and a one-
one-particle distribution function, say Pz(r ). Two-
particle distribution functions with a different

~ y~ are
independent. There are, then, an infinite number of
independent two-body equations of motion. They may
be seen to have the form

PAA (r r+T)
dt

Sw-Y
=p g P~~„~x}(r,r+y, r+y+5, {x})E~~({X})

5 {x}

+Q Q PBAA(X I(r, r+T, r+&, {X})&BA({X})
5 {x}

PAAB Xtj(r r+p r+ "(+~ {X})+AB({X})
5 {x}

PAABfXI (r r+ "( r+~ {X})+AB({X})~

{x} (13)

Here, in the summations, 5 again ranges over all
nearest neighbor displacements, except that when y
is a nearest neighbor displacement one value of 6 must
always be excluded, as indicated; {X}is the set of
environmental sites around o. The meaning of the
terms in (13) is straightforward. The first evaluates
ways of creating the AA pair by starting with an AB
pair, the second term evaluates ways starting with a
BA pair; the third term evaluates ways of destroying
the AA pair by producing an AB pair, the fourth term,
by producing a BA pair.

In a similar fashion, equations of motion for the
distribution functions of all orders may be readily
written down. The left-hand side is the time derivative
of a distribution function, the right-hand side is always
a linear combination of distribution functions of higher
order, with the basic rate constants E~~({X})as coef-
ficients. Except for the assumption of the direct inter-
change process for atom movements and the assumption
that each interchange occurs in a time short compared
to the time between interchanges, the equations are
rigorous. They are somewhat analogous to the basic
equations of modern kinetic theories of fluids. "

Presumably the entire set of equations of the type
of (9) and (13) and their higher order analogs uniquely
determines the development of the system in time,
given an initial set of distribution functions. Rigorous
solutions are hardly to be expected, but the system
offers an excellent starting point for finding approxi-
mate solutions by writing higher order distribution
functions in terms of those of lower order, thus making
the system finite.

"H. S. Green, The 3Eolecllar Theory of Fluids (Interscience
Publishers, Inc., New York, 1952).

The approximations can be made in a variety of
ways, depending mainly upon the degree of complica-
tion one is willing to cope with. For systems with long-
range order, a reasonably good approximation is to
reduce everything to a one-site distribution function,
as will be demonstrated in the next section, and then
to work with only one equation of motion. A better
approximation is to reduce many-site distribution
functions to combinations of one-site distribution
functions with two-site distribution functions for all
pairs of sites which are nearest neighbors. The rates of
change of several simultaneous variables must now be
followed (two in the simplest systems). Iida' has shown
how this may be done in one case and shows that the
Bethe-Peierls approximation' emerges for the equi-
librium state. Still higher forms of superposition or
composition approximations may also be used, the
number of independent variables rising rapidly as this
is done. For most purposes it would not seem profitable
to go beyond some form of two-site approximation.

4. APPROXIMATIONS TO THE EQUATIONS OF
MOTION —DIRECT INTERCHANGE CASE

This section will be devoted to the simplest approxi-
mational scheme following from the preceding for-
malism. Attention will be restricted to homogeneous
binary systems of stoichiometric composition, with a
superlattice containing only two types of sites. The
direct interchange mechanism will be considered to
operate exclusively. Complete working out of the
ordering kinetics will be done only for two systems,
the AB b.c.c. type of lattice and the AB3 f.c.c. type.

Suppose that an n site is surrounded by c nearest
neighbors, all of them P sites and geometrically equiva-
lent. It is convenient to apply Eq. (9) by taking"
r=r; then r+5 always refers to a P site. The com-
position approximation can now be applied to the
right-hand side of (9) by writing

PBAIx) (r, r+5, {x}) PB(r)PA(r+5)P(—xI ({x})
in the first term, with a similar replacement in the
second term. On account of the similarity of the dif-
ferent neighbors, summing over 6 is equivalent to
multiplying by c. One then finds

PA(r )=+oPB(r )P~(rp) E&P&(r )P&(rp), (14—)'
dt

where

and

Eo=cg P~XI({x})R~~({X}),
{x}

ED cQ P Ix~ ({x})Eg—g—({X}).
{x}

(15a)

(15b)

Equation (14) may be conveniently rewritten in
terms of a single variable, the long-range order param-

'2 As long as rigorous calculations are being made, it does not
matter whether one starts with r= r~ or r= rp. ln nonsymmetric
systems, such as the AB3 f.c.c. type, differences can arise when
approximations are introduced.
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Pxl ({x})=Pxi(xi)Px2(x2) Px„(x„), (17)

where xi x„arethe individual sites comprising the
set {x},and Xi X„arethe types of atoms comprising
the set {X}.

