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Variational Approach to the Quadrupole Polarizability of Ions*
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A variation method has been developed for treating the problem of polarization of electron shells of ions
by external charges. The induced quadrupole moment has been calculated for a number of He-like ions
and the two Ne-like ions Al*** and Na*. For the former a shielding effect occurs, while for the latter a
net antishielding effect is obtained in agreement with Sternheimer’s conclusions. It is possible to compare
the results of Sternheimer’s numerical solution of the first-order Schrodinger equation with the variation
method used here in the case of Na*. Agreement is reasonably good.

INTRODUCTION

TERNHEIMER,? in a series of papers, has cal-
culated various effects of polarization of atoms by
extranuclear charges. In this paper, we are interested
in the specific problem of determining the quadrupole
moment induced in the electron shells of an atom by
a completely external charge. Such a physical situation
arises in a rather idealized model of an ionic crystal or
an alkali halide molecule. Although the model is crude,
these computations are a necessary preliminary to the
interpretation of nuclear quadrupole coupling constants
in alkali halide molecules and in ionic crystals.?+4
Consider the interaction energy of an external charge
¢, at a distance R from the nucleus in question with an
electron at position 7, 6, ¢ with respect to the nucleus
and the radius vector R. Expanding the energy in
powers of 7, we have

—e —e* efrcosfd e%(3 cos?i—1)

Reo R R 2R}

The first term cannot distort the electron distribution,
the second term is responsible for the ordinary dipole
polarization, and the third term produces a quadrupole
polarization. Sternheimer has shown that the second-
order effect of the dipole polarization of the electron
shell makes a contribution to the field gradient at the
nucleus which is negligible compared to the first-order
contribution of the quadrupole term. Small higher order
terms are neglected.

The effect of the term ¢%2(3 cos?—1)/2R? can be
treated perturbation-wise in three mathematically dif-
ferent ways:

(a) Matrix mechanical perturbation theory can be
used, as was done by Cohen.® This method suffers from
the requirement that energies and wave functions of
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excited states of the unperturbed atomic system must be
known.

(b) One can find the exact solution of the inhomo-
geneous wave equation for the first-order perturbation
of the wave function, as was done by Sternheimer and
co-workers. This is the most accurate procedure in
principle but in practice it is rather difficult to carry
out. Numerical solution of the differential equation
involves bothersome cumulative errors due to the
finite intervals of integration.

(c) One can use a variation method as is done here. It
is in principle less accurate than (b) but is much simpler
to carry out and does not involve any cumulative error.
Moreover, where analytical wave functions are avail-
able®” the wvariational method has the additional
advantage that it obviates numerical integration.

The variation method has been applied to some
He-like and Ne-like ions and in the case of Na*, where
a value calculated by Sternheimer and Foley?® is avail-
able, the results of the two methods are in reasonable
agreement. In the next section the variation method is
discussed.

THE VARIATION METHOD

What we need to determine are those terms in the
energy of the electrons which are proportional to Q/R?,
where Q is the nuclear quadrupole moment. There are
two such terms. One is the interaction of the electronic
quadrupole moment induced in the electron shells (by
the aspherical nucleus) with the external field gradient.
The other is the interaction of the nuclear quadrupole
moment with the electric field gradient arising from the
distortion of the electron shells by the external charge.
It is only a matter of convenience which term is cal-
culated because both terms are numerically equal (see
Appendix). The variation method which we have used
gives rise to divergent integrals if the first term is used
for s functions. We therefore have confined the calcu-
lations to the second term.

The process of computation consists of the deter-
mination of (a) the induced charge density due to the
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external perturbation, and (b) the field gradient due to
this charge density at the position of the nucleus. The
variational method of course enters only in part (a).
As mentioned before, the quadrupole part of the inter-
action energy of an external charge e with an electron
in the given ion is given by

Hi=— (3 cos®9—1)r*/R?, ¢))

where atomic units are used throughout.
The zero-order Hamiltonian of the electron is given

by
Ho=—V*+Vy; ()
and if %o and #, represent 7 times the zero-order wave

function and its perturbation, respectively, then we
have the equation

(Ho_Eo)’I/h: - (Hl—El)uo. (3)

E, and E; represent the zero-order eigenvalue and its
perturbation, respectively, for the electron under study.
If we now consider an s-electron, then

wo=1a'/V2, 4

where #¢’ is the radial part of %, and E;=0. We therefore
have

(Ho— Eo)tr=— Hmo. (5)

