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Nucleon-nucleon scattering data from 0 to 274 Mev are dis-
cussed by means of a boundary-condition approximation. For
internucleon distances greater than the core radius, which may
depend on the state under discussion, the nucleon-nucleon inter-
action is assumed to vanish, while at the core radius the loga-
rithmic derivative of the wave function or the reaction matrix
satis6es a boundary condition. Assuming charge independence,
it has been found possible to fit most of the experimental data
with all but one boundary condition energy-independent. The
core radius for the 'So state is assumed to decrease with increasing
energy. We find that p —p scattering is composed mostly of
scattering in the 'So and 'I'o states, both of which give isotropic

distributions. The scattering from the 'Po state is close to the
scattering by a repulsive sphere of radius 1.32X10 " cm. The
scattering in the isotopic singlet state below 100 Mev, assuming
that the n —p angular distribution is symmetric about 90', is
entirely determined by the low-energy 6t to triplet ('S&+'D&)
n —p scattering. Above 100 Mev the ('Si+'Di) states make the
major contribution to the isotopic singlet scattering. The pre-
dicted cross sections fail signihcantly in only one detail: they are
not sufficiently large for n —p scattering near 180'. Regardless of
the validity of this particular fit, the boundary-condition approxi-
mation is found to provide a comparatively simple method for the
broad correlation an'd understanding of the experimental results.

I. INTRODUCTION

"OST of the various phenomenological models
)i ~ ~ which have been suggested for the correlation
of nucleon-nucleon scattering data assume a local po-
tential V(r,o,~) between the nucleons. ' Here r is the
internucleon radius vector, e represents the spin opera-
tors for each nucleon and ~ the isotopic spin. These
models have become more and more complex as more
data have become available, but nevertheless have
failed to match the experiments in one or more crucial
aspects. The most successful of these models, the one
proposed by Jastrow, ' does remarkably well in fitting
angular distributions as well as total cross sections, but
fails to yield appropriate polarizations as well as su%-
cient isotropy for p —p scattering. '

On the other hand, developments in the meson theory
of nuclear forces4 suggest that such a simpli6ed descrip-
tion of nuclear forces is only possible if the two nu-

cleons are far apart. When r is less than the meson

Compton wavelength, higher order effects, in which

many mesons are interchanged, become important, and
a nonlocal potential is required to describe the nucleon-

nucleon interaction. This region is, of course, very
important in high-energy nucleon-nucleon scattering.

In the present paper, we shall go to the extreme of
using a completely nonlocal interaction. Specifically,

* Supported in part by the joint program of the U. S. Atomic
Energy Commission and the 0%ce of Naval Research.

t Presented in part at the Washington meeting of the American
Physical Society, 1953; Phys. Rev. 91, 454(A) (1953).' See for example R. S. Christian and E. W. Hart, Phys. Rev.
77, 443 (1950); and R. S. Christian and H. P. Noyes, Phys. Rev.
79, 85 (1950).' R. Jastrow, Phys. Rev. 79, 389 (1950); 81, 165 (1951).' L. J.B.Goldfard and D. Feldman, Phys. Rev. 88, 1099 (1952);
D. Swanson, Phys. Rev. 89, 740 (1953);89, 749 (1953).' M. M. Levy, Phys. Rev. 88, 725 (1952); A. Klein, Phys. Rev.
90, 1101 (1953); 92, 1017 (1953); S. Drell and K, Huang, Phys.
Rev. 91, 1527 (1953).

the interaction in each state is to be represented by a
boundary condition on the logarithmic derivative of
the wave function at a core of radius ro, which may
depend on the state in question. In other words, we
shall determine the reaction matrix for the system.
For r greater than ro, the interaction energy will be
taken to vanish. Such a description was employed by
Breit and Bouricius for the discussion of low-energy
singlet 5 scattering. Here we shall generalize so as to
include triplet scattering with tensor mixing as well as
states of angular momentum higher than zero. The
boundary conditions are clearly equivalent to the phase
shifts and are, therefore, just another representation of
the data. However, as we shall find, the boundary
conditions we obtain are mainly independent of the
energy. This result has dehnite implications for the
physical nature of the nucleon-nucleon interaction,
implications which we shall now discuss. Of course, it
should be borne in mind that a boundary-condition
model is at best a rough approximation to the actual
interaction.

One of the implications of the meson theory of nu-
clear forces is its indication of a region in which many
virtual mesons are present, or equivalently in which
the interaction energy is large. Here the behavior of the
nucleons will be relatively insensitive to the value of
their kinetic energy at infinity. Of course, this region
has no sharp boundary. Rather one can only say that
such an energy-independent description will hold
accurately for sufficiently small interparticle distances.
One would expect that, as the kinetic energy at in-

6nity increases, the region in which an energy-inde-
pendent description remains possible will shrink. For
large internucleon distances the interaction energy
according to meson theory should be described by a

z G. Breit and W. G. Bouricius, Phys. Rev. 75, 1029 (1949).
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local potential insofar as the "low-energy" theorems
are valid.

This suggests the following phenomenological model.
We crudely represent the energy-independent core by
means of a set of energy-independent boundary condi-
tions at a core distance ro, which may be state de-
pendent. For r) ro we would then assume phenomeno-
logical local potentials. Levy's and Jastrow's models
fall into this general class, for they took a repulsive
core corresponding to the wave function going to zero
at the boundary of the core. As the kinetic energy in-
creases, we would expect ro to shrink with energy (or
equivalently the boundary conditions would change).
These changes should be quite small for energies
considerably less than the average interaction energy
in the core, i.e., for several hundred Mev.

We now compare this description with the one actu-
ally used in this paper, in which the local potentials
external to the core are dropped. We shall refer to the
latter as the boundary-condition approximation. ' One
would expect that this approximation will be more
energy dependent than those describing the more re-
fined model. In particular, at low energies the core
radius should, in order to include the effect of external
potentials, be of the order of the meson Compton wave-
length and thus considerably larger than the actual
core radius. As the energy increases, the core radius
should shrink until at sufficiently high energies, where
the external potentials are not important, it should
approach the correct core radius. ~

We conclude the introduction by indicating this
paper's scope and limitations and by summarizing its
contents. We shall attempt to fit all nucleon-nucleon
scattering data in the energy range from 0 to 274 Mev.
This fit should not be expected to be precise, since
small deviations might very well be accounted for by
corresponding fluctuations in the boundary conditions.
Our main objective will be to obtain a broad correlation
and understanding of the data. It is just for this
purpose that the boundary-condition approximation is
most useful, and this should be regarded as one of our
principal results independent of the validity of the
particular fit of the data we obtain. Calculations with
this approximation are very much simpler than those
required by a potential model but still, as we have seen,
rather direct physical interpretation of the results may
be obtained.

The contents of the paper are as follows. In Sec. II
the formal analysis of the problem is presented. We
include here the explicit formulas (1) for the phase

Another insight into the boundary-condition approximation
may be obtained if one notes its equivalence to an infinitely re-
pulsive well for r(ro and a singular potential at r=ro. In effect,
then, this approximation compresses the external potential such
as that given by Levy or Jastrow into the singular potential.

~ It should be noted that the scattering resulting from the usual
monotonic potentials can be represented by an energy-dependent
boundary condition. Such energy dependence would usually be
more rapid than that described here and would even require, at
some energies, negative core radii.

%=fg, (2)

where / is the orbital angular momentum in units of
A. The corresponding core radius is roi, and the boundary
parameter F is f~. A similar simple structure prevails
for the triplet states in which J, the total angular
momentum, equals /. The wave function is Pq~, the
core radius ro JJ' the boundary parameter F is fjj The.
other triplet states in which /= J&1 can couple so that
+ is a unicolumnar matrix

(3)

The corresponding core radius is written roJ. F~ is an
Hermitian matrix which we may take to be real since
the complex parts of the elements of F may be absorbed
into the wave function. Ii is given by

For example, Fi will couple the 'Si and the 'Di states.
The general form (4) breaks down for the J=O triplet
state, where only one state, the 'Po, can enter. The
core radius is roo and the boundary parameter, fo, .