Finally, it is necessary to estimate the basic rate
constants Rii~({X}).Here the common assumption
will be invoked that there is a pairwise interaction
energy effective between nearest neighbors only, ' of
amount V~~, V~~, and V~~, between AA, AB, and BB
pairs, respectively, and a very simple treatment will
be given. Let v=2(V~~+ Viip —2V~~), where the
signs have been so chosen that for an ordering system
~)0. Consider an AB pair. Around the A atom there
is a shell of neighbors which are not neighbors to the
B atom, c' in number, and around the B atom there is
a similar shell of c' exclusive neighbors. "Call these the
A shell and the B shell, respectively. Suppose that of
the atoms in the A shell j are of A type, c' —j are of
B type, while of the atoms in the B shell, k are of A

type, c'—k are of B type. Then one Ands that inter-
changing the members of the AB pair increases the
energy of the system by an amount

hE;I, 2(k j)v—— —
If one plots the potential energy of the system as a
function of a coordinate measuring the fractional dis-
placement of the pair from the AB configuration toward
the BA configuration, it is reasonable to assume the
curves are about as shown in Fig. 1. For a symmetric
environment the two minima must lie at the same level,
as shown by the solid line. For an excess of A atoms in
the B shell the energy is increased on passing from the
AB to the BA configuration, and about half of this
energy increase has been acquired at the half-way
point. The large extra energy of deformation, U, (see
Fig. 1) should be substantially independent of the
"In both b.c.c. and f.c.c. systems, c'= 7.

eter S, by means of Eq. (4) together with Eqs. (10),
(11), and (12). Assuming stoichiometric proportions,
one gets

dsld&= (1If~)[«f~f~( s—)'
&r—(f~+fs&) (fa+ f~&)] (16)

This kinetic relation is precisely of the type postu-
lated by Dienes' [see his Eq. (10)$ on the assumption
that ordering is a bimolecular reaction corresponding
to the "chemical" equation A"+BP~~AP+B, where
A signifies an A atom on an n site, etc. The present
formulation goes further, however, in showing the
makeup of the two rate constants of the reaction,
Eqs. (15).

The rate constants themselves are seen to depend on
the order through many-site distribution functions.
They may be reduced to functions of the long range
order only by further use of the composition approxi-
mation in the form

K-j&0

K-j&0

K- j&0

AB
I

0
1

.5
SA

}

I.O

population of the A and B shells, so that the entire
curve has the course of the dotted line in Fig. 1. A
similar argument applies when there is an excess of 8
atoms in the B shell and gives the dashed curve of
Fig. 1. As a result one predicts that the activation
energy for passing from AB to BA is U+ (k—j)v, for
passing from BA to AB is U—(k —j)v. The environ-
ment, {X},of the pair is thus characterized by the
parameter k —j.

If v is the frequency of the vibrational mode asso-
ciated with interchange of the pair, one has, from
absolute rate theory,

R»({X})= v exp{—[U+ (k j)v$/RT)—, (18)

where any activation entropy which occurs may be
absorbed in the v, making this an effective frequency.
From Eqs. (17) and (18) one may now evaluate the
rate constants (15). This will first be done for the AB
b.c.c. case. Remembering that {x}must refer to the
environment about a pair of sites of which the first is
an n, the second a P, one sees that the A shell consists
entirely of P sites, the B shell entirely of n sites. Any
assignment of j A atoms to particular sites in the A

shell and k A atoms to particular sites in the B shell

has then the probability

P~ I({x})=[P (rp)]'[P (rp)]" '

X[P~(r.)j"[P~(r )&" "

~ith Eqs. (10), (11), and (12), in which f =fz= fp
= fp —',, this become——s

(1—p)'p" 'p" (1—p)" ",

where we have put P~(r ) =p. The number of sets {X}
(c'i (c"l

characterized by the numbers j and k is }

CONF IG URATIONAL COORDINATE

FIG. 1. Potential energy vs configurational coordinate during
direct interchange of an AB pair. The different curves shovr
effects of different environments.
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(binomial coeKcients), so one finds

Eii ——c P E(x) ( f x})Radii( f X})
fxI

Xexp{—[U+ (k —j)v]/RT)

=gv exp[ —U/RT]a'[1+p(a —'—1)]'4 (19)

Eo —Sv exp[( —U& 7vS)/RT], (21)

for the AB b.c.c. case, and

—12v exp[( —U+3vS)/RT], (22)

for the ABo f.c.c. case. Here p has been replaced by S
by use of Eq. (4). The formulas are obviously good
approximations to (19) and (20) when T))v/R. Further-
more, owing to the fact that they become exact for
S=1 at all temperatures, they remain fairly accurate
for S near equilibrium at all temperatures, and for
arbitrary S at temperatures as low as half the critical
temperature for ordering.

