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Surface Oscillations in Even-Even Nuclei*
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Surface oscillations in nuclei with deformation potentials independent of the shape parameter y are dis-

cussed, and are found to describe qualitatively the regularities in even-even nuclei of the type discussed by
Scharff-Goldhaber and Weneser.

I. INTRODUCTION larger than would be given by a model of solid-body
nuclear rotation.

ScharG-Goldhaber and Weneser' have reported
another large class of even-even nuclei found over a
large range of nuclear mass numbers —but especially
in the region 66(3&150—exhibiting the following
regularities:

(3') The ratio of the energies of the second excited
state (Es) to that of the first (Ei) ranges between 2
and 2.5.

(4') The character of the low-lying states are com-
rnonly in the sequence 0+, 2+, 2+. In the range
66&3 .150, there are Ave nuclei known to have spin
2 for the second excited state, four with spin 4, and one
each with spin zero and three —all of positive parity.

(5') The first and second excited states decay pre-
dominantly by E2 radiation. The E2 transition matrix
elements are enhanced over the single-particle matrix
elements, although perhaps not so much as for the
rotational states.

(6') When the sequence 0+, 2+, 2+ appears, the
E2 crossover transition (second excited to ground
state) occurs with much smaller probability than the
upper transition (second excited to first excited state).
The crossover transition (2+ —+0+) proceeds by E2
radiation while the upper transition (2+ —+ 2+) pro-
ceeds by E2 with a small admixture of M1. The ratios of
the reduced E2 matrix elements (crossover: upper
transition) are a few percent or less with no exceptions
reported (Goldhaber-Kraushaar selection rule).

The enhanced quadrupole transitions suggest some
form of collective motion. For this reason, in Fig. 1 we
have plotted the ratio Es/Ei as a function of Ei/Aco,
where ~ is the characteristic phonon frequency of a
statically undeformed nucleus. The values of co(A),
which are taken from Bohr and Mottelsons (Eqs. II. 6a
and II. 6b, with X=2; see also their Fig. 2), are based
on estimates of surface and Coulomb energies and em-

ploy the hydrodynamic assumption of irrotational Row.
While the numerical estimates of co are not very sig-
nificant (e.g. , the function co(A) is expected to have
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lowing regularities in even-even nuclei:
(1) The ground-state character is invariably 0+.

The first excited state has character 2+ with very few
exceptions. The second excited state is 0+, 2+, 4j or
odd spin, either parity.

(2) The energy of the first excited state is correlated
with proton and (especially) neutron number, passing
through distinct maxima at closed shells.

There exist particular classes of even-even nuclei
which exhibit further characteristic regularities. Per-
haps the most striking of these nuclei are those which

display rotational spectra. ' ' These are found with great
regularity in the region 150&3& 185 and 3)225. They
are characterized by:

(3) The low-lying energy levels follow the energy
spectrum

E=constI(I+1),

with the character
(4) 0+, 2+, 4+,
(5) For many purposes these nuclei are found to be

very accurately described in terms of a body possessing
an axially symmetric deformation of order two. The
wave functions for the .rotational states are then
given by

ll'= &rM(ft, q),

where 0 and p describe the orientation of the symmetry
axis. The intrinsic quadrupole moment Qp of the system
is large compared with single-particle moments, giving
rise to enhanced E2 radiation.

(6) Qp is correlated with the energy of the first
excited state, Ei, such that large Qp correspond to
small E&. The rotational energies are considerably
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shell structure fluctuations superimposed), using Ei/Ap&

rather than Ej for the plot does have the advantage of
removing much of the 2 dependence in E~ in such a
way that there is more pronounced grouping of the
points. The points include nuclei with A &46; odd-
parity states (if known to be so) have been excluded
from consideration —this involves only a few examples-
and in some cases higher excitations are included (e.g. ,
doublets).