In the discussion below we shall usually drop the
subscripts in ro designating the state since the latter
will usually be stated explicitly.

Singlet Phase Shifts
For r) ro~ the wave function f~ for the singlet state

for the neutron-proton system is

where 3 & is simply an amplitude, k is the relative wave
number, h~o& (x) and h~~" (x) are spherical Hankel
functions of the first and second kind:

h)~" (x) —+ (1/x)e'&~ —"& as x —& ~,
h~"'(x) —+ (1/x)e "i" as x —& ~

shifts including low-energy effective range approxima-
tion; (2) for binding energy of the bound states; (3)
differential and total cross sections; and (4) for polari-
zation. In Sec. III, the low-energy data (p —p scatter-
ing, m —p scattering and properties of the deuteron)
are discussed. In Sec. IV we turn to the high-energy
data. Section V contains the conclusion and, in par-
ticular, a list of the boundary parameters required to
fit the data.

II. FORMAL ANALYSIS

The fundamental assumption of our model is ex-
pressed in terms of a boundary condition

ro(d@'/dr)r =ra=5%'(ro),

where 0' is a state or appropriate group of states of the
same total angular momentum, ro is the core radius
assigned to O'. For the singlet states
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0+ 1
Q 'g0 + + &0

fo fo 3fo'

fo+1 (fo+1)' j2 fo+1)
+ — + +, i

—
i

~0'
3fp 3fps 3fp' &5 3fp l
——&0/&0+ (po/r—o) pro' Po (p—o/&0) ~0'. (9)

fl+tanQl
tang) ———tansy

fl+tanpl
(7)

where in terms of j~ and n~, the spherical Bessel and
Neumann functions,

The quantity z& is the phase shift. Substituting form (5) length. We find for /=0 that
into (1) leads immediately to an expression for the f 1 1 fgp 1
phase shift x cot

tansy( = —(j t/el); tannl —— xo(dj—i/dx)/j &,
'

tanPr = xp(—dry&/dx)/n,

These functions are evaluated at xQ
——krQ. '

At low energies, particularly, it is useful to obtain
explicit energy expansions of Eq. (7), which can be
interpreted in terms of effective range and scattering

(10)+0=&ofo/(f0+1),

(fo+1)'
PO= 2rQ

3fo' fo

Similar expansions may be obtained for other / values:

Hence, the scattering length aQ and effective range pQ

are given by

g 2l+1

coty~
(1 3 5 2/+1)(1 1 3 2/ —1)

(fl+/+ 1)

2/+1 1 1
X 1+~0'~ (12)

4 (2/ —1)(2/+3) (fl+/+1) (2/ —1) (fl—/) (2/+3) J

We turn now to singlet p —p scattering. The main
change from the e—p analysis is that in (7) one must
replace the spherical Hankel functions by the corre-
sponding Coulomb wave functions. Ke shall not detail
the results here as they will not be essential for much
of our analysis. However, at low energies the analog
of expansion (9) is required. This may be obtained
from the work of Breit and Bouricius. ' Making the
appropriate expansions we 6nd

(Cp/ll) cotl)0 —2 lnrl+r/0/& f&"+f ' /r)'+f ' /ll' (13)

Here
rl = e'/Ae, ll

—'= 40.018,
Cp' ——2lrrl/(e' & 1), qp/—2ll = 2y —1+Re/(iri),

where y is the Euler-Mascheroni constant, lP is the
logarithmic derivative of the gamma function, E is the
energy in Mev in the laboratory system. The expres-
sions for f&'& are

f&"= —2 ln(2rp/a)+ (rr/y),

f"'=L(P/~) —(~/'/v') (rp/~) 3(rp/~),
f"'= L(e/~) (P~/~')3(~0/—~)',

(15)=2-4("/ )-(f.+1)( /"), /l=-;(f. -1),
V=fo 2(~o/~), .=0 fo—/24, —
6= (fo/6)+ 0+ (&/9) (~0/&)

8 Lowan, Morse, I eshbach and Lax, AMP Report 6.21R, Sec-
tion 6.1-Sr 1046-2032 (unpublished).

9 G. Breit and M. H. Hull, Jr., Am. J. Phys. 21, 184 (1953);
G. Breit, Revs. Modern Phys. 23, 238 (1951).

The quantity u is (A'/lie'), where ll is the reduced mass
of the proton-proton system; u equals 5.76)&10 " cm.
The evaluation of f"' is correct to order (rp/a)'.

Triplet Phase Shifts

The states for which l=J are not coupled with the
other triplet states. Hence, the phase shifts for these
states are determined by the equations given above if
we replace rir by rlqq and fl by f~q For the ot.her states
of a given J, l= 5&1, the determining boundary con-
ditions are

f0~.~ ll (f~~ l-f~'", )—(4~, ~ l'l—
(«)

Egg, g+l ) ~ f~'" f~, g~l) (1/g g~l)

The wave functions and their derivatives are evaluated
at F=FQ.

We shall only need to determine the "eigenscattering"
mixtures and the corresponding eigenphases. "Let the
eigenvector solutions of Eq. (16) be denoted by C Jt"',
where n has two possible values, and the corresponding
phase shifts are qJ& ). I et

Then

f PZ, Z—l

&VZ, Z+l' '~

(17)

'0 J. Schwinger (unpublished). J. Blatt and L. C. Biedenharn,
Phys. Rev, 86, 399 (1952).
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where e~ is the spherical Neumann function. Sub-
stitution of (17) in (16) leads to a pair of linear homo-

geneous equations for Ag'"' and B~' '. The deter-
minant of the coe%cients which must vanish leads to
a quadratic equation determining tang&{: ):

As may be readily veri6ed, one of the two solutions of
(20) approaches fJ, J I, as fJ") goes to zero. By suit-
able redefinitions an equation can similarly be found
for which the solution approaches fJ, J+I, as fJ'" goes
to zero. The mixing parameter eJ ' & is defined by

SQ[jJ 1'—(tant) J( ))22J 1']=[jJ I—(tant) J ( ')22 J ) =BJ(~)/A J(~). (22)

(fJ(t))2
X fJ, J-I+-

jJ+I'—(tant) J( ))22J+I'
&0 J, J+1jJ+I—(tan'g J )Ã J+I

(18)

tansy") tan& J"'———1.

The equation determining eJ& ' is

(23)

If the two possible values of eJ( ' are e~&') and ~J&'),

then" it follows that

For greater convenience in discussing our results, we

introduce the auxiliary quantity F&' ', which might be
described as the effective diagonal coupling for the
l=J—1 state, i.e.,

FJ' )+tan(IJ I
tangy( & = —tanbg j

FJ(~)+tanpJ I
(19)

(I(FJ( ))2+bFJ( )+c=p,

(I tant) J—I+tang J; J+I

b= fJ, J I(tan—8J I+tant) J, J+I)

+tan(IJ I tant)J I+tanPJ I tant)J, J+I

()J 1
—tant) J+1 (20)

+(fJ"')'
fJ, J+I+«np J+I

fJ, J I[ta—n(2J I tanl) J I+tanp J I tant) J, J+I]

where

tan(IJ 1 tan5J I tRllPJ I tan()J+I
+ (fJ'")'

fJ J+I+tanp Jyi

fJ Jul+tan(IJ+I
tang J J+~———tan6J+~

fJ, J~I+tanp J~I
(21)

in complete analogy to Eq. (7). From Eq. (18) FJ' ' ls
the solution of the following quadratic equation

tan2J = [(FJ" fJ, J—1)/fJ— ](22J 1/I J—+1)
X[(tan()J I—tant)J( ))/(tant)J+I —tangJ( ')]. (24)

By expanding the various factors appearing in (19)
and (20), it is possible to obtain an energy expansion of
cotpJ-& '. We give here only the energy expansion for
the J=1 state, where the principal component at low

energy is the '5&. The expansion of x0 coty&' ' is of the
form

x() cott)I( ) —(ro/(II)+2 (pl/«)~o2 —PI(po/ro)'xo', (25)

where a~ is the scattering length and p~ is the triplet
eR'ective range. We find

"/"=1+(1/p),
PI/2«= (1/3) {1-(1/P)

+ (1/p2)[1 (f (t))2/(f +3)2])
& (p /ro)'= (1/15){(—1/3) —(1/P)+ (1/P')

X[2—(5/3) [(fl'")'/(f12+3)'] (26)
X[f»+4]]+(1/P )[-(5/3)
+5(fl'")'/(f»+3)' —(5/3)

X(f '")'/(f +3)']),
P =fIO (fl'")'/(f12+—3).