Equation (16) together with the approximations (21)
and (22) to Eo and Eri gives the same kinetics as the
theory of Dienes, ' except that here S enters Eo and ED
in a symmetric way, while Dienes has calculated under
the assumption that Eo is independent of S. The
parameters of Dienes' theory can be so chosen that
his ratio Eo/Eii is the same as that given by Eqs. (21)

where a=exp[v/RT], and the summations on j and k

have been carried out by the binomial theorem. From
Kqs. (8) and (15a) one sees that Eo is derived from
ICD by interchanging k and j in the term

exp {—[U+ (7o j)v]/R—T)

at the start of the calculation, since {X},is charac-
terized by the parameter j—k rather than k —j. This
is equivalent to replacing v by —v, so the formula for
Eo can be found by replacing a by u ' on the right-
hand side of (19).

The calculation for the AB3 f.c.c. case proceeds
similarly, though slightly complicated by the fact that
the A shell consists of 7 n sites, the 8 shell of 3 n sites
and 4 P sites. One finds

ED ——12v exp[ —U/RT]a —'[1+—',(a—1) (1—p)]'
X[1+(a—1)(1—p)]'[1+ io(a —1)(2+p)]', (20)

and again Eo is found from this expression by replacing
u by a ' throughout.

Useful approximations to these formulas result when
one replaces exp(v/RT) —1 by v/RT and uses further
approximations of the type (1+x)"=e"*.By these
methods one finds

and (22), and in this case there is rather little quali-
tative di6erence between the two formulations. The
frequency employed by Dienes, which will here be
written va, must be related to the more fundamental
frequency of the present treatment by the formula
v~=16v in both lattices. The parameter Vo of Dienes
is given by Vo ——14v, in the AB b.c.c. case, and by
V0=6v in the AB3 f.c.c. case.

Dienes has set up his equation so that the equilibrium
degree of order is identical with that calculated from
the theory of Bragg and Williams. ' The parameter Vo
thus enters the Bragg and Williams theory, where it
was defined as the energy change (per mole) upon
interchanging an A and B pair at the state of perfect
order. According to the discussion of Nix and Shockley, '
the interchange considered should be between distant
sites. In this manner one finds V0=16v and 8v in the
AB and AB3 cases, respectively. One could argue with
about equal force that the best definition of the Bragg
and Williams parameter would involve an interchange
between neighboring sites (because of the approximate
character of the theory, neither definition is demanded).
In this case one finds Vf)

——14v and 6v in the AB and
AB3 cases, respectively, in exact agreement with the
kinetically derived results above.

In its most approximate form the foregoing theory
thus reduces to the Bragg and Williams static theory
at equilibrium and forms a natural extension of that
theory away from equilibrium. In their original paper
Bragg and Williams also derived a relaxation time for
approach to equilibrium, assuming small departures
and a direct interchange mechanism of atom movement.
Their kinetics are likewise contained in the present
theory. One can readily invent schemes for treating the
foregoing equations of motion more accurately, but
these will not be taken up in this paper.

5. EQUATIONS OF MOTION FOR THE
VACANCY MECHANISM

When vacancies (symbolized V) are present in the
lattice interchanges with them will occur, and four
new types of basic rate constants arise: Given an A
atom on r and a vacancy on r+5, with a prescribed
population {X}on the sites around this pair, the rate
of interchange between A and vacancy will be denoted
R~i ({X}).The rate of the reverse interchange will be
written Ri~({X}),and the two similar processes, in
which a B atom occurs in place of the A atom will be
given the rate constants Rei({X})and Ris({X}),
respectively. Again, for simple lattices, one has the
conjugate relations

Rv~({X})=R~v({X}), (23a)
and

Radii(fX}.) =Rsv'({X}). (23b)

As previously noted, the distribution functions must
be generalized so that the vacancy is treated as a third
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species of atom. With two types of superlattice sites,
six kinds of one-body distribution functions can be
defined, and it can be shown that two of these are
independent. LSee Eqs. (26) to (29).g Thus, it is neces-
sary to write two equations of motion to deal with the
kinetics of long-range order, and for this purpose we
choose to investigate dPA(r)/dt and dPv(r)/dt, where
r will shortly be taken to be r .

For simplicity, we assume that vacancy interchange
occurs much more frequently than AB interchange and
neglect the latter. Arguments exactly like those which
established Eq. (9), with 8 replaced by V everywhere,
lead to the basic result

P~(rp) =1 (—fA/f p)+ (f-Ifp) PA(r-)
(f—./f )+ (f.lf )P.(r.)

=1 (f—lf )+(f-If )P ( -), (28)

P.(r )= (f.lf ) (f-—If )P.(r-), (29)

where the approximate forms depend on the condition
fv((1, and will be employed in the following.