It is evident from (5) and (1) that #; behaves like a
d-function, (i.e., we have only an ns—d excitation of
the s-electrons). We therefore take it of the form

3 cos?h—1
u’ls—-»d/y (6)
V2

U=

where %4 is the radial part of #;,,4. We have essen-
tially to calculate #;,4". But assuming for the present
that #y,4" has been calculated and remembering that
we have two s-electrons the charge density due to the
perturbation is given by

Ap‘—‘ 4’140%13_,d/1’2. (7)

The field gradient at the position of the nucleus due to
this charge distribution is

4014150
Ag= f (3 cos?0—1)dr

r6
8140154
=ff ——————(3 cos?— 1)? sinfdbdr
43
16 o' Uysd’
=— | —dr. (8)
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Similarly, if the p-electron shall be the one under
study, then for the . electron,

o= uy'(\/$) cosb, 9)
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and
Ei=—¢R¥r?), (10)
where
(ry= f o' 2r%dr. (11)

The right-hand side of (5) may now be written as

2
E(\/%) [£ cos®0— (9/10) cost Jud

2
+—(v/$) X (% cosh)u’
R3

suggesting that #; now consists of an f-part and a
p-part. The former is the angular #zp—f excitation and
the latter the radial #p—p excitation. Following Stern-
heimer, we therefore take the perturbed wave function
as

2
ulzl—zg(\/%)[% cos®0— (9/10) cost Ju1pos’

2
+ 08— (§ coshuipsy’.  (12)
R3

The same procedure as that used above for the s-elec-
trons may now be used for calculating the field gradient.
If we remember that we have two p,- and two p,.-
electrons besides the two p.-electrons, it can be shown
that the field gradient at the position of the nucleus
due to the entire perturbed p-shell is

1008 20 thipsy’ 96
Ag=— | ——dp—
175 % 25 s

!/ !
Uo ulp—»p

dr. (13)

It must be remembered that by perturbation theory, u;
must in all cases be orthogonal to #o. This is taken care
of in the calculation of angular excitation like %14,
etc. by the angular part of the perturbed wave function
and in the case of #1,-, by doctoring the radial part
U1p-p as shown below.

We now outline the procedure for calculating ;.
The first question is what is the form to be taken for
the variation function? One is tempted to use the
Hassé form®

u1’=auo’H1(r), (14)

where H(r)=7?/R?, the radial part of H,. But Stern-
heimer has shown that in the case of hydrogenic wave
functions, where exact solutions of Eq. (3) are possible,
the solution for #,’ contains a polynomial in 7. Further,
we have also noticed in our variation calculations that
a form like (14) does not give a good value of the per-
turbation energy, whereas the introduction of an addi-

L. Pauling and E. B. Wilson, Introduction to Quantum Me-
chanics (McGraw-Hill Book Company, Inc., New York, 1935), p.
206.
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tional term proportional to 7, namely,
"= (a+Br)ud'r?/R3 (15)

gives a much lower value of the perturbation energy.
We have therefore used both (15) and

uy' = (a+Br+vyrH)uy'r?/R?

for the variation function, minimizing the perturbation
energy with respect to the parameters «, 8, and . In
the case of the radial excitation #np—p, we have to
subtract a term proportional to uo’ to retain the
orthogonality of #," and #,’ referred to above. The
variation function used for the radial excitation is
therefore

w1’ = (o' / R3)[ (a+Br4~r?)r*+6], Y

where
== [t Bty =~ [+ 80+

We thus have the net energy given by
E:(uo—i—m[Ho‘f‘HlWo‘f‘%I)
(tto+u1 | thot241)
Bt Ext-(us | Ho— Eo | un)+ 20| Hy| ),

(18)

remembering that #; is orthogonal to #, by virtue of
the angular dependence of #; in the case of angular
excitation and of the adjusted orthogonality in the
case of radial excitation. Evidently Eo and E; do not
involve the variation parameters «, 8 and y. We are
mainly interested in the last two terms, which we call
¢2 and ¢, respectively. Remembering that #, obeys the
Schrodinger equation,

Huy= Eouo,
we have from (2),
@ I(+1)
|

dr? 72

-‘E0+ VQ]MOIZO, (19)

! referring to the unperturbed state of the electron
shell considered. We therefore have
1 7/ a?

1(+1)
(Vo—E)=—\—— )

o’ \ dr? 72

(20)

Another relation that is useful is

4

Qug n n
fuo’r" dr=—— fuo’zr"dr= ——(™.  (21)
or 2 2

Using these expressions, we obtain for ¢, and ¢, the
expressions given below. We also give the values of v,
defined as the ratio of Aq and ¢=2/R? produced by the
external charge.