For small values of Ei/Ap& we find a clustering of
rotational spectra with Es/Ei=3-'s. The break between
the Bohr-Mottelson rotational spectra and the spectra
of Scharff-Goldhaber and Weneser is marked, with the
majority of the latter occurring for 0.2 &Ei/hei&0. 5.

Although the scatter of points is considerable, it is
worthwhile noting that isotopic sequences such as Xe
and Te show that (i) Ei/Ap& decreases in moving away
from a closed shell, and (ii) E&/Ei is a generally de-
creasing function of Ei/Ap&. Ba"' and Ce'4', each with
82 (magic) neutrons, exhibit very similar spectra and
dier signi6cantly from the general trends.

Scharff-Goldhaber and Weneser have described the
nuclei satisfying (3') to (6') in terms of the coupling of
individual nucleons (as an example they used four f7' p

particles) to a core with free phonon (surface) vibra-
tions. Whereas for the free core Ei——Ap» and Es/Ei ——2,
they showed that Ej decreases and the ratio increases as
a function of the coupling. Their results are in quali-
tative agreement with the experimental data. The
range of validity of such a perturbation calculation may
be expected, however, to be rather small.

Another approach is given in terms of collective
surface oscillations where the individual nucleons are
treated in first approximation as only contributing to
an effective potential energy through their coupling to
the surface (strong-coupling approximation). Plausi-
bility arguments for the type of potential required to
reproduce the data (y unstable) are given in Sec.
VI.A. Such a description more clearly displays the
collective features of the nuclei. It cannot be hoped
that the collective description can be complete, since
the individual particles may be expected to play an
important role besides contributing to the surface
potential. While the calculations of Schar8-Goldhaber
and Weneser represent an approach from "weak coup-
ling, " the present investigation represents the limit of
"strong coupling" or "adiabatic" approximation.

It is hoped that the investigation may also help to
round out the picture of various types of surfon
oscillations.

II. THE COLLECTIVE MODEL

We begin by reviewing the analysis of surface oscilla-
tions given by Bohr. ' The nuclear surface is described,
for our purposes, by a second-order deformation such

that

R=Rp(1+ Q n„I'2„(8,y)),
@=2

where, for reality,
n„= —"n „*. (2)

It is convenient to transform to a coordinate system
which is "fixed" in the oscillating body. The coordinates
in the body-6xed system are then related to the space-
6xed system by the transformation

a„=P„n„D„„(8;), (3)

ap =p cosp&

as ——a s ——(P/V2) sing. (5)

The expression for the kinetic energy is given by
[Bohr, ' Eqs. (48), (50), and (27)j

h'l1 8 8 1 1 8 8
T= ——' ——P~+— —sin3y—

2B lP48P 8P P' sin3y 8y By

(6)
slil (y —siM) I

where the Q„are angular momentum operators in the
variables 8;.

In the hydrodynamic assumption of irrotational Row,
B is a constant given by LBohr, Eq. (4)$

B= -', ppRps (irrotational Row).

Generally, a detailed knowledge of nucleonic wave
functions is needed to determine B. Inglis' has shown
that for any deformation parameter o, which enters
into the classical expression for the kinetic energy as
—', B

l
n

l
', the mass parameter B is given by

018/8n
B =2k'Q' (8)

the prime indicating that the summation is taken over
excited (particle) states of the nucleus. Assuming com-

& D. Inglis, Phys. Rev. 97, 701 (1955).

where the D„„(8,) are the transformation functions for
the spherical harmonics of order 2, and 8; represents
the triad of Eulerian angles 8, P, it describing the rela-
tive orientation of the axes. The body-6xed coordinate
system may be conveniently chosen so that its axes
coincide with the principal axes of the ellipsoid, in
which case

~1 ~—1 0) 2 +—2.

Thus the five variables n„are replaced by the three
Eulerian angles 8; and the two real "internal" coordi-
nates ao and a2.