Using these results, with r=r, r+6=rp, (24) and
(25) now become

P,—(r.)=O,P,(r.)Df,/f p) (f.—/f, )P,(r„)]
DAP—A(r )$(fv/fp) —(f /fp)Pv(r )] (30)

PA(r) =Q Q PVA lxl(r r+~ {x})RvA({X})
{x}

—Q p PAvlxl(r, r+6, {x})RAv({X}). (24) —Pv(r )—{DAPA(r„)+O&I1—PA(r )$}
{x} dt

Consider now the rate @t which probability of occu-
pation of site r by a vacancy must change. It increases
in cases where r is 6rst occupied by an A, the neighbor
r+5 by a V, after which there is an interchange, and
in cases where r is erst occupied by a 8, r+6 by a V,
following which there is an interchange; it decreases
in two ways which are the inverses of these. The cor-
responding equation of motion contains four terms, and
is readily seen to be

Pv(r) =Q —P PAvlxl(r, r+S, {x})RAv({X})
dt 5 {x}

+Z E P&vlxl(r r+&, {x})R~v({X})
{x}

—P P Pv A lx l (r, r+8, {x})RvA({X})
5 {x}

—E EP ( +&, { })R ({X})(25)
5 {x}

The simplest useful approximations to these equa-
tions of motion can be found by much the same pro-
cedure as before. The multisite distribution functions
are broken up by composition approximations in the
form

PVA lx'l (r r+~ {x})=Pv(r)PA(r+~)Pfx l ({x}),

Effective rate constants are defined which will later be
evaluated by further use of the composition approxi-
mation in the manner of (17). Finally, it will be assumed
that the vacancy concentration, fv, is always small, so
that terms of higher than first order in fv may be
discarded. Generalization of the relations (10) to (12)
for the ternary case (fA+ fit+ fv= f +fp=1, but it
it is not necessary that fA= f ) are

PA(r p) = (fA/f p) (f-lfp)PA(r-), — (26)

Pss(r )=1 PA(r ) Pv(r ) —1 PA(r„—), ——(27)

X
I (fvlf') (f./f—p)P'v (r.)]

—(OA L(fA/ fp)
—(f./f p) PA (r.)]

+D~L& (fAlf—p)+(f./f p)PA(r-) j}Pv(r.), (31)

where
OA=Z 2 Plxl({x})RvA({X}),

5 {x}

DA=E 2 Plxl({x})RAv({X}),
{x}

O~ ——Q Q Plxl({x})Rttv({X}),
{x'}

Ds=Z Z Plxl({x})Rv~({X}).
{x}

(32a)

(32b)

(32c)

An important feature of this ordering process is
apparent from the form of Eqs. (30) and (31). The
right-hand sides of both equations are of the order of
fv, but since Pv(r ) can never be larger than fv while

PA(r ) can be as large as 1, Pv(r ) is capable of chang-
ing at a very much larger rate, relative to its final
value, than PA(r ). As a result, Pv(r ) does most of
its changing in the very beginning stages of the ordering
process, after which it remains in quasi-stationary
equilibrium while PA(r ) varies to lits limiting value.
This is to say that one can, with very good accuracy
so far as PA(r ) is concerned, set (d/dt)Pv(r ) equal
to zero in (31), solve this for Pv(r ) in terms of PA (r ),
and use this to eliminate Pv(r ) from (30), thus re-
ducing the problem to one with a single dependent
variable. This same procedure is sometimes known as
the stationary state approximation in chemical kinet-
ics.'4 A rigorous discussion can be given, but will not
be attempted here. It should also be noted that the
equilibrium value reached by PA(r ) is the same with
and without use of the approximation. Following this
procedure Land noting that the rate constants (32)

"S. Glasstone, Text Book of Physical Chemistry (D. Van
Nostrand Company, Enc., New York, 1940), p. 1059.
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will not depend appreciably on Pv (r )j, one finds a simplified equation of motion:

(fv) O~l f~ f—.P~ j[Oa+(D~ &—a)P~ j D—~P~[fd4+(fs f—~)Da+ f~(Da 0~—)P~ j1
dt &fa) 1f~O~+fOa+(fp f~—)Da+f.[D~+Da 0—~ O—ajP~

(33)

where P~=P~(r ).
This equation is still more complex than that for

the direct-interchange case. It can be readily shown,
however, that the equilibrium degree of order is the
same on both models providing the previous rate
constants are related to the new ones by the formula

&o/Eo = (0~0a)/(D~Da). (34)

This result can also be understood in the terminology
of chemical kinetics: With the composition approxi-
mation the vacancy model is equivalent to the two
"chemical" reactions:

DA. DB
A +Vt' Aa+V and 8~+V 8 +V&,

OB

and at equilibrium this reduces to the single reaction

DgDB
A +Ba +~ A&+8 .