(16)
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$1= —5—1‘{6[&(’ H+B(r®)+v(r% ],

8

$o= ﬁ;tl 0aX(#?)+158r*)+22v¥r)
’ +2408(r*) 4+ 368v(r%) -+ 28val(r?) ],
Yo = (8/3) [alrH)+B++(r)]. '

np—f.—
1008
$1=— Lalrt)+Bre)+v(r%)],
175R®
504
o= [14aX72)+198% 74+ 26v*(r5)

175K
+32a8(r3)+44Bv(r%)+36ay{r) ],

Yoo = (504/175) [alr ) 4B+(r)].
np—rp.—

96
d1=——La((H—)Xr)+6(¢)
25R®
i — NP+ (= )],
bu= — L4aXr)+ 980+ 16740
+1208()+16ev(r')+2467(r%)],
1= (48/25) [l ) +B-+H(r) 3]

Minimizing ¢1+¢. with respect to «, 8, and v separately,
we get a set of 3 linear equations in «, 8, and v involving
the expectation values of #* over the zero-order func-
tions. These can be calculated numerically from
tabulated Hartree or Hartree-Fock functions, or
analytically for those atoms for which analytical ex-
pressions for the ground-state wave functions have
been obtained.®” Two checks on the correctness of the
calculations are available. First, by the nature of the
minimization procedure adopted, it may be shown that
with the values of «, 8, and v obtained.

¢1= —2¢..

Secondly, with the addition of an extra parameter the
energy must be lowered, and the test of the convergence
of the variation calculation is that the change in ¢1+¢s
and in 7, caused by the addition of the last variation
parameter should be very small. This is evident from
Tables I, II, and III.

RESULTS AND CONCLUSIONS

The results of our calculation for He-like ions are
presented in Table I. The convention regarding signs is
that for shielding, v, is positive and for antishielding,
it is negative. Taking into account the negative charge
of the electron shells, the net field gradient due to an
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TaBLE I. 1s—d excitation in H™, He, Lit, Be*t*, B+++,

Values of variation parameters

Second-order energy

Ton 8 % X5R%/8 (a.u.) Yoo
0.3356028 0.49683608 —0.005616722 —1008.6694 1.141
H- 0.5702009 0.41674636 0 —1008.0022 1.293
3.031221 0 0 —839.80796 3.326
0.0783238 0.12947099 ~—0.0015542998 —1.4297073 0.416
He 0.085412538 0.12224131 0 —1.4296427 0426
0.32475818 0 0 —1.2463932 0.877
) 0.03240597 0.073545278 —0.00073421712 —0.070975891 0.256
Lit 0.033628103 0.071487868 0 —0.070975202 0.259
0.11837002 0 0 —0.062528348 0.508
) 0.017590145 0.051036421 —0.00056753525 —0.0095332268 0.185
Bet+ 0.018071372 0.049903267 0 —0.009525101 0.186
0.06039845 0 0 —0.0084561937 0.356
0.01100305 0.039098578 —0.00042760391 —0.0021396438 0.145
BHt+ 0.011222852 0.03843474 0 —0.0021396368 0.146
0.036631084 0 0 —0.0019039642 0.275
TaBLE II. Radial and angular excitations in Na*.»
Values of variation parameters Second-order energy
Excitation a B8 ¥ H Xf(R), a.u. Yoo
0.07195285 0.11777345 —0.004223458 0.17376296 —0.2791560 —5.226
2p—p 0.08872469 0.10037521 0 0.1761006 —0.2790966 —5275
0.078248157 0 0 0.22793299 —0.25510510 —6.541
0.010658300 0.086732194 0.0006978874 0 —0.26517411 0.304
2p—f 0.008857789 0.089170979 0 0 —0.26517073 0.300
0.13814045 0 0 0 —0.21774832 0.674
0.09257035 0.022473668 0.0140761 0 —0.19654567 0.326
2s—d 0.060295345 0.067978521 0 0 —0.19593480 0.286
0.1536525 0 0 0 —0.18109207 0.452
0.002209646 0.015820508 0.0041921636 0 —0.0000168196 0.004
1s—d 0.001767677 0.01878369 0 0 —0.0000168140 0.060
0.007275995 0 0 0 —0.0000145665 0.124
Net ve —4.532
a f(R) = (25/48) RS, for 2p—p
=(25/72)RS, for 2p—f
=5/8RS, for 1s—d and 25 —d.
TasLE IIL. Radial and angular excitations in Al**+.2
Values of variation parameters Second-order energy
Excitation a 8 ¥ 8 , a.. Yo
0.04814817 0.0628385 —0.0002513122 0.047107345 —0.034315502 —3.129
2p—p 0.04865026 0.06211016 0 0.047145364 —0.034315174 -3.131
0.13358910 0 0 0.059824626 —0.031967674 —3.711
0.010082868 0.057530872 0.00010218562 0 —0.036034641 0.230
2p—f 0.0099506844 0.057781853 0 0 —0.036034628 0.230
0.07015586 0 0 0 —0.030857797 0.447
0.070807514 0.004215303 0.14042451 0 —0.046054312 0.278
2s—d 0.051937413 0.038631541 0 0 —0.045944795 0.250
. 0.09382259 0 0 0 —0.04420743 0.611
0.0014044418 —0.02158402 0.092175695 0 —0.0000071858283 0.031
1s—d —0.00068355194 0.028013462 0 0 —0.00000712325 0.031
0.00182859 0 0 0 —0.0000012834662 0.037
Net ve —2.590