Again for convenience we may replace ao and a2 by
p and y, defined by
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+Tj46
Ti48

Fe56
Ni'0
Zn
Ge"
Se76
Kr82
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Mo'4
Mo"
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Cd114
Snll6

*Sn120

Tel22
Te124
Te126
Xe126
Xe"'
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Xe"4
Xe"'
Ba134
Qa138
Ce'~
Nd146
Sm'5'
Sm"2
Gd152
Gd154
Gd156
G.d158

Dy160
Er166
Hf176

Hf 180

QS192

2.26
2.33
2.60
2.48
1.6//2. 4
2.31
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2.16
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2.15
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3.12
2.09
2.54
2.41
2.22
2.40
2.1/2.3
2.30
1.65
1.69
2.24
2.20
2.18
2.25
2.22
2.26
2.15
2.07
2.0
2.32
1.33
1.31
2.63
2.33
3.0
2.19(?)
3.02
3.24
3.30
3.27
3.33
3.28
3.31
2.40

0.23
0.27
0.15
0.25
0.40
0.35
0.29
0.21
0.29
0.36
0.19
0.36
0.32
0.23
0.26
0.24
0.20
0.31
0.26
0.63
0.65
0.29
0.31
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0.20
0.23
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0.47
0.78
0.35
0.84
0.94
0.28
0.20
0.08
0.21
0.08
0.06
0.05
0.05
0.05
0.06
0.07
0.16

3+
4+

0+

2+
2+
2+
4+

(conginued on page 791)

pro. 1. Experimental values of the ratio B2.El as a function of El/~. The value of co is the hydrodynamic
estimate (k=2) given by Bohr and Mottelson (Eqs. II.6a and II.6b; see also their Fig. 2). Negative-parity
states have been omitted from consideration —this involves only a few examples. In some cases higher excita-
tions are included, whence the various points are connected by a line.

The sources of data are given below. In order are given: the nuclide; Er/ka&; Ez/E&', spin and parity of the
second excited state; reference. If an asterisk occurs before the nuclide, the level scheme assumed is different
from that given in the reference.
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There are five quantum numbers in all: I, M, ), ep, and
e~. 4 can be written

pletely independent particles, Eq. (8) leads to a solid-
body moment of inertia for rotational states, but Bohr
and Mottelson' have shown that the inclusion of re-
sidual interparticle (pairilg) forces leads to a lower
moment of inertia.

If the potential energy is only a function of the
internal coordinates P and q, the angular momentum of
the nucleus will be a constant of the motion, i.e., I and
M will be good quantum numbers. If, furthermore, the
potential depends only on P, the Hamiltonian is separ-
able. For if in

1

@r, ~s" "~= Q g~(),~„v)&~~'(f),), (15)

where g~=g
The usual phonon spectrum is obtained when

C C
U(~) =

2 2

In the O.„representation, it is immediately obvious

(9) that the energy levels are those of a five-dimensional
harmonic oscillator,

t;T+U(mr+(e, ~,«) =~&O,~,O,),

~(~,V,0') =f(~)~(~,B;),

we set

(10) E= (.7+5/2)ha

we have the equations 2

iV= P n„=2m s+X, ns ——0, 1, 2,
h' t' B' (X+1)(X+2))

~Ãf(~)7= —
I

— + I+ U(P)
28 ( BP' P'

&V

0
1
2
3

I
0
2

0, 2, 4
0, 2, 3, 4, 6.

and

Ae(~,B;)

Q
21 8 8—sin3y —+-,' Q 4 (y,B,)

sin3y Bq By ~ sin'(y —-ossa) The rotational spectrum is obtained when the po-
tential stabilizes y (as well as P) about some equi-
librium value: y =0, & 3m. , for prolate nuclei and

37t, r for oblate nuclei; that is, when the potential
assumes the form

(12)—=L~(~,B')

The separation parameter,

where o&= (C/8)'. The spin assignment of the first few
states is then given by

xp'y(p)$ (»)

A= X(X+3), X=O, 1, 2, 3, (13)
U(P,v) = z Ier (P Po)'+ z 4—(V yo)', —(19)

is degenerate with respect to the angular momentum
for the first few states as follows:

0
4,

10
18

I
0

2, 4
0, 3, 4, 6.