OAOB

The vacancy rate constants can easily be evaluated

by the methods used previously. We assume analogously
to (18) that

RA'v ({X}) —vA exp{—[Uz+ (&—j)vz)/RT}, (35)

where v~ is approximately the Einstein vibrational
frequency of an A-type atom, Uz is the activation
energy for A V interchange in a symmetric environ-
ment, j is the number of A-type atoms in the A shell,
k is the number of A-type atoms in the shell of sites
around the vacancy, and vz ——

2 (Vzz —Vza). Likewise,
replacing A by 8 throughout,

Rav({X})= va exp{—[Ua+ (t't —j)eaj/RT}. (36)

Since the vacancy concentration is small, no account
need be taken of possible vacancies in the environment
of the pair. D~ is now evaluated from (32b) and (35),
with full use of the composition approximation in sim-

plifying P(x 1({x}).The calculation is precisely similar
to that made earlier for the direct interchange case,
and the results (19) and (20) can be taken over by
inserting suitable modified parameters. We assume
stoichiometric proportions and express the results in
terms of the long-range order parameter, S, instead of E'.
Letting a~—=exp[v~/RTj, aa=exp[va/RTj, we find
the following results.

AB b.c.c. case:

O~
=8v~ exp[ —Ug/RTj

D. l

&«~"[1+l(a~"—1)(1+S)j" (3»)

The formulas for OB and DB are obtained from these
by replacing A by 8 throughout.

AB3 f.c.c. case:

=12vg exp[ —Ug/RT j
Xay+'[1+ xi (ay+' —1)(1—S)j'

&&[1+-'(a~"—1) (1—S)7
X[1+g (a~+' —1)(3+S)j4 (38a)

—12v~ exp[( —U~+3v~S)/RT]. (38b)

OgOa (1 S)' DgDa (1+S—)'—dS
=2fv— (39)

dt (Og+Oa) (1 Q+ (D&+Da) (1+S)—
AB3 case,

dS 4 30~0a(1 S)' DgDa(1+3S) (3—+S)—fv-
dt 3 3(0~+Oa) (1 S)+Dg(1+3S)+3Da—(3+S)

(4o)

0. DISCUSSION OF LONG-RANGE ORDERING

Each of the foregoing equations of motion has the
form

Again replacement of A by 8 everywhere converts
these into expressions for OB and DB.

The exponential approximations (37b) and (38b)
have been derived in the same way as (21) and (22),
and are accurate over the same regions.

With the relation vs+ma = v, one finds from the above
formulas that (34) is satisfied if the exponential ap-
proximation is used for all the rate constants, but not
otherwise. This means that the vacancy mechanism
and direct interchange mechanism operating separately
would produce only approximately the same order at
equilibrium. According to the principle of detailed
balancing, however, the two mechanisms should be in
individual equilibrium simultaneously, and the dis-
crepancy is symptomatic of the approximate nature of
the calculation. This suggests, of course without
proving it, that the exponential approximation to the
rate constants may compensate some earlier approxi-
mations and give a better answer than the more
elaborate formulas.

Finally, it should be recorded that the equation of
motion by the vacancy mechanism, (33), takes the fol-
lowing forms when written in terms of the long range
order parameter, with stoichiometric proportions, for
the two systems of present interest:

A J3 case,

=8v~ exp[( —U~& 7v~S)/RT7. (37b) dS/dt=P($),
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where F(S) depends on temperature, composition, type
of lattice, and predominant mechanism of atom move-
ment. In general it is not possible to integrate this
equation analytically, but an adequate understanding
of the theoretical predictions can be had from consider-
ation of F(S). States of equilibrium occur at zeros of
F(S), stable or metastable equilibrium occurring at
zeros where F(S) has negative slope, unstable equi-
librium at zeros with positive slope.

In all cases F(S) has a zero at the origin. The reason
for this is that a completely disordered system has no
reason for preferring to establish order by making any
particular sublattice become the o, lattice, and while one
choice leads to increasing S, other choices lead to
decreasing S. At temperatures above the critical tem-
perature the equilibrium S=O is also stable.

The AB b.c.c. system has the following simple
behavior: Below the critical temperature one additional
zero of F(S) occurs, the zero at the origin becoming
unstable, the new zero being stable and corresponding
to the equilibrium degree of long-range order. With the
exponential approximation to the rate constants, as
already noted, the equilibrium order agrees with the
prediction of the Bragg-Williams theory, rising mono-
tonically from zero to one as the temperature falls.
Both the direct interchange and vacancy models give
qualitatively similar results. The most important quan-
titative distinction is that the absolute value of F(S)
is proportional to exp( —U/RT) in the interchange
case, and to fy exp( —U&/RT) in the vacancy case
(we suppose now that U~—Us). Since the vacancy
concentration, fv, is proportional to the exponential
of the energy of vacancy formation, the vacancy
mechanism will dominate if the energy of formation
plus activation energy of motion of a vacancy is
appreciably less than the activation energy for pairwise
interchange.