2 f(R) is defined in Table II.



QUADRUPOLE

——-
K ) o N
/
/
-~

Y

e

RN

™~

-l 0o I

2 3
H™  He Lt  Be*t ™
IONIC CHARGE

F1c. 1. Plot of v« versus ionic charge for He-like ions.

external charge at the position of the nucleus is a
factor (1—v,) times the field gradient due to the
charge alone.

The variation of vy, with ionic charge for He-like
ions is shown in Fig. 1. The nature of the variation is
as expected, the more positive ions being less deform-
able. The results of the calculations for Nat and Al**+
ions are given in Tables IT and III. In particular for
Nat, the total value of v, is —4.5 which is to be com-
pared with Sternheimer and Foley’s value® of —4.1.
The quadrupole polarizabilities®® can be simply ob-
tained from our second-order perturbation energies.
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APPENDIX

We prove here the equivalence of polarization cal-

culations in which the source of the perturbation is the

quadrupole moment of the nucleus or the external
charge.

The interaction energy of the quadrupole moment of
the nucleus with the electron, H,= —7*P»(0)Q, produces

10 R. M. Sternheimer, Phys. Rev. 96, 951 (1954).
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a first-order change #;=#*Q in the electron wave
function.” Also the interaction of the field gradient (due
to the external charge) with the electron,

Hi=[—rP,(6) /R

produces a first-order charge in the electronic wave
function, #;=1,*/R%. To first order in the small pa-
rameters Q and 1/R?, the wave function is

u= M0+M1*/R3+Q711*. (Al)
The Schrodinger equation is
(Ho+H\+H)u= (Eo-+E+E)u, (A2)

where Eo, E;, and El_are the expectation values over
uy of Ho, Hi, and H; respectively. Separating the
terms of first order in Q and in 1/R?, we have

(Ho— Eo)ur= (E1— H1)uy, (A3)
(H0~E0)1/74= (El—ﬁl)uo. (A4)

Now the total perturbed energy of the electron is
evidently

E_<%0+u1+ﬂ1| H0+H1+F11Wo+%1+721>
oty | sg+-11+10y) '

Hence, to terms of second order in the two small
parameters,

(A5)

1
E= Eo—i“E’(Zto l P21’2 ] H())‘I'Q(’Mo l PQ?'_S [ %())

+i[<%l*l f]o—'*Eo l M1*>* 2(%1*1 sz’z I %0}]
RS

+Q (@ *| Ho— Eo 1) — 2(a1*| Por—*| o) ]

+§;E{<”1* | Ho— Eqo| i21*)— 2{uo | Por?| i11*)}

+{<Z£1*IH0—‘E0I121*>—2<M0!P27’~3|M1*}]. (AG)

This expression can be simplified, by using the
Schrédinger equations (A3) and (A4), to

_ 1
E= E0+E1+E1—E;(“1* | Por?| mo) — Q¥(atr* | Por—2| o)

—%[Wo | Por®| ur®)+(uto| Por=2|us*)]. (A7)

The last two terms are both interaction energies of
the nuclear Q with the electronic shells. The next to the
last term is the interaction of the induced electronic
quadrupole moment with the external field gradient
and the last term is the interaction of the nuclear Q

U The asterisk in this appendix does not mean complex
conjugate.
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with the field gradient induced in the electronic shells
by the external charge. Both terms are equal if %, and
7 satisfy the Schrédinger equations (A3) and (A4).
If now %, and #, are not exact solutions, the energy
(A6) exceeds the true energy but it is to be minimized.
It is not, however, the total energy which is minimized
and not even the term in Q/R? but the term in 1/R8,
which is essentially the quadrupole polarizability of the
ion. This procedure can be defended by noticing that
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minimizing the 1/R® energy should ultimately lead to
a trial function %, which is negligibly different from the
true solution #; of (A3). If u, satisfies (A3), then for
any integrable function #; orthogonal to u,

<u1* l Hy—E, ] ’121*>= <Mo, Por? l 'LZ1*>.