(14)

6A. Bohr and B. Mottelson, Kgl. Danske Videnskab. Selskab,
Mat;fys Medd. 30, .No 1(1955)..

where the zero-point vibrations are small compared
with the equilibrium values of both P and y. The wave
function for the lowest state then reduces to just one
term,

C'=go(v) &osr' "go(v) Ursr (q stable). (20)

III. y-UNSTABLE SPECTRUM

The oscillator potential U=-', CP' arises from general
considerations of surface tension and Coulomb energy
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0.07 3.10
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0.04 3.33

3.33
0.04 3.34

4+
4+
3+/4+
4+
4+
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The quantity in curly brackets is (up to a normaliza-
tion constant) just the eigenfunction C(y,8;) for the
state ) = 1, I=2. By orthogonality of the 4 's, the only
state connected to the ground state by E2 matrix
elements is the X=1,I= 2 state itself. In particular, we
have the selection rule

(6') The crossover transition is forbidden

as a result of p instability.
For the transition ) =1, I=2 —&) =0, I=O, we

obtain
3 2

&(2)=- —«&ps&'IIPII ),
5 4m

(25)

Oo 4 5 6
xo

FIG. 2. Surface energies as a function of the potential mini-
mum xp. The states are designated by (X,ae)I. At xp ——0, the
spectrum is given by E/hcu=2ne+X and for x»)1 by 8/ihp=ne
+X(X+3)/(2xp2)

which is identical with the expression for rotational
states (Bohr and Mottelson, Kqs. V.7 and VIII 17).

cV1 transitions are forbidden for purely collective
transitions of second order in even-even nuclei because
of the high degree of symmetry present. Although mag-
netic dipole moments may be generated by the collective
motion, such are classically stationary and cannot
radiate. (In the case of odd-A rotational nuclei, the
dipole moment resulting from the collective motion
precesses about the total angular momentum I= R+0
and so can give rise to magnetic dipole radiation. )

A. Transition Probabilities

The transition probability for E2 radiation is given by

47r (&p) '

75@&C)

~(2) = 2 I (il3Ii(2, t ) If) I', (22)

(and small oscillations). The success of the individual-
particle model indicates that e8ects of the nucleons,
through their interaction with the surface, must also be
considered.

'

In the case of even-even nuclei, the nu-
cleons may be regarded, in first approximation, as
giving rise only to an e6'ective surface potential (strong-
coupling approximation) although particle structure
may also play a role in determining the mass parameter
8, as discussed above.

The form of the potential is a matter we will have
more to say about later, but let us first consider a
potential of the form V(p); that is, there is no y de-
pendence in the potential, but it is otherwise arbitrary.
Such an idealized system is referred to as p unstable.
The Hamiltonian is separable, as described by (9)—(15).

const, P(b
V(p) =

P) b.
(26)

The eigenenergies of Eq. (11) are then given by the
roots x„, ~ of the Hessel functions J~(x):

A2

E-,~ =—(*. .+')'.
2am

"' (27)

Thus we obtain

Es/Er ——2.20 (28)

B. Examples of y-Unstable Potentials

(1) Anharrnonic Oscillator

The addition of anharmonic terms to the p potential
is clearly capable of altering the ratio Es/Er in either
sense from two. Since experiment indicates a larger
value, the anharmonic terms should lead to an increase
in the force constant with increasing p. A limiting ex-
ample of such a potential is the in6nite square well:

3
Ãl(2, p) =—«Ep'n„*

4~

rr~ =p{Dpp cos'y

+ (1/v2) (D„s*+D„s*)sing) .