Dienes'I has given illustrative curves of dS/dt for
the direct-interchange case, choosing the parameters
(in the notation of this paper) v=6.2X10" sec ',
U/R =5000'K and u/R = 143'K (so that T., the
critical temperature, is 250'K). [In Dienes' plot, En is
proportional to exp( —14 uS/RT) while Eo is inde-
pendent of 5, but the quantitative difference between
this and the case of rate constants given by (21) is
not great. $ In Fig. 2 we give a similar example of dS/dt
for the vacancy case, using the exponential approxi-
mations (37b) for rate constants. We have chosen

Ug/R= Ug/R= 1540'K, e~/R= vs/R= 35.7'K

(so again T,=250'K), vz ——va ——6.2X10" sec ', and
f&=5X10 . The figure shows a family of curves of
dS/dt plotted against S for various temperatures. The
minima at high S found for the interchange case do
not appear, but otherwise the curves are very similar.
(With Dienes' formula these minima occur for S less

500
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-2000
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$ ~
FIG. 2. Rate of change of long-range order ys long-range order,

for several temperatures. AB b.c.c. case, vacancy-interchange
mechanism.

than 1, with the present formula, they occur at larger
S.) The vertical scale is intended to be illustrative only,
as very diGerent values could be arrived at by choosing
other equally plausible values for ez and fz

For small departures from equilibrium order the
return to equilibrium will follow an exponential law
with a relaxation time z equal to the reciprocal of the
slope of F(S) at the equilibrium point. This argument
has already been used by Bragg and Williams' in their
early discussion of ordering kinetics. An analytic ex-
pression for v. can be derived from the foregoing formu-
las, but is too complex to be very informative. From
Fig. 2 it can be seen that 7. has a minimum at a tempera-
ture about 0.9 T„and approaches infinity as T rises
toward T, and also as T approaches zero. The meaning
of this is clear—at low temperatures relaxation slows
as all motion freezes out, and in the vicinity of T, relaxa-
tion again slows as the driving force for ordering
slackens. From Dienes' curves it is apparent that the
interchange model gives a minimum relaxation time at
a temperature much nearer T,, Consideration shows
that if one plots logr ws 1/T a curved line will result,
with only its low-temperature end asymptotic to a
straight line with a meaningful activation energy. In
the direct interchange case, this energy is U, in the
vacancy case it is the energy of vacancy formation plus
either Ug or U~, whichever is the larger.

The A83 f.c.c. lattice shows a somewhat more com-
plicated behavior, caused by its peculiarity in having
many 8—8 pairs even at perfect order. Dienes" gives
dS/dt curves for the direct interchange case (again
with the unimportant difference that Ko does not
depend on S) using the same parameters as for the AB
case. In Fig. 3 of this paper are shown illustrative
curves for the vacancy mechanism. In this the same
parameters have been chosen as for Fig. 2. The vacancy
and interchange mechanisms again give qualitatively,

"See reference 2, Figs. 1 and 2. "See reference 2, Fig. 6.
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FIG. 3. Rate of change of long-range order vs long-range order,
for several temperatures. AB3 f.c.c. case, vacancy-interchange
mechanism.

but not quantitatively similar results. At sufFiciently
low temperatures the curves are rather like the AB
curves, but for temperatures in the vicinity of T, the
curves develop a re-entrant portion leading to a negative
slope at S=0 and a third, unstable, equilibrium point at
intermediate 5. This peculiarity is, in the exponential
approximation to the ordering rates, exactly correlated
with the appearance of multiple roots in the Bragg-
William equation for equilibrium order. ' The critical
temperature, deduced from equality of free energies, is
205'K, and the point S=O is seen to be in metastable
equilibrium down to temperatures appreciably below
this. Likewise the state of equilibrium order becomes
metastable as T goes above T,. Borelius" has already
deduced the existence of a possible temperature hys-
teresis on the basis of the Bragg-Williams theory. A
treatment of the nucleation processes by which the
system escapes from metastable states requires going
beyond the homogeneous and uncorrelated model which
we have employed up to now. This question will be
taken up in a subsequent paper. The relaxation time
associated with small departures from equilibrium has
a minimum at a temperature near the critical tem-
perature, and does not approach infinity until the
critical temperature has been exceeded by about one
percent.

'7. APPLICATION TO Cu. Au

The recent measurements of Burns and Quimby"
on resistivity changes in Cu3Au give an opportunity of
applying the present theory. Unlike all earlier inves-
tigations, these involved changes of order under con-
tions where nucleation and variations of domain size

'r G. Borelius, Ann. Physik 20, 57 (1934)."F.P. Burns and S. L. Quimby, Phys Rev. 97, 15.67 (1955).

did not occur. In one series of measurements, "carefully
annealed wires were brought to equilibrium at 388'C,
a temperature about 5'C below the critical tempera-
ture, and then quenched to final temperatures in the
range from 338'C to 385'C. Following quench the
electrical resistivity was observed as a function of time
at constant temperature. In a second series, " samples
were equilibrated at 338'C, then rapidly heated to
final temperatures in the range 348'C to 388'C, and
electrical resistivity was again observed as a function
of time at constant temperature. Under these condi-
tions the domains of order presumably do not change
appreciably in size, and the relaxation of resistivity ob-
served is a measure of the relaxation of long-range order
toward its equilibrium value.