It will also prove useful to have the low-energy ex-
pansions of FJ& ). From Eq. (17) we obtain

(fJ'")'
FJ( )=fJ, J—I—

fJ, J+I+tanpJ+I(1+tant) J+I' cott)J( ))/(1+tanl) J+I cott) J( ')

We note that to obtain the three quantities fJ, J I, fJ, J+1
and (fJ&')) making up the FJ matrix, the experimental
data must be sufficiently well known up to energies at
which the x()' term in (28) becomes important. It can
be seen that for large values of J, or sufficiently small
values of fJ"', or fJ J+I&0, the coefficient of x()' can
be quite small so that for a good part of the energy
range Ii &( ) will depend only on low-energy parameters
as determined by the first two terms of Eq. (28).

We introduce the quantity qJ (") by the equation,

(27)coty'' ' —+ —cotbg gqg(").
xp~0

For J= 1, ql( ) equals («/al), as can be seen from (25).
In terms of these quantities, we obtain

[f.. . (fJ&'))'/(fJ J+I+J—+2)]
@02(f t))2J/([(2/+ 1)(fJ J+I+J+2)2]

( J(t))
Bound States—X0

(2/+1)'(2J —1)[fJ, Jg1+J+2]'
2J—1

X 1—qJ"+
fJ.J+I+J+2-

Sound singlet systems are described by the wave
function

(28)
PI=Atht(I)(iPr) —+Ate '(I+I)~)2e ("/Pr as r~ tc. (29)
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Boundary condition (1) now yields an equation deter-
mining P and therefore the binding energy:

f&
= iPr

ski�

"&' (iPrp)/kin & (iPrp) (30)

A similar equation holds for uncoupled triplet states,
such as t= J and /=1, J=O. One need only replace f&

by the appropriate fj& Th.e function on the right-hand
side is a monotonic function of prp, decreasing as p
increases. Its maximum value is —(l+1). Therefore,
if f& is larger than —(l+1), there will be no bound
states.

The equation determining the binding energy for a
triplet state where coupling through fj&" is involved
may be obtained from Eq. (18) by substituting iprp
for xp and k"'(iPrp) for j&—(tan&i)&t&. Then

kj i'(iprp)
fj, j i=ipr-o

kj—g iprp( )
(fj'")'

(31)
fjj+i ip, rok j—+t'(ipro)/k j+ i(ipro)

We observe that, if fj j+t) —(1+2), then a bound
state exists only if

fj,j i& J+[-(fj"—')'/(J+2+ fj, j+i)]. (32)

The mixing parameter tan~ J( ' is obtained from

tane j'~& fj&'&k j t(——iprp)/

[iprpk j+i (iprp) —fj j+ik jest(iprp)]. (33)

o "&= (1/4k')Q j,Bj,Pz(cost' )),

B,= p (J&-&
I

J'i») I (J~J'p; 1L),
J,Jj,~,P

(35)
(J' 'I J"e&)=sinti j' ' sin&1j 'e& cos(&1j&~&—

t&j.«&).

(I~JPJ1L) = IZ Z(/Jt'J';1L)(t'I~, , &»)(~,~.& I/) Io.

Here Z are coefFicients introduced by Biedenharn,
Blatt, and Rose" and tabulated by Biedenharn. "The

"Biedenharn, Blatt, and Rose, Revs. Modern Phys. 24, 249
(1952)."L. C. Biedenharn, Oak Ridge National Laboratory Report
QRNL —1501, May, 1953 (unpublished).

Cross Sections

The differential and total neutron-proton cross sec-
tions for the singlet case are

o „„~"= (1/16k')
I P&(2/+1) (e""~ 1)Pi(co—st&)

I
',

Q„~&o&= (s/k')Q&(2/+1) sin'&&i.
(34)

We have already included the factor of (1/4) corre-
sponding to the probability of finding the system in a
singlet state. In the other formulas of this section below,
similar factors will be included. The triplet neutron-
proton cross section has been expressed directly in
terms of the eigenphases of the S matrix by Blatt and
Biedenharn"

coefficients (l I
aj ' ') are transformation coefficients from

the eigenvectors of the scattering matrix to the l
(orbital-angular momentum) representation. The super-
script n (or P) takes on three values 1, 2, 3, two of these,
1 and 3, corresponding to the two possible solutions of
Eq. (20) for the t= J+1 states, the third for the t= J
state:

(""I/) =
cosa J&" 0 sine J&'&

0 1 0
sin6 J(1) 0 cos6J(1)

(36)

where the rows of the matrix are denoted by the value
of n and the columns by the possible values of l in
ascending numerical value. The total triplet cross
section is

Q "'= (s-/k')Q j, (g(2J+1) sin'&) j'~& (37)

Experimentally a double scattering is performed, the
first angle of scattering being 8 and the second angle
/. In the second scattering for a given/ the azimuthal
variation of the scattered intensity is measured and the
following quantity determined

(+P') =L&(0)—&( )]/L&(0)+&( )]
where 0 and ~ are the value of the azimuthal angle y.
It may be shown that e(t)&,tY) is the product of the
polarizations produced on each scattering, i.e.,

e(~,+')=p(~)p(+')

The polarization p(8) in turn equals the absolute value
of the expectation value of the spin in the final state. "
It has been evaluated in a very general form by Simon
and Welton. '4 We shall not give their general result
but shall immediately specialize to nucleon-nucleon
scattering. To obtain our result from theirs, we require
only the matrix elements of the S matrix between two
different orbital angular momenta:

(lI1—SIl') = —2i P sin&) j' &exp(i&)j' ')
X (tI ~j&') (~j'"& Il'). (38)

We then obtain

p„~=&3/[2k'o (t&)] Q Pj.&'&(—)j(2J+1)(2J*+1)
x LJ&"&

I
J*&e&]M(Jn)J*,P; L)$(J)n,J*,P; L), (39)

"L.Wolfenstein, Phys. Rev. 75, 1664 (1949).
"A. Simon and T. Welton, Phys. Rev. 90, 1036 (1953).

For proton-proton scattering the wave function
must be antisymmetric, with the consequence that all
even-/ states must be singlets, all odd-l states triplets.
Moreover, the amplitudes of each of these must be
doubled. Hence, the right-hand side of Eq. (34) must
be multiplied by a factor of 4 and all odd-l terms dropped
in order to describe singlet proton-proton scattering.
For triplet scattering, the right-hand side of Eq. (35)
must be multiplied by 4 and all even-/ terms omitted
in the sum.

Polarization
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where

LJ' '
j
Je'&&]= sinz) J' ' sinzlz*'&' sin(tlz& ' —z)~~'~&),

M (J,rr, J*,P; L)
=Q z" "[(2li+1)(2ls+1)]*(lils00 [lilzLO)

XW(i,JJ,J*; 1L) (J,
~
a, «&) (a,&-&

~
t,), (40)

and

1V(J,n, J*P;L)
=Q i—&'"+"'[(2li'+1)(2ls'+1) )*(li'lz'00

~

li'lz'LO)

XX(Ji,'1; J*i,'1;LL1)(a, »~i, ')(J,'~a, -). (41)

Here J and J* are possible J values of the system, /;
possible incident orbital angular momenta, /; possible
orbital angular momenta of the emergent beam. The
factors (lilz00

~
lilzLO) are Clebsch-Gordan coeflicients,

W is the Racah coefficient" and X is the Wigner 9j
symbol, " where we have employed the definition of
Fano and Racah, as given in Appendix B of Simon and
Welton's paper. " In Eq. (39) the sums are take over
all possible values of L, n, P, J, (J+L) &J*&

~
(JL,) ~,

' —
In Eqs. (40) and (41) the sumsare takenoverallvalues
of /~ and /2 consistent with the values of J, J*, and I..
The cross section o„„(8)isthe singlet plus the triplet
cross section. Finally, PL, &" is the normalized associated
I.egendre function. For p —p scattering, Eq. (39)
applies if on the right-hand side a factor of 4 is inserted
in the numerator, o-„„is replaced by 0.» in the de-
nominator and finally if in 3f and N only odd /; and
/ are included in their defining sums.