(23)

(24)

for the largest ratio obtainable from anharmonic terms.
Although this ratio is of the right order to describe

the e6ects, it represents the extreme case, not realizable
in nature. A larger value of the ratio can be obtained
from a potential with a minimum for some finite value
of p (see Sec. VI.A).
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(2) DisP/aced Harmonic Oscillator

Consider a potential given by

I (P) =lc(P P-.)' (29)

Equation (10) may then be more conveniently written

1 a' () +1)()+2)
+ +(x—xs)' q, (30)

2 8$ X2

where

x=(Bto/AP)l oi=(8/C)l, e=EPuo, q(x)=x'f(P)

1
I

()I.+1)()i+2)
I

o&"

S + (x—xo)' =v(x')+—(x—x')'
2 I x2 I 2

An approximate solution of (30) is readily obtained by
expanding the "effective" potential v(x) about the
minimum x':

l.2

I.O

0.8—

04

0.2-

0 l l I I I I I I I

0 Q, l Q.P Q.g Q.4 Q5 0.6 0.7 08 0.9 I.Q
4 = El/50J

FIG. 4. A plot of —,'x'eI as a function of e1~ The value does
not deviate very much from unity.

The approximation is worst for the case xo ——0, where
we obtain

e=2ne+[p+1)(X+2)]'*+1, ne, 'A=O, 1, 2, . (34a)
+0 x—x''. 31

compared with the exact solution.
If we neglect terms of the order (x—x')', the energy
spectrum is given by

e= (ne+s)oi'+v(x'), (no=0, 1, 2, ) (32)

and the eigenfunctions by

io(x) =h e((x—x')go&') expL ——', (x—x')'o~']. (33)

5.5

%33 ~
3.0

e=2ne+X+5/2, ne, X=O, 1, 2, . (34b)

The error in the energies is always less than 4%—
which is sufficient for our purposes —and decreases
rapidly with increasing xo.

Figure 2 shows the dependence of the energy levels
on xs, while in Fig. 3 (solid curves) is plotted E/Ei for
the state ) =0, ed=1, I=0 and for the degenerate pair
X= 2, no=0, I=2, 4 as a function ei =Et/Ao&. The ratio
for the degenerate pair I= 2, 4 varies from 2 for &&

——1
to 2.5 for e&

——0 in qualitative agreement with the data.
The state with I=O is generally higher. For a large x'
(or xs), the energy of the first excited state ei Ei/A&7

approaches the value 2/x". Figure 4 is a plot of —', x"ei as
a function of e&. These energy levels may be compared
with the calculations of Scharff-Goldhaber and Weneser,
who obtain the spectrum 0+, 2+, and then a close
triplet 4+, 2+, 0+. While their results are similar to
ours for small equilibrium deformations (Ei/Aa& near
unity), we find the excited 0+ lies considerably higher
than the 4+, 2+ pair for Ei/Aor (0.5.

For computation of radiation transitions (25) be-
tween states for which P' does not change appreciably,
we may take

I.5
(ill pllf) =p''= pf'

IV DEVIATIONS FROM y INSTABILITY

(35)

I l I. I I

O O.I 0.2 a5 0.4 0.5 0.6 0.7' 0$ 03 IA)

g, ~ E, /%co

Fzo. 3. Solid curves (y unstable): energies relative to Eq of
the state X=O, np=1, I=0 and the degenerate pair of states X=2,
np=0, I=2 and 4, as a function of eI=EI/Ace. Broken curve
(~ rigid): the ratio E&/E~ as a function of e~=E~/tug. The
second excited state is of spin 2, while the states of spin 0 and- 2,
illustrated for the y-unstable spectrum, lie infinitely high in the

'limit of y rigidity. The ~ for the two types of spectra are not
de6ned in precisely the same manner. (1.+v(y) }C=AC. (36)

In order to discuss deviations from p instability, we
will introduce a y-dependent potential. For the Hamil-
tonian to be separable, this would imply a potential of
the form V~v(y)/P'. Physically, we expect this to be
unrealistic, since p stability should increase rather than
decrease with P, but if P is relatively stable, we can
treat p' as a constant and "approximately" separate
the Hamiltonian. Thus the equation for determining h.
becomes
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The points y and y%-', x correspond to the same shape
of nucleus, but oriented differently. Thus if we wish a
potential which depends only on the nuclear shape, we
must choose a periodic function of 3y.