Unfortunately there is no information available by
which the order can be determined accurately from the
resistivity. Theory" shows that for sufficiently small
excursions the change in order is proportional to the
change in resistivity, but is unable to place reliable
limits on the region of linearity. Consequently we shall
direct attention to the region of small departures from
equilibrium, and only assume that resistivity and order
are linearly related in this region. Under these condi-
tions the ordering rate, F(S), can also be approximated
by a linear function, and, as discussed above, the
relaxation of order toward equilibrium follows an
exponential law:

S—S,=A exp) —I/rj,

where 5, is the equilibrium order, and

1/r=dF/dS evaluated at S,.

(42)

The relaxation curves of Burns and Quimby can be
approximated by decaying exponentials of the form of
(42). The fit is adjusted to be best near equilibrium. It
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FIG. 4. Relaxation time for long-range ordering es temperature
in Cu3Au. Crosses (order increasing) and circles (order decreasing)
are from data of Burns and Quimby. Solid line is from present
theory.

"See reference 18, Fig. 6.
~ See reference 18, Fig. 7.
» T. Muto, Sci. Papers Inst. Phys. Chem. Research (Tokyo)

50, 99 (1936).
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L3 (1+35,) (3+S,)jr+5+35,
X

~ (1+3S,)(3+5,) 6eg
(1—5,) —2 —10—65,

.RT(1—5,)

(43)

To fit the known critical temperature for ordering of
this alloy (393'C) it is necessary to take e&/R= 541'K.
Since the present theory now predicts S, at each tem-
perature, giving the Bragg-Williams result for this,
there are only two remaining parameters, t&fz' and
U~+W. These can be related to a coefficient of dif-
fusivity as follows: Within the assumption of A —8
symmetry being employed, the self-diffusivity of either
A or 8 in the alloy can be shown to be given approxi-
mately by D=De exp( —Q/ET), where Ds bstzfze, ——
Q=U~+W, and b is the lattice constant. Careful
measurements of Ds and Q in CusAu have apparently
not been made, but it can be argued that these quan-
tities should not differ widely from their values for pure
copper or pure gold. Recent work gives, for Cu,"
De ——0.20 cm'/sec, Q=47. 1 kcal/mole; for Au, " Ds
=0.028 cm'/sec, Q=39.2 kcal/mole. Also the chemical
diffusivity of Au in Cu at low concentrations gives
Ds 0.1 cm'/sec, Q =——44.9 kcal/mole. '4 We choose,
arbitrarily, Uz+ W =44 kcal/mole, which is inter-
mediate between the values for the pure metals, and
vzfzs 7X10rs sec—', whi——ch, by the above relation,
gives Ds ——0.1 cm'/sec. Employing (43) a theoretical

ss A. Kuper et at. , Phys. Rev. 98, 1870 (1955)."B.Okkerse, Bull. Am. Phys. Soc. Ser. 0, 1, 149 (1956).
"A. B. Martin and F. Asaro, Phys. Rev. 80, 125 (1950).

is then good to within about 5% everywhere except
for four cases in which the misfit at small times ranges
up to 25%. In view of the two approximations already
discussed this would seem to be an adequate agreement.
The relaxation times thus determined are plotted
logarithmically against 1/T in Fig. 4. The points fall
on a fairly well defined curve, which, as anticipated, is
far from linear.

The present theory has also been used to calculate
these relaxation times. The vacancy interchange
mechanism was assumed [Eq. (40)] and the exponen-
tial approximations to the rate constants were em-

ployed. In the absence of clear indications to the
contrary, it was assumed that U~=U~, ~~ ——~~, and
t ~ = vtt. The concentration of vacancies, fv, was
assumed to be given by the usual formula

fv fv' exp——t
—W/RT].

In this T was always taken as the temperature after
quenching, since the time for equilibration of the
vacancy concentration can be calculated to be very
much shorter than the times involved in these measure-
ments. One then finds

(1+35,) (3+5,) i
r=(gtgft') 'expt (Ug+W)/RT)

3 (1—5,)'

curve of v is found which is shown as the solid line in
Fig. 4. The agreement with the experimental points
seems to be quite as satisfactory as the rough nature of
the calculation would require.

Rothstein' has also fitted his quasi-chemical theory
to the Burns and Quimby measurements. As yet a full
account has not appeared in print, but it is apparent
that the parameters which he deduces are quite dif-
ferent from those found here. In particular, the energy
change on ordering is very much larger in his picture,
and the equilibrium degree of long-range order is
predicted to be exceedingly close to unity in the tem-
perature range concerned. X-ray, thermal, and other
evidence is not in accord with these conclusions.