III. LOW-ENERGY DATA

Proton-Proton Scattering

The low-energy data have been analyzed and fitted
to a boundary condition by Breit and Bouricius. ' The
parameters f'"& in Eq. (14) are related to their v&"& by

&(n) —(40 0)nf (ni

Using the experimental values of v&"=7.805&0.02,
v"'=0.925&0.03, Eq. (15) may be solved for rs and
the boundary parameter fs. We expect fs to be some-
what greater than (—1) since this value corresponds
to zero binding for two protons. We find

fp= 0.082—1,
(42)

&p=1 32X10 "cm.
's G. Racah, Phys. Rev. 62, 442 (1942); Biedenharn, Blatt,

and Rose, Revs. Modern Phys. 24, 249 (1952). The Racah co-
e%cients have been tabulated by L. C. Biedenharn in an Oak
Ridge National Laboratory Report ORNL —1098 (unpublished)."E. P. Wigner, "On the Matrices which Reduce the Kronecker
Products of Representations of Simply Reducible Groups, "
(unpublished); J. Schwinger, U. S. Atomic Energy Commission
Report NYO —3071, Nuclear Development Associates, Inc. , White
Plains, New York, 1952 (unpublished); H. A. Jahn and J. Hope,
Phys. Rev. 93, 318 (1954); U. Fano and G. Racah (unpublished);
U. Fano, National Bureau of Standards Report 1214 (unpub-
lished), p. 48. The X function is tabulated for a limited range of
parameters by Sharp, Kennedy, Sears, and Hoyle, Atomic Energy
of Canada, Limited, Report No. 97 (unpublished).

These parameters give v& )=7.79 and v(')=0.928 and
predicts v&" =0.0074, which is to be compared with the
experimental value v~" =&0.01. Our results are sub-
stantially the same as those of Breit and Bouricius.
The cut-o8 distance rp is nearly equal to the meson
Compton wavelength and is therefore of the expected
order of magnitude.

Singlet Neutron-Proton Scattering

The data here are"

ao ——(—23.7&0.1)X10 "cm,
ps= (2.7&0.5) X10 "cm&

Pp ———0.04.

Since the value of pp is not very well known, we shall
content ourselves with assuming the same cut-off radius
as in Eq. (42) determining fs, predicting ps and I' s. We
find fo 0 053——1., po———2.79X10 " cm, I' s= —0.039.
These are in accord, so that it is consistent with the
data to use the same core radius for both p —p and
tz —p 'S interactions. The small difference between the
fs for singlet zz pscattering —and that for p —p scatter-
ing reveals a deviation from charge independence,
which, of course, is well known from potential model
studies. We shall assume, as Schwinger" has demon-
strated for some potentials, that this deviation arises
from the differences in the magnetic interaction be-
tween the two systems. We shall make no attempt to
compute this eGect here since it is quite sensitive to the
behavior of the wave functions at small values of r
and therefore in the present model on the electromag-
netic properties of the core. Fortunately the difference
in fs is of no consequence for the analysis of high-
energy data, for which we shall use fs 0 053 1.—— . —

Triplet Neutron-Proton Scattering

The fundamental data" are the scattering length
(5.39&0.03)X10 " cm, and the efFective range pi
= (1.703+0.03) X10 "cm. From Eq. (26) the combina-
tions p and (fi'"/fiz+3)' can be determined for rs
=1.32X10 "cm. We obtain

p = —1.325, [jr & "/(f»+3) ]'=0.640.

These two relations do not sufhce to determine the
three parameters describing F~. Some idea as to the
effect of three different choices of frs can be seen from
Table I, where W is the coefficient of the x4 term in
Eq. (28) for the effective F. Note that this is the only
term in (28) sensitive to the value of fiz. We see that,
except for f» nearly equal to —3, which is not admis-
sible since it gives rise to a low-lying D resonance, F
is quite insensitive to the precise value of fis up to
comparatively high-energy values. For example, at
x'=2, corresponding to nearly 100 Mev, the x4 term

"E.E. Salpeter, Phys. Rev. 82, 60 (1951)."J.Schwinger, Phys. Rev. 78, 135 (1950).
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contributes only about 10% to F. This leads to the
important result, for which we shall later present
further evidence, that sSt+sot contribution to the
triplet neutron-proton scattering up to about 100 Mev
can be deduced from the low-energy data.

f12

1.725—1.38—2.80

f10

1.725—0.696—1.187

—3.80—1.285—0.160

Pl

1.72 &(10, » cm
1.72 )(10»
1.72 &(10»

—0.034 0.068—0.02 7 0.098
0.054 0.410

TAN@ l. Effect of f» upon low-energy scattering.

The Deuteron

The binding energy of the deuteron must be given
correctly by the above choices since it is not essentially
independent of the low-energy triplet scattering data.
We cannot give a precise value for the deuteron's
electromagnetic properties since we do not know the
electromagnetic properties of the core region r(ro.
However, it is important that the contribution made
by the region outside the core be of the proper order of
magnitude so that the core itself not be required to
make an unreasonably large contribution. We shall
be concerned with the quadrupole moment Q and the
fraction of D state, pD. Denoting by a prime the values
obtained for these quantities dropping contributions
both to it and the normalization integrals inside the
core, we obtain

Pgp' ——2)I, tan'et&'&/[1+& tan'eto&]

&= —',+3(Ro/~o)+6(Rp/t o)'+3 (Ro/ro)',

Q'= (2'/10)Rp tanet"'(sC5+4(ro/Ro)
+ (ro/Ro)'] —(tanet&" /8~) [9(Ro/ro)+9
+ (27/4) ((~p/Rp)+ («/Ro)')]

(43)

XL-,+X tan'et"']} '

tanet"'= —fr'"{1+(&o/Ro)+ (3+fts)
Xt 1+3(Ro/ro)+3(Ro/&o)']) '

Here Ro is the deuteron "radius, " 4.32&10 " cm. We
note that, in order that Q have the right sign, tanet"'
must be positive. In the expression for tan&1"', the
coefficient of the (3+frs) term is large compared with
(1+ro/Ro) so that except for f» close to (—3) we may
drop (1+ro/Rp) Then tan. e&&'& and therefore Q' and
pn' are determined by the low-energy scattering data,
and we may compute the resultant p&' and Q' for the
region outside of ro. We 6nd pn' ——0.11 and Q'=2.5
&10 ' cm', which are to be compared with the experi-
mental values pn=0. 04+0.02 and Q= (2.738+0.016)
X10 ' cm'. Since pD is more sensitive than Q to the
contributions for r(ro, these results are entirely
reasonable.

IV. HIGH-ENERGY DATA

The qualitative properties of the high-energy data
to which we shall pay particular attention are as
follows: For p —p scattering the main features include,
first, the near isotropy of the nuclear scattering for
nearly all energies. This isotropy is not perfect as has
been demonstrated by experiments at Harvard" and
California. " Secondly the cross section at 90 is rela-
"Kruse, Teem. and Ramsey, Phys. Rev. 94, 1795 (1954).~ D. Fischer arid G. Goldhaber, Phys. Rev. 95, 1350 (1954).

tively independent of the proton energy for energies
exceeding 100 Mev. A third feature is the measurement
of p —p polarization which, considering only energies
less than 275 Mev, the maximum energy treated in
this paper, has been measured at 135 Mev" and 240
Mev."The polarization has been found to be approxi-
mately the same at these two energies, and the indica-
tions are that the sign is positive. "The present data
indicate an angular distribution more complex than
sin28 and therefore indicates that states with l higher
than one are involved. In our discussion we shall
neglect Coulomb eftects which in principle wouM help
determine phase shift signs and which for the lower
energies would acct the determination of the anisot-
ropy of the p —p scattering. We hope to consider these
e6ects in more detail. in a later paper. Another omission
will be the angular distribution of the polarization ex-
periments. Only the magnitude of 20' (laboratory
angle) employing just the sin28 term will be matched.