A potential which tends to stabilize y about 0 or m.

(axial symmetry) removes the degeneracy in the ).=2
states so that the I=2 state appears higher than the
7=4 state.

The limit of strong & stability can be most easily
visualized by considering a droplet which can only
execute axially symmetric vibrations. Such a system
has only three degrees of freedom: P (which can take
on negative values), ll, and g. The expression for the

energy can be written

right-hand side of (38) gives the usual rotational spec-
trum, while the second term is referred to as the rota-
tion-vibration correction.

The examination of small and intermediate devia-
tions from p instability is a more dificult problem. A
perturbation or Tamm-Dancoff calculation has only a
very limited range of convergence. Vet insight can be
gained by considering 6rst-order effects.

We begin with a representation in which the basis
vectors are eigenfunctions of (12), designated by

1

I~i&vl~)= 2 gx(I,N„T)&x~r(ff;). (39)

(40)

We introduce an expansion parameter k for the poten-

I

A' ( 8' 1(I+I)) tial so that
»(p) = —

I

——+ I+I'(p) N(p), (»)
l2B 4 rlPs 3P' ) I

v( )=ke'( ).'V P

with the eigenfunctions

+=P 'N(P)&r, M(e, y), (dr=P'sin8dPd8dq)

The ratio Es/E, as a function of Et/Aa& is shown in
Fig. 3 (broken curve) for a potential of the form
—;c(p—p,)'.

The spectra arising from potentials deviating only
slightly from both P and T stability (see Eq. (19)) have
been discussed by Bohr and Mottelson. The behavior
is similar for both types of instability and is of the

type shown in the left-hand part of the broken curve in
Fig. 3. The energy is given by

In erst-order perturbation theory, the perturbed wave
functions are given by

,(jl "h) Ii) I j&
Ii,k) = Ii)+k P'—,(41)

where i (or j) represents the quartet of quantum
numbers in (39).

It is of particular interest to examine the selection
rules for E2 radiation. In the unperturbed system, we
have the selection rule that the crossover transition is
forbidden:

(0000 I
u*„

I
202M) =0.

For the perturbed functions, we have

where rf=38p', rop= (ki/8)'*, a&~= (ks/po'8)', and ki
and ks are defined in Eq. (19). The first term on the

E=—I(I+1)—
I

—
I I

+ ILI(1+1)js (») (oooo,kl~*.l202Jlf»)
2 ( 0 I (Acorn kM&) =k((0000 In*„10235)(102MI

v'(T)
I
2023')/6

+(3ooo
I
~*.

I 20m)(0000 I "h) I 3000)/Ig}

= ——'k v'(p) cos3T
I
sin3T

I dye„M, (43)
—~/3
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FIG. 5. Schematic energy contours for a nucleus intermediate
between closed shells, after Hill and Wheeler (reference 8, Fig.
28). Their e and p correspond to our p and y.

which does not generally vanish in the erst-order per-
turbation [since v'(T) should be an even function].
Thus the selection rule forbidding the crossover
transition fails.

If the strong-coupling collective model description
has any validity for the nuclei of Scharff-Goldhaber
and Weneser, it would appear that the nuclei are highly
"y unstable. "

Small deviations from p instability will remove the
degeneracy in the states with the same e~ and X. In
particular, the pair X=2, rss=0 (I=2 and 4) will
emerge as a doublet although, as noted above, the
state with spin 4 will appear lower than the state with
spin two, contrary to the frequency of spin 2 in the
nuclei of ScharB-Goldhaber and Weneser.
WI:. The selection rule forbidding MI radiation is not
aGected by deviations from p instability; the rule
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remains even in the limit of the y-stable rotational
spectrum.