By refining the present calculations, even closer 6ts
to the curves of Burns and Quimby could be attained.
In particular, the departure of F(S) from linearity
in the vicinity of S, could be allowed for, and this would
change the time dependence of the relaxation from a
single exponential to a more complicated form. Any
improved experimental agreement at larger departures
from equilibrium would, in our opinion, be without
significance unless adequate linearity of the order-
resistivity relation had been established.

8. SUMMARY AND CONCLUSIONS

(1) The set of multiparticle distribution functions
introduced here, although seeming to comprise a
rather elaborate formalism, gives a natural and powerful
apparatus with which to discuss the ordering process.
In terms of these functions, general kinetic relations
(equations of motion) can be immediately written
down, and various schemes of approximation for sim-

plifying the equations suggest themselves.
(2) The simplest possible approximation is that in

which all distribution functions are expressed as
products of one-particle distribution functions. It is
reasonably good for cases where long-range order is
high (say, roughly, 5)0.5), and allows the kinetics of
ordering, for homogeneous systems, to be worked out
in simple and plausible forms.

(3) The vacancy and the direct interchange mecha-
nisms studied in the simplest approximation, give
qualitatively, but not quantitatively, similar results.
The vacancy mechanism, on present evidence, is likely
to predominate.

(4) The AB b.c.c. system and the ABs f.c.c. system
have been treated. There are some characteristic dif-
ferences, independently of the interchange mechanism
assumed, the AB3 system being susceptible to under-
cooling and superheating.

(5) The simplest approximation leads to the same
equilibrium degree of long-range order as the Bragg-
Williams calculations. It also admits an explanation in
"chemical" terms, the direct interchange mechanism
being equivalent to the "chemical reaction"

A +Bt'~~A~+B
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and the vacancy mechanism being equivalent to the
two "chemical reactions" A +V~ &~ A~+ V and
B +V~ ~B~+V . The reaction rates in these models
are derived in terms of the fundamental parameters of
atom movements, and are themselves order-dependent.

(6) The vacancy-interchange model has been applied
to the case of Cu3Au, which has been studied experi-
mentally by Burns and Quimby. A Bsy—mmetry was
assumed, an activation energy and a pre-exponential
factor were taken from the measurements of self-dif-
fusion in pure copper and pure gold, and the remaining
parameter of the theory was adjusted to produce
agreement with the known critical temperature for
ordering in this system. The theory then gives reason-
ably good agreement with relaxation times observed by

Burns and Quimby over the temperature range of the
experiments, 338'C to 388'C.

(7) The developments outlined above have been
concerned with homogeneous systems. The basic ap-
paratus of multiparticle distribution functions and
their equations of motion is equally applicable to
inhomogeneous systems, including cases of domains of
order in a disordered matrix, domains of antiphase
order, and diffusion in alloys.
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It is known that the free energy of an imperfect semiconductor or insulator crystal contains terms which
arise from the ionizability of these imperfections and which represent chemical interactions between imper-
fections of the same and different kinds. We show that these ionization terms, which involve the Fermi level
and the parameters of the energy band model, explain the systematic differences between e- and p-type
semiconductors in lattice vacancy concentration, in substitutional atom diffusion coe%cients, and in ampho-
teric impurity behavior. The ionization terms also explain the variation of solid-liquid impurity distribution
coefficients with the crystal growth rate of certain semiconductors, and also the well-known "charge balance"
effect in insulators.

1. INTRODUCTION IJ„=B,(p, T)+kT lnX, Er—
'T is well known'~ that the solubility of an ionizing

~ - impurity in a semiconductor is aGected by the
electron and hole-concentrations. This happens because,
roughly speaking, the free energy needed to insert, say,
a donor atom in a semiconductor lattice is reduced by
the energy liberated in the ionization of the donor, i.e.
by an electron falling from the donor level to the
Fermi level.

Reiss' has given a statistical treatment of this effect,
showing that the chemical potentials of donor and
acceptor impurities have the form

E Epi-
kT ini 1+2 exp — i, (1.1b)

kT

where X~ and X are the donor and acceptor concentra-
tions, and Ep, E~, and E, are the Fermi level, donor
level, and acceptor level, respectively. The main as-
sumptions behind (1.1) are as follows:

(a) The energy band model is adequate. (For defi-
niteness the donor and acceptor levels are assigned
statistical weight 2.)

(b) The ionization interaction provides the only de-
parture from regularity4 of the donor and acceptor
solutions.

(c) The difference between Gibbs and Helmholtz free
energy is negligible.

Using (1.1), Reiss calculated' the distribution coefii-
cient for an ionizing impurity atom between two phases,
in terms of the concentration of other ionizing impurities.
The results agree with experiment. '

In Sec. 2 of this paper, we present an alternative

pg =Bg(p, T)+kT lnXs+Er

Er E~y-
kT ln~ 1+2 exp-—- ~, (1.1a))'
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