The principal features of the n —p data which are of
interest include the total cross section and the angular
distribution. The former, after decreasing from about
200 mb at 40 Mev to about 50 mb at 130 Mev, remains
relatively constant up to 270 Mev. The angular dis-
tribution is anisotropic but symmetric about 90' up to
100 Mev. By 300 Mev the angular distribution is defi-
nitely peaked in the backward direction. This asym-
Inetry sets in possibly as early as 135 Mev. '4

Charge independence, which we shall of course
assume, implies certain relationships between e—p and

p —p scattering. The scattering amplitude for p —p
scattering can be written in operator form as follows:

4."'=2Lf-P +f~.P~],

where P, and P& are the well-known projection opera-
tors for the singlet and triplet states, f„andf~, are the
corresponding scattering amplitudes which are even
and odd respectively against an inversion. The scatter-
ing amplitude for (m —p) scattering in the same nota-
tion is

fny = (fee+fso)Ps+(fie+fro)Pt

The scattering at (m. —8), is then

f"(w —+)= (f-—f-)P.—(fi.—f~.)P~

"J.M. Dickson and D. C. Salter, Nature 173, 946 (1954).
~ Oxley, Cartwright, and Rouvina, Phys. Rev. 93, 806 (1954).
s' Proceedings of the Fifth Annual Rochester Conference (Inter-

science Publishers, New York, 1955), p. 246.
~4 Randle, Taylor, Wood, and Snowden, Report on the Birming-

ham Conference on Nuclear Physics, June, 1953 (unpublished),
p. 25. Combining the data of Thresher, Voss, and Wilson, Proc.
Roy. Soc. (London) A229, 492 (1955), and T. C. Randle and E.
Uridge (unpublished), we estimate o (180')/o (0)~1,3 a,t 135 Mev.
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where we have inserted a phase of (—1) for the singlet
as opposed to the triplet scattering which we can do
since these do not interfere. Combining the last three
equations we have the vector relation"

f„,(d&)+f.,(~—e) =f„(~), (44)

which expresses in a succinct form the consequences of
charge independence.

Some of the consequences are of interest. First we
have the general vector inequalities:

& ~„„'*(~a) „,—(a)—) &~„,(a) &~„„:(~—a)+~.,'(e).
For 8=90' and 8=180', we have respectively

~»(~/2) &4~-s(~/2), ~-s'*(~)—~.s'(0) «»'*(0).
The first of these inequalities is always satisfied by

the experimental data. In the second, over most of the
energy range an estimate of the specifically nuclear

p —p cross section &r»(0) may be obtained by assuming
isotropy. The second inequality is just barely met by
the e—p data of de Pangher at 300 Mev, but is easily
satisfied by Easely's data, which give a larger &r„s(0)
at the same energy. At higher energies the proton-

proton scattering becomes peaked in the forward
direction, as it must in order to match the large back-
to-forward ratio of the measured n —p scattering. "

Proton-Proton Scattering

We shall first give the necessary detailed formulas as
obtained from Eqs. (34) and (35). The differential
cross section including both the singlet and triplet
contributions is

~»(+) = (1/&') E~Bi"'P~(cos~), (45)

where the superscript on 8 indicates that the isotopic
spin under consideration is 1. For p —p scattering only
even L enter. I.et

(J/~ JV) =sinr)qi sin»g i cos(»zi —
&lz i) (46)

for triplet states. When coupling between states of
diGerent l's is possible, we shall use the symbol

(J&~&
~

J'&&'&) = sinr&g&~& sin'gg o'& cos(r&q& &
r&q

&&'&—), (4/)

where r&z& & is an eigenphase as defined by Eq. (17).
For singlet states since l=J we drop l and l' in the
symbol defined by Eq. (46). We then find

Bs&'& = (0(0)+(01~01)+3(11~11)+5(2~2)+5(2&'&
~

2&'&)+5(2&»
~
2&s&)+7(33~33)+9(4(4),

Bs&'& = (3/2) (11)11)+10(0)2)+ (50/7) (2) 2)+12(11)33)+ (21/4) (33
(
33)

+4Lcoses &'&+ (3/2) *' sines&'&]'(2 &'&
~
01)+4L—sines "&+(3/2) ' coses &»$'(2&»

~
01)

+3L coses&'& —(2/3) 1 sines&"g'I 3(11
~

2&'&)+2(33
~

2&'&)j
+3bines"'+ (2/3) '* c»es"')'P (» I

2"')+2(33
I
2"')j

+ (7/2) icos es&'&+ (24/49) l sines&'& coses&'&+ (8/7) sin'e &'&]'(2 &'&
~

2 "&)

+7L(1/7) coses&i& sines&'&+ (6/49)'* cos2es&'& j'(2&'&
~

2&'&)

+ (7/2) Lsin'e &'& —(24/49) '* sines&'& coses&i&+8/7 cos'e &'& j'(2&s&
~

2&s&),

B4&'& = (90/7) (2 (
2)+9(33

(
11)+(7/22) (33 [ 33)+60/7Lsin2es&'& —(1/6)1 sin'es&'&g'(2 "&

)
2 "&)

+ (120/7)Lcos2es&'&+ (1/6)'* sines coses&'&j'(2&'&
~

2&'&)

+ (60/7) (—sin 2es &'&+ (1/6) ' cos'es &'&j'(2 &»
~
2 &'&)

+50(sines&"& —(3/10)' coses&'& j'(33
~

2&'&)

+50Lcoses&i&+ (3
~

10):since&'& js(33
~
2 "&).

(48b)

(48c)

These formulas include contributions from '50, 'D2,
'Ps, 'Pi, sPs+'Fs, and 'Fs states. The parameter es&"

measures the mixing of 'P2 and 'F2 states by way of the
matrix F2, &2&"=0 corresponds to no coupling between
these states.

Ke turn now to the data and consider first the isot-
ropy. The simplest solution of this problem is to make
the principal states involved be the '50 and the 'I'0,
since both of these give rise to isotropic distributions.
It is, of course, possible at any given energy to obtain
isotropy by a suitable mixture of many states, but it
would be very difBcult in any theory to maintain the
necessary delicate balance over the required large

ss J. Schwinger (unpublished).
"Hartzler, Siegel, and Opitz, Phys. Rev. 95, 591 (1954);

A. J. Hartzh. r. and R. T. Siegel, Phys. Rev. 95, 185 (1954).

energy range. To determine qualitatively what the
appropriate value for the boundary parameter f»
should be, we 6rst determine roughly the contribution
of the 'S&& state by assuming rs (we shall for convenience
never vary the boundary parameters with energy) to
be energy-independent. Ke find that the phase shift
decreases with increasing energy, going through zero at
about 120 Mev and then changing sign and becoming
of some importance at 300 Mev. This behavior is very
similar to that obtained by Jastrow in his hard-core
model. To obtain the results given by the monotonic
potentials, it would be necessary to have ro decrease
very rapidly and eventually become negative, indicat-
ing for that case the absence of any physical signi6cance
to the core radius. However, in either event it is neces-
sary for the 'Po state to make a very sizeable contribu-
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TABLE II. Angular distribution coeKcients Bl,(').
Entries not made are negligible.