V. ODD NUCLEI

The treatment of an odd nucleon coupled to a y-
unstable core can be handled in a straightforward
manner by techniques indicated by Bohr and Mottelson
for weak coupling. The concept of a strong coupling
for odd nuclei is not so easily generalizable to p-
unstable nuclei for the following reasons:

In the case of rotational nuclei, the field experienced
by an individual nucleon approximately preserves its
shape as a function of time, but rotates in space with a
period long compared with the nucleonic period. The
wave function of the nucleon can be solved for in the
(momentarily) fixed field of the nucleus. Because of
axial symmetry, the projection of the angular mo-
mentum along the symmetry axes, 0, is a constant of
the motion and may be added to angular momentum of
the rest of the nucleus by the rules of the vector
addition.

In the case of y-unstable nuclei, however, the shape
of the 6eld changes with time and there remains no
symmetry axis. There are no simple constants of the
motion.

Certain qualitative features may be understood
without solving particular problems.

(1) An odd nucleon might be expected to tend to
stabilize the core about axial symmetry.

(2) The magnitudes of spectroscopic quadrupole
moments may be expected to be considerably smaller
than those entering into such considerations as quadru-
pole radiation, Coulomb excitation, or atomic isotope
shifts. The spectroscopic quadrupole moments depend
on the sign of the deformation. For y-unstable cores,
the sign is not constant and the expectation value of Q
would vanish. There are insufhcient data at present to
compare quadrupole moments measured spectroscopi-
cally and those determined by Coulomb excitation. A
possible example is Sm'", which has a very small

spectroscopic quadrupole moment. On the basis of
atomic isotope-shift considerations, however, the neigh-
boring even isotopes would be expected to have re-

spectably large deformations. A consistent interpretation
could be that Sm'" also has a deformed core which is

y unstable. It would be interesting to see if Coulomb
excitations also yield a large deformation.

VI. DISCUSSION

A. Deformation Potentials

The sum of individual particle energies~ as a function
of the deformation parameters, in the strong-coupling
approximation, represents the potential energy of de-
formation. A qualitative description of the potential
energy surface as function of P and p has been given by

7 Care must be taken in such a sum not to count potential
energy twice—if the primary forces are assumed to be two-body.
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FIG. 6. Energy contours for an ellipsoidal anisotropic harmonic
oscillator, midway between neutron and proton shells, after
Gursky (reference 9}.The numerical values of the energy contours
are given in units of Ace, where co is the oscillator frequency for
zero deformation. Gursky's n and y have approximately the same
significance as our (5j4rrl& ff and y. The fIgure has refiectional
symmetry about the axes y=0, 60', 120', etc. Cusps which occur
at these symmetry line's and at p=0 are expected to disappear
when direct interparticle interactions and other perturbations are
considered.

Hill and Wheeler, ' who first pointed out that the
easiest path between oblate and prolate deformations
is not through spherical symmetry, but through non-
symmetric deformations —hence the possibility of y
oscillations. This is illustrated in Fig. 5, which is taken
from their paper. The figure schematizes the potential
energy surface (for one type of particle) just over
halfway between closed shells. Although axial sym-
metry is favored —and in this case, the prolate shape—
there is a "valley" following the locus of points P =Ps,
where ps is the "equilibrium" deformation. The valley
has local minima in it, corresponding to preferred
shapes, but the depths of the minima may be small

compared with the peak at zero deformation. The
y-unstable approximation is to ignore the bumps in
the valley.|ursky' has examined the potential surface quanti-
tatively for an anisotropic harmonic oscillator (Fig. 6),
and between closed shells finds results similar to those
predicted by Hill and Wheeler, except that the local
minima in the valley are usually found for nonaxial
shapes. The potential at P=O does have a cusp (as we

have assumed for simphcity) except when the mini-

mum of the energy lies there. Bohr and Mottelson
(private communication) suggest that more detailed
calculations including direct interparticle interactions
would necessarily lead to a flat potential at P=O. As