The term proportional to Q/R® in (A6) then can be
written entirely in terms of the true #; and is therefore
obtained correctly.
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Paramagnetic Resonance Hyperfine Structure of Co®*t

R. V. Jones, W. DoBrowoLskI, AND C. D. JEFFRIES
Physics Department, University of California, Berkeley, California
(Received January 3, 1956)

The microwave paramagnetic resonance hyperfine structure of 72-day Co% has been observed in a mag-
netically dilute single crystal of cobalt potassium sulfate at 20°K. From the number of hfs components and
their spacing relative to Co®, the spin 7(Co%)=4 and the magnetic moment |u(Co%6)|=3.8554-0.007 nm
are directly determined. These results are discussed in relation to those of nuclear alignment experiments

and the nuclear shell model.

I. INTRODUCTION

N a recent paper,! referred to as I, the direct measure-
ment of the spin and magnetic moment of Co® by
microwave paramagnetic resonance was described. The
present paper presents the results of a similar measure-
ment of the spin and magnetic moment of 72-day Co®.
These values, as those of Co®, are of particular interest
in connection with previous investigations of these
nuclei by nuclear alignment and B, y spectroscopy.
The paramagnetic resonance of divalent cobalt ions in
a Tutton salt single crystal is observed at 20°K in a
conventional paramagnetic resonance spectrometer. As
described in I, from the number of hyperfine com-
ponents and their spacing relative to that of Co% we
can determine respectively the spin and magnetic
moment. For details on the crystallography of the
Tutton salts, the Hamiltonian determining the line
spacings, and the experimental apparatus we refer to I.

II. EXPERIMENTAL PROCEDURE

The radiocobalt was produced by the Fe®(p,1n)Cod
reaction with 12-Mev protons from the 60-in. Crocker
cyclotron using an iron-plated water-cooled copper
target. Two bombardments were made, the first using
iron plated from a bath of reagent grade purity. Pre-
liminary examination of the cobalt paramagnetic reso-
nance hfs from this sample indicated that stable Co®
was more abundant than Co® by a factor 200, un-
doubtedly because of a cobalt impurity in the iron.

t This research has been supported in part by the U. S. Atomic

Energy Commission.
1 Dobrowolski, Jones, and Jeffries, Phys. Rev. 101, 1001 (1956).

Since the intense Co® hfs lines obscured some of the
Co® hfs lines, a second bombardment was made using
iron plated from a bath obtained by ether extraction to
remove the trace impurity of cobalt. The radiocobalt
was extracted from this bombarded target by a pro-
cedure similar to that of Maxwell e/ al.,2 and was added
in the form of CoSO; to a heavy-water solution of
ZnK,(SO4)s. A single crystal of the Tutton salt
(Co, Zn)K»(SO4)2-6D:0 was grown, weighing about
70 mg and containing about 4 mC of Co®,. The activity
was identified as that of Co% by observing its y-ray
spectrum with a recording scintillation spectrometer.
This crystal was mounted in the cavity of the para-
magnetic resonance spectrometer with z;, the symmetry
axis of the crystalline electric field, oriented parallel to
the external magnetic field H, and the susceptibility
axis K, perpendicular to the field H. The observed
spectrum at 20°K is shown in Fig. 1. The eight hfs lines
labeled 1, 2, - - -, 8 have the g factor and spacing of Co®
and are due to a residual trace impurity of cobalt in the
iron target. The nine lines labeled 1/, 2/, ---, 9’ have
the same g factor and are thus also due to cobalt; in
fact they are the his lines of Co®%6, the only other cobalt
isotope present in the sample. For the paramagnetic
resonance transitions observed there are 2741 hfs
components for a nuclear spin 7; thus we conclude

I(Co%%)=4. )]
This interpretation is verified by rotating the crystal
about the K, axis: the two sets of hfs lines move to-

2 Maxwell, Gile, Garrison, and Hamilton, J. Chem. Phys. 17,
1340 (1949).