Energy (Mev) 38.5 80 120 190 274

Bo(1) A

B

B3(1)

0.505
0.490

—0.007—0.014

0.474
0.430

—0.001—0.004

0.011

0.564
0.579

—0.036—0.020

—0.011

0.875
0.825
0.012
0.032

1.232
1 ~ 102
0.095
0.030

—0.015 —0.057

We first look only at the terms involving the 'Po state,
taking es "&——0. (We have considered the eGect of
including coupling between the 'P2 and the 'F2 but
have found that there is no particular advantage
gained for the matching of the presently available
experimental data, so that in the discussion below
as&'& =0.) Two possible alternatives suggest themselves.
In alternative A we assume that the 'F2 phase shift is
small at all energies and that burden of matching the
polarization must be carried by the 'P2 phase shift
alone. In alternative 8 the 'P 2 phase shif t is mainly
responsible for the polarization at low energies, while
the 'F~ takes over at high energies. Having thus specified
the 'P~ and 'F~ phase shifts at two energies, the core
radius and boundary condition parameter for each are
determined; again these parameters are assumed to be
energy independent. From these quantities the phase
shifts for other energies could be found.

Starting from this basis, various values of fsi were
tried. The limiting features were (1) the nature of the

s' R. M. Thaler and J. Bengston, Phys. Rev. 94, 679 (1954);
A. Garren, Phys. Rev. 96, 1709 (1954).

tion to the cross section. A second consideration limiting
the possible choices of fsi comes from e p—scattering,
in which the interference terms between the 'Po state
and the ('Si+'Di) states are critical for the angular
distribution. We find that to have symmetry about 90'
below 100 Mev and a backward peak at higher energies,
it is essential that the 'Po phase shift be negative. Of
course, evidence bearing on this sign would also become
available upon analyzing the effects of Coulomb inter-
ference. "The dependence of the phase shifts on for is
shown in Fig. 1. Combined with the results for the 'So
state we find that, to obtain the observed o»(90'), fsi
should be between —5 and —IX&, the particular value
depending upon the energy dependence assumed for
the core radius for the 'So state.

To go further in this analysis we must consider the
polarization data. We define the symbol [Jl

I

J't']' and
the analog of (47) by

[Jl~ JVj=sin)'~ sin I' & sin(1J& ')q. t )—
Then from (39) the sin28 term is

p» ——3 (sin28/k'o») [(cos2es "&+(1/6) ' sin2es "&)

X ([01 )
2 "&j—[01[2&'&j+a [11]2 "&]—a [11)2 "&])

+ (5/4) [2/7+ (1/6)'*g cos2es&'&[2&" [2&'&j]+ . (49)

06—
Q.4—

-0.2

-04—
-0.6—
-0.8—
-I.O

I I

G2 Q6
kro

FIG. 1. Phase shifts for uncoupled P states as a function of
wave number and boundary parameter. The latter is indicated
on each curve.
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FIG. 2. Phase shifts as a function of energy for cases A and &.

interference with the sPs and 'Fs states; (2) the required

p —p cross section at 90', (3) the e8ect on n —p angular
distributions. By keeping fsi close to infinity, effects (1)
and (3) were made optimal. However, if fst were
infinity, requirement (2) would not be easily met. A
compromise was made by taking fsi ———16, a choice
which did not yield a large enough cross section at 90'
for the lower energies. The anisotropy which arose from
the interference between this 'Po state and the 'P~ and
'F2 states couM not be cancelled out to a sufficient
degree by the interference of the latter states with the
'Pi and at the same time maintain a correct e—p
angular distribution. It was then necessary that the
major term which would restore isotropy should arise
from the interference of the 'So and 'D2 states. Again
assuming energy-independent boundary conditions for
the 'D2 state, it was found necessary for alternative A

that the 'So phase shift not go through a zero, and for
alternative 8 that the 'So phase shift have its zero at
a somewhat greater energy than would be obtained if
the low-energy parameters were kept constant. To
accomplish this the core radius for the 'So state is
permitted to have a relatively slow energy dependence.
Once 80&" and 82 &') have been properly adjusted, it is
necessary to examine the value of the 84(" coefficient.
For alternative A this coefficient was negligible, while
for alternative 8 some additional 'F3 was required,
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section at 90' is given in Fig. 4 and is satisfactorily
within experimental error of the data for the most of
the range, although it is somewhat low for energies
between 40 and 80 Mev. The polarization is given in
Fig. 5 in terms of the coefBcient of the sin28 term in

Eq (49).
It should be noted that the choice of parameters is

fairly unique once the 'P2 and 'J 2 phase shifts are set.
Of course, this is true only if one insists on keeping the
boundary conditions as energy independent as possible.
One result seems, however, to be relatively mode-
independent, and that is that the scattering in the 'Po
state is close to that of an infinitely repulsive sphere.

FIG. 3. Phase shifts as a function of energy for cases A and B.

which in turn modified 82"'. The final values of the
parameters are given in Table IV, to be found in Sec. V,
the Conclusions, and the resultant values of the co-
ef6cients 8&&" in Table II. The only substantial devia-
tion from complete isotropy occurs at 274 Mev, where
for alternative A B2")/B()(') is 0.077, which is not in
disagreement with the experiments. The phase shifts
are exhibited in Fig. 2 and Fig. 3. The resultant cross

where

0.„„(6)= (1/4k') pi BIPI„(cosl&)),

B~—B~(I)+B~(())

(50)

(51)

Expressions for Bl,(" are given in Eq. (48). The corre-
sponding expressions for BI,(" follow

Neutron-Proton Scattering

The differential cross section including both singlet
and triplet contributions is

B()&'& =3(1&'&
I
1&'&)+3(1&'&

I
1&")+3(1

I 1)+5(22 I
22)+7(3

I 3)+7(32
I 32),

Bl&'& =Bi——6(0
I
1)+12(1I 2)+9(11

I
22)+18(2

I
3)+16(33

I
22)

+ (—sinel&'&+2'* cosei('))'I 2(1(')
I
01)+3(1('&

I 11))
+ (cosei(')+2~ sinel&'&) I 2(1 &')

I 01)+3(1(')
I

11)j
+10(cosel( ) cose2&"+50 '* sinel&" cose2"'+ (27/25) l sine& "& sine& "&)'(1"'

I
2&")

+10(—sinel('& cose2&"+50 1 cosel&'& cose2(')+ (27/25)' cosel&" sine2 "&)'(1"'
I
2 "&)

+10(cosei( ) slne2( )+50 * slnel( ) slneg( ) (27/25)' slllel( ) coseg('))'(1(') I2('&)

+10(sinel "& sine2&" —50 ' cosel&'& sine2 "&+(27/25) ' cosel&'& cose2('&)'(1&"
I

2&'&)

+3 (cose2 &'& —(2/3)
'
*sine' &'&) '(2 ('&

I
22)+3 (sin e2 &'&+ (2/3) l cose2('&)'(2 "&

I
22)

+ (84/5) (cose, &')+ (294) ** sine2&'))'(2&'&
I 32)+ (84/5) (sine2&'& —(294)—'* cose2&'&)'(2&'&

I 32),

B2(') =6 (1
I 1)+(25/14) (22

I
22) + (40/7) (32

I
22)+ (48/7) (32 I 32)

+3(sjn2ei&i&+2 ~ sin el& ))e(1& )
I
1&'&)+3(—sin2el&'&+2 '* cos'el('))'(1("

I
1('))

+6(cos2el&') —2 ' sine& &'& cosel('&)'(1&')
I
1('&)+10(sinel('&+2 *' cosel&'))'(22

I
1&")

+10(cosel&'& —2 l sinel('&)'(22
I
1&'))+14(cosel('&+ (2/49)1 sinel(")'(32

I
1&'&)

+14(sinel('& —(2/49) cosel&'&)'(32
I
1("),

B3&'& =B3——6(01
I 32)+12 (11

I
32)+14(0 I 3)+18(1I 2)+ (56/3) (2

I 3)+ (7/3) (33
I
22)+ (28/3) (33

I
32)

+10(cosel( ) sill e2( )+ (27/25) ' sill el &'& cosee (I)+ (8/25) i sine &'& sine2& &) (1('&
I
2 ( &)

+10(—sinel('& sine2&')+ (27/25)
'*cosel&'& cose2&'&+ (8/25) ' cosei&'& since&'&)'(1&'&

I
2&'&)

+10(cosel( ) cose2( ) (27/25)' slnel( ) slnee( )+(8/25)' slllel( ) cose2&'&)'(1&'&
I

2&'&)

+10(sine &'& cose2&'&+ (27/25) ~ cosel&'& sine2&" —(8/25)' cose ('& cose~('))'(1(3)
I
2&'))

+14(cosel "&—2 ' sinel&'&)'(1("
I
33)+14(sinei("+2 '* cosel('&)'(1&'&

I
33)

+12(cose2&'& —(2/3)' sine~(")'(2(')
I
22)+12(sine2(')+ (2/3)' cose~('))'(2")

I
22)

+ (36/5) (cose2(')+ (8/27)'* sine& "&)'(2(')
I
32)+ (36/5) (—sine2&'&+ (8/27)' cose2&'&)'(2 "&

I 32),

B4&'& = 24(1
I
3)+ (378/37) (3 I 3)+ (40/7) (22

I
22) + (100/7) (32

I
22) + (22/7) (32

I
32)

+ (108/7) sin'el&" (1&')
I 32)+ (108/7) cos'el "&(1&'&[32).