' D. I,. Hill and J, A. Wheeler, Phys. Rev. 89, 1102 (1953}.
9 M. Gursky (private communication). Further details will be

published in a forthcoming paper.
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expected, Gursky 6nds that the spherical shape is pre-
ferred for closed shells, and that the positions of the
minima increase in P as one moves away from closed
shells.

In the case of axial shapes (y=0 or w), detailed
calculations of the single-particle energy levels and the
deformation potential have been carried out by several
authors, "including effects of spin orbit coupling. These
calculations have proved extremely valuable in the
regions of well developed rotational spectra, and similar

calculations, as a function of both P and y, would prove
valuable in the region where the surfon-type spectrum
is observed.

B. Validity of Strong Coupling

In order that the "strong coupling" or "adiabatic"
approximation be valid, at least two conditions must be
satis6ed. The first and more obvious of these is that the
nuclear potential change sufficiently slowly with time
so that an individual particle can continuously "re-
adjust" its wave function to the new potential without
changing "state" (in the absence of crossing of levels).
This condition will be satis6ed if the energy of the
collective modes is small compared with the energy level
spacings of the single particle excitations. If this cri-
terion is satisfied, the nucleons are obliged to follow
the deformations. This criterion is well satis6ed for the
nuclei which exhibit well developed rotational spectra,
where the rotational energies are of the order of 100 kev.

The surfon energies involved in the spectra of Schar6-
Goldhaber and Weneser are higher than the rotational
energies and may be an Mev or more. The particle
energy level spacings are comparable. This means that
one cannot expect a well-developed surfon spectrum
with many members. Nevertheless, the appearance of
6rst and second excited states is not unreasonable.

The other condition which must be satisfied is that
when crossing of levels occurs, a nucleon must remain
in the lowest level. Individual particle levels can only
cross if there are special symmetries present. As Hill
and Wheeler have pointed out, " irregularities in the
nuclear surface and, indeed, deviations from the single-

' S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 29, No. 16 (1955); K. Gottfried, thesis, Massachusetts
Institute of Technology, June, 1955 (unpublished); S. A. Mosz-
kowski, Phys. Rev. 99, 803 (1955).

u D. L. Hill and J. A. Wheeler (to be published).

particle model prevent actual crossing of levels. Never-
theless, at the point where levels would cross in the
absence of perturbations, a jump can occur unless the
perturbation energy (which is approximately the
separation of the levels) is large compared with the
energy of the collective modes. The perturbation energy
is not easy to evaluate, but may be of the order of an
Mev. It is possible that level crossings may play a role
in particular spectra.

C. Mass Parameter

The evaluation of the mass parameter 8 requires
[see Kq. (8)j a detailed knowledge of nucleonic con-
figurations. The experience with rotational spectra'
leads to expect that the hydrodynamic approximation
of irrotational Row (7) is not sufficient for the surfon
oscillations either. Estimates of the mass parameter for
surfon oscillations have been made by Moszkowski"
and indicate a value not greatly different from that
calculated (and observed) for rotational nuclei. '

VII. CONCLUSIONS

Surfon oscillations in a deformation potential inde-
pendent of the shape parameter have been studied and
found to exhibit certain regularities of the kind observed
in the nuclei of the type considered by Schar8-Gold-
haber and Weneser. The condition of p instability
alone leads to the selection rule forbidding the 2+ ~
0+ crossover transition, while it appears necessary to
assume a nonzero equilibrium deformation in order to
account for the observed ratios E2.'E~.
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