(52a)

(52b)

(52c)

(52(l)

(52e)
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FIG. 6. The coefficient Bo as a function of f~~.

FIG. 4. Differential p —p cross section at.90 Lin the center-of-
mass system as a function of proton laboratory energy. Square
points are from Kruse, Teem, and Ramsey: )Phys. Rev. 94, 1795
(1954)g. Circular points are from Chamberlain, Segre, and
Wiegand LPhys. Rev. 83, 923 (1951)g. The triangular points are
from Marshall, Marshall, and Nedzel LPhys. Rev. 92, 834 (1953)g.

The isotopic singlet states which have been considered
are 'S,+'Di, '&i, 'Ds, 'Ds, '&s.

In our analysis of the I pda—ta we shall first examine
the consequences of the low-energy fit for the 'Si+'Di
state, in which only two combinations of the three
parameters of the Ii~ matrix have been determined.
The parameter fis will be taken to be the remaining
unknown to be fixed presumably by the high-energy
data. In Fig. 6 we plot the coefficient Bp (which is
directly proportional to Q„„)as a function of f» for
three energies 38.5, 93 and 260 Mev. The experimental
values are also indicated. The contributions included
in Bp are those of the 'Si+'Di states and of the isotopic
triplet state as determined by the experimental proton-
proton values. Therefore this 80 is less than or equal
to the actual experimental value, and particularly for
the highest energy should be considerably less than the
experimental value. From the figure we see that the
parameter fis should be greater than zero. But in this
range the 'Si+'Di contributions below about 100 Mev
are independent of fis and therefore are completely
determined by the low-energy scattering. We note that
over most of the energy range nearly all of Q„~is given
by the 'Si+'Di states plus the isotopic triplet states.

For the lower energies, the value of 82 can be calcu-
lated from the differential cross section at 90 and is

again determined mainly by the 'Si+'Di states and the
isotopic triplet state. Employing the low-energy 'P.
+'Di parameters we plot Bs in Fig. 7 for 38.5 and 93
Mev. The range fis) 0 is satisfactory for 93 Mev but
proves to be low for 40 Mev. As expected the value of
Bs for f»)0 is roughly independent of f» and is
therefore determined by the low-energy scattering.
Agreement with the experimental value at 40 Mev
could be obtained by permitting ro for this state to be
energy dependent. However, more detailed and precise
data in this energy range should be available before
such measures are employed. In the calculations to be
reported below, we have kept ro equal to 1.32X10 "
cm for all energies. The parameter f» was placed equal
to 1.725, fol' which fip equals 1.725 and fr &'& equals

(—3.8). The corresponding phase shifts are given in
Fig. 2, the coupling coefficient eI&" in Fig. 8.

We may now go on to examine the other coefficients
BI, and particularly 8&. One of the principal terms is
the interference term between the sos and 'Si+'Di
states. The coefficient of the (1t"

~
21) term is obtained

by multiplying the quantity plotted in Fig. 8 by ten,
while the coefficient of the (1&"

~
21) term is exactly

10.2 minus the coefficient of the (1&"~21) term. At the
lower energies p&&'& is small, so that nearly the entire
interference term is given by the (1&"~21) term. This is
positive, since both phase shifts are positive (the
second because of the sign of the p —p polarization)
and relatively large because of„the large„'„coefficient.
The size of the latter is determined by the positive
sign of e&&'&, which in turn is fixed by the sign of the

0.5
Be

0.3

0.2 Max E *93Mev

0
0 40 80 l20 160 200 240 280

Energy in Mev -4

Min E *93Mev

M E'40
$/

MinE 40Mev

-3
I

-2

FIG. 5. The coefficient of the sin2eS term in Eq. (49) for
cases A and B. FIG. 7. The coeKcient 82 as a function of f12,
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Fro. 8. The coupling angle e~o) describing the coupling between
the 3SI and 3D& states is given by the left-hand ordinate. The
right-hand ordinate measures the coeificient of the (1&'&

I 21) term
divided by 10 and the coeificient of the (1&'&

I 01) term divided by
2 in Bq.

energies, in accordance with the experimental data.
One may easily verify that this requires gp1 to be nega-
tive, p» to be positive; these were the requirements
which dictated our choice of f&» and f&t in the preceding
discussion on p —p scattering. Unfortunately, the nega-
tive contribution from gp1 is not large, principally be-
cause the phase shifts r)&» approach (—&r/2). In case A,
where the phase shift zp is always positive, an effective
way of obtaining a negative contribution to 81 is to
choose f& so that &1& is negative. Then the contributions
of the (OI1) and (1~2) are both negative. These could
be made larger if the requirement of isotropy in p —p
scattering were relaxed, for then q2 could be increased.

In case 8, gp changes sign. However, at low energies
only the (0 1) term can be eRective, so that again &)&

must be negative and, as may be seen from Fig. 1, will
be increasingly negative. Hence, when qp changes sign,
the (0~1) term will be positive. However, in this case
the g2 phase shifts are considerably larger so that most
of this effect is cancelled out by the (1 I 2) term. The
battle to obtain the proper asymmetry for &s—p scatter-
ing is then taken up in 83, which must then be negative.

quadrupole moment. This positive. contribution to 81
decreases with increasing energy. Meanwhile
which is negative, is growing as well as the coeflicient
of the (1&"

I
21) term, so that by 274 Mev the sum of the

(1&s&
j 21) and (1&'&

I
21) terms is negative. The remaining

contributions to 81 must be chosen negative so as to
cancel out the (1&&&

I 21) contribution at the lower
energies and to give a negative excess at the higher

Energy (Mev) 38.5 80 120 190 274

Bp A

B1 A

Bg A

A
B

3.17
3.16

-0.17-0.124

0.30
0.30
0.03

2.45
3.41

-0.23-0.051

0.93
0.93

—0.09-0.21

2.39
2.40

-0.29
0.011
1.52
1.53

—0.21-0.29

3.18.
3.13

—0.35
0.056

2.46
2.47

—0.38-0.97

4.76
4.63

—0.80
0.402

4.19
4.14

—0.02-1.09

TABLE III. Angular distribution coeificients Br,. (The coeificient
B4 B4&'& is give—n in Table IL)
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FIG. 9. Total e—p cross section as a function of energy. The
unalled circular points were obtained from Hadley, Kelly, Leith,
Segrh, Wiegand, and York I Phys. Rev. 75, 351 (1949)g; Kelly,
Leith, Segre, and Wiegand I Phys. Rev. 79, 96 (1950)g; O. Cham-
berlin and J. W. Easley I Phys. Rev. 94, 208 (1954)g; J. DeJuren
and B.J. Moyer fPhys. Rev. Sl,&919 (1951)g; and R. H. Hilde-
brand and C. E Leith (Phys. . Rev. SO, 841 (1950)j.The unfilled
square point at 90 Mev is an average of many measurements as
given by R. H. Stahl and N. F. Ramsey LPhys. Rev. 96, 1310
(1954)j. The other square points are from V. Culler and R. W.
Waniek LPhys. Rev. 95, 585 (1954)g. The filled circular points
were obtained from Guernsey, Mott, and Nelson LPhys. Rev. 88,
9 (1952)g. The triangular points are those of Randle, Taylor,
Wood, and Snowdens4; A. E. Taylor and E. Wood LPhil. Mag.
44, 95 (1953)g, and A. E. Taylor LPhys. Rev. 92, 1071 (1953)j.

Here the (1 I 2) term contributes strongly and also the
'F3 terms. This was the main reason for choosing this
state to obtain p—p isotropy rather than the 'J 4 state.

A summary of the results is contained in Table III;
the boundary parameters describing the 'Sr+sDt states
have already been mentioned. The only additional
state added is the 'P1, for which, for both the alterna-
tives A and 8, the core radius is 1.32X10 " cm and
fr 2.5 independen—t—of the energy. We have therefore
added only one new parameter beyond the parameters
determined by low-energy triplet scattering and p —p
scattering and, as shall be seen, we are able to predict
the expected neutron-proton scattering fairly well.

Comparison with the data is made in Fig. 9 to Fig.
13. One must bear in mind the wide spread in energy
of the neutron beam associated with each nominal
experimental neutron energy. Excellent agreement with
the data is obtained for the total cross section Q„~and
o„„(90'),the latter being not too well known. From
the other figures it is clear that the cross sections at 0'
and 180' are considerably less than the experimental
values. The angular distributions at 90 and 300 Mev
are duplicated fairly well but do not rise high enough
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FIG. 10. Differential n —p cross section at 90' in the center-of-
mass system as a function of neutron laboratory energy. The
un611ed circular points are taken from J. Hadley et al. LPhys.
Rev. ?5, 351 (1949)j, and J. de Pangher LPhys. Rev. 95, 578
(1954)7.The un611ed square point is that of R. H. Stahl and N. F.
Ramsey LPhys. Rev. 96, 1310 (1954)j.The triangular points are
those of Thresher, Voss, and Wilson LProc. Roy. Soc. (London)
A229, 402 (1955)g. Randle, Taylor, and Wood /Proc. Roy. Soc.
(London) A213, 213 (1952)g. Randle, Cassels, Pickavance, and
Taylor LPhil. Mag. 44, 425 (1953)7 and Randle and Uridge
(unpublished). The filled circular points are from Guernsey,
Mott, and Nelson /Phys. Rev. 88, 15 (1952)g.

at 180' for both cases and at 0' for 90 Mev. We shall
defer discussion of possible remedies to the Conclusions.
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V. CONCLUSIONS

We have found that the boundary-condition approxi-
mation is simple to use and provides a broad correlation
of the experimental data. We have been able to fit in
most particulars the existing scattering data up to 274
Mev employing only one energy-dependent parameter,
the core radius ro for the 'S() state. The boundary
parameters employed are given in Tables IV and V.
The chief omission has been the angular dependence of
the p —p polarization data. We have assumed this to
have the simple form sin28.

Two principal features of the Gt which are probably
model-independent are

(a) The p—p scattering is composed mostly of scat-
tering in the 'So and 'Po states. The scattering from the

0
0

I I I. I I I I I

20' 40' 60 80' 100' 120' 140' 160 180
Scattering Angle

FIG. 12. Relative difterential n —p cross section at 90 Mev. The
shaded area represents the available experimental data as given
by R. H. Stahl and N. F Ram. sey I Phys. Rev. 96, 1310 (1954)g.
The theoretical curve is adjusted to agree with experiment at
90'. For comparison of experimental and theoretical normalization
see Fig. 9.
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latter is close to the scattering by a repulsive sphere of
radius 1.32)(10 "cm.

(b) The scattering in the isotopic singlet state below
100 Mev, assuming that the angular distribution is
symmetric about 90', is determined entirely by the
(sSi+'Dt) states. The scattering in this state up to
100 Mev is predicted from the 6t of the triplet scattering
data near zero neutron energy. Above 100 Mev, the
('Si+'Dt) states still make the major contribution,
although a considerable eGect must come from other
states; in our fit from the 'P~ state.

One methodological result noted is that the fit of
proton-proton data and that of the neutron-proton
data must be considered together. The odd terms in the
ts —p angular distribution depend critically upon the
interference between the isotopic triplet and isotopic
singlet states. In the present paper this determined the
sign of the 'Po phase shift and the type of states in-
cluded in achieving isotropy for p —p scattering.

I l I

40 80 120 160 200 240 280 320
Energy in Mev

FIG. 11. Ratio of the differential n —p cross section at 90' to
that of 180' in the center-of-mass system as a function of neutron
laboratory energy. References are the same as those in Fig. 10.

FIG. 13. Relative differential n —p cross section at 300 Mev.
The experimental points are those of J. de Pangher LPhys. Rev.
95, 578 (1954)j.J. W. Easley LUniversity of California Radiation
Laboratory Report UCRL—2693 (unpublished)g has obtained
small angle points which are some 20'%%uo higher than those of
dePangher. These would agree very closely with the theoretical
curve. The theoretical curve is adjusted to agree with experiment
at 90'. For comparison of experimental and theoretical normaliza-
tions, see Fig. 9.
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TABLE IV. Boundary parameters for the isotopic triplet states.
States for which no entries were made were assumed to give
negligible contributions to the scattering. The parameter f2&'& was
placed equal to zero. Energies 8 are expressed in Mev in the
laboratory system. A and 8 refer to the two types of flt attempted.

State

rs (10 "Cm)

sg, +sD,

1.32 1.32

TABLE V. Boundary parameters for the isotopic singlet states.

State ISO

A 1.32e o os~&
ro (10 ' cm) B 1.32e o.os+'s

1.32
1.32

1.32
1.32

xDs sPO sPt sPs sFs sFs

0.88 0.88
1.1 1.32 1.32

foe= &.'12=fn
fi&'& = —3.80 fr=2.5

A —0.947
B -0.947

1.0 —16
06 -16

045 0
0 1.5

We note also the type of data which appears most
useful. In p —p scattering the polarization experiments,
the sign and angular distribution are most important.
It would also be valuable if measurements of the degree
of isotropy in p —p scattering similar to that at Har-
vard" at 90 Mev and California" at 300 Mev were
made at other energies. In e—p scattering, more de-
tailed information on the angular distributions are
needed, particularly the cross section at 0' and 180'.
It would be undoubtedly worth while to obtain much
of this detailed information in the lower energy range
where fewer states enter in the scattering.

The chief failure in the fit reported here is in the cross
section at 180' in I psca—ttering. A good fit is pre-
dicted in the range 30' to 120', but outside of this
range the predicted cross sections fall below the experi-
mental ones. This is not too surprising inasmuch as one
would expect the model to fail for these close encounters.
This comparison could be improved considerably if the

p —p scattering is more anisotropic than we allowed,
or if the ratios o. o(0')/o „(180')are considerably
larger at the higher energies than present experiments
indicate. Otherwise, it would be necessary to make
other parameters energy dependent. For example, the
'Po state could be required to contribute less strongly
at the higher energies, and the 'P& more strongly.
Further information on these states should become
available soon upon completion of phase shift analyses
being performed at Yale and California. Note that we
have also omitted the eGects of meson production which

may be of some importance at the higher energies. It
would be expected that such effects be still fairly small

at 274 Mev, but that they should tend to help explain
the observed forward-to-back ratio.

An earlier attempt by us" to fit the data by using
the boundary-condition approximation should be men-
tioned here. A common energy-independent core radius
was employed for all states. The reactance matrix
could then be expressed in terms of spin, orbital
angular momentum and isotopic spin operators. Con-
siderably fewer parameters than those given on Table
IV were required to obtain a fair 6t. This attempt
failed, however, in that it predicted the wrong sign for
the polarization at 240 Mev although the magnitude of
the polarization was correct.
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Pote added in proof.—Since this paper was written, the p —p
scattering experiments at 300 Mev at California have been ana-
lyzed by Dr. Henry Stapp. His results are in qualitative agree-
ment with our results for Case B, but are not in good quantitative
agreement.


