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The quadrupole moment induced in various ions by the nuclear electric quadrupole moment Q has been
recalculated to higher accuracy than in a previous paper. Values are presented for the ratio p„ofthe induced
moment to Q for the Na+, Cl, Cu+, Rb+, and Cs+ ions. These values of p enter into the quadrupole coupling
of polar molecules, which is given by 9—2e(1+Iy„~)/R' (If=internuclear distance) provided that the
exchange repulsion of the ions can be neglected. The calculated values of y„areof order 10—100, in agree-
ment with experimental evidence from the measured values of q for several polar molecules.

" 'T has been previously shown' that the nuclear
~ ~ electric quadrupole moment induces a large quad-
rupole moment in the electronic shells of the surrounding
atom or ion. The ratio y of the induced moment Q,r
to the nuclear moment Q was shown to be of the order of
10—100 for a series of representative ions. The large
magnitude of Q,r affects the values of the quadrupole
coupling in polar molecules 'which can be represented
as consisting of two (or more) ions in interaction.
Another way of interpreting this eGect is to consider
the perturbation of the ion involved by the field of the
other ion in the polar molecule. The perturbation of the
ion core makes a contribution to the field gradient at
the nucleus which is

I y„Itimes the contribution of the
external charge due to the other ion, i.e., 2eIy I/E',
where E. is the internuclear distance. Although the
values of the quadrupole coupling q can be determined
for only a few polar molecules at present, it was shown
that in most of these cases, q is larger than 2e/R' by a
factor of the same order of magnitude as the calculated
values of

I y„I, in qualitative agreement with the
present considerations.

The values of y given in Table I of I were calculated
rather crudely, and an estimated error of %50%
was assigned to these results. Recently we have dis-
covered that some of the values of y (nl—+l) were
unfortunately in error and that the accuracy of the
results could be improved by more refined methods
of calculation. In the present note we give the revised
values of y„(rrl—+l), which are probably accurate to
&10%. The contribution y„(el—&l) of the nl shell
is given by

('Bl~l) = c~
J

Qo sr r dr,
0

where V0 is the spherical potential, E0 is the unper-
turbed energy, and (1/r') is the average of 1/r' over
the unperturbed function' N0'. In order to check the
calculation of p„,this quantity was also obtained from
the perturbation N1' due to the external charge. The
radial wave function Nl is obtained from the equation '

d' l(l+1)
+ +Vo —~o I,'=no'(r' —(r')), (3)

J

where (r') is the average of r' over eo'. In terms of ur',
y„(nl +l) is giv—en by

y„(nl—+l) = c( No'tlr'r 'dr.
J0

The fact that the two expressions (1) and (4) are
equivalent has been shown previously. ' Table I gives

TABLE I. Values of y„for the Na+, Cl, Cu+, Rb+, and Cs+ ions.

IOI1

v-(2p~ p)
~-(3P P)
p (3d~d)
v-(4P~P)
y (4d—+d)
v-(5P~P)

(ang)

Na+ Cl CII+

—4.7 —1.5 —0.62—56.5 —7.9—8.5

+0,6 + 1.4 + 2.0—4, 1 —56.6 —15.0

—0.45—4.4
1.4—66.6

+ 2.2
—70.7

Cs+

0.26
1.7
0.38

10.7
4.0—129.3

+ 2.9—143.5

nd —+d), uo' is r times the radial wave function norma-
lized according to Jo"ohio'odr=1; er' is the radial Part
of the perturbation due to the nuclear moment, and is
determined by

d' l(l+1) f' 1 1
+ +Vo Eo er'=—+o'I — — I, (2)

dr' r' 0 r' r' )

where c~ is the coefficient due to the angular part of the
wave function (c& =48/25 for n p~p, cs ——16/7 for
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' For Xa+ we used the wave functions of V. Fock and M. Petra-
shen, Phys. Z. Sowjetunion 6, 368 (1934). For Cl and Cu+, the
Hartree-Fock wave functions were used, while for Rb+ and Cs+
only Hartree wave functions (without exchange) are available.
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eft'ective values of V0—E0 were obtained from the wave functions
+o' according to Eq. (4) of I.
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the results of the calculations. For all of the-cases
shown in this table, the values of y„(el~i) obtained
from Eqs. (1) and (4) agree within 10j~. The
result listed in the table represents the average of the
two values. The contribution y„(ang) of the angular
modes was taken from our previous work. '

In comparing the values of y„in Table I with those
obtained previously, two points may be noted. (1) The
earlier values of y (2P~P) for Na+ and y„(3d—+d) for
Cu+ had been unfortunately affected by rounding errors.
(2) In the present calculations the method of nu-
merical integration was somewhat different from that
used in the previous work. For both Eqs. (2) and (3) a
solution (Ni' or Ni') which is regular at r=0 was first
obtained by outward numerical integration starting
from the origin, as in the previous work. In addition,
a solution which is regular at r= ~ was obtained by
inward numerical integration starting from large r.
The two solutions were joined at an intermediate
radius, generally in the vicinity of the outermost
(principal) maximum of the unperturbed wave function
No . The procedure of using both solutions is necessary,
particularly for I&', in order to obtain reliable values
of y„from Eq. (1). As mentioned above, the values of

y„thus obtained from Eq. (1) are in good agreement
with those of Eq. (4). This comparison probably
provides a reliable check, since the calculations of the
functions N~' and Ni' from the differential equations
(2) and (3) are completely independent of each other.

It is seen from Table I that the main conclusions of
our earlier paper about the antishielding are entirely
unaffected by the revised values of p which are
actually larger in all cases. Since the publication of I,
additional evidence for the existence of a large anti-
shielding has been obtained by Van Kranendonk4 from
the relaxation time in magnetic resonance experiments.

Recently Das and Bersohn' have obtained values of
for Xa+ and AP+ by a variational calculation in

which the function I&' is written as uo'r' times a quad-
ratic function of r with three undetermined coefficients.
These coefficients were varied so as to minimize the
second-order perturbation energy due to the external
charge. For Na+ they find p„(2p~p)= —5.23. As
shown in Table I, we obtain y„(2p~p)——4.7 using
the 2p function of Fock and Petrashen. ' (Actually the

4 J. Van Kranendonk, Physics 20, 781 (1954).
P T. P. Das and R. Bersohn, Phys. Rev. 100, 1792(A) (1955);

102, 735 (1956), and private communication. We are very much
indebted to Dr. Bersohn and Dr. Das for informing us of their
calculations in advance of publication.

values obtained from Eqs. (1) and (4) were —4.68 and
—4.78, respectively. ) Das and Bersohn used the
analytic I.owdin' wave functions. The small difference
between their value and ours is due to the use of the
different zero-order wave functions. This was estab-
lished by recalculating u&' and 8 &' using the I.owdin
function for mp'. In this case, Eqs. (1) and (4) gave
p (2P~P) = —5.18 and —5.14, respectively. These
values are in satisfactory agreement with the result of
Das and jaersohn, within the accuracy of the numerical
calculations.

The second-order perturbation energy E2 for the
2p—

&p excitation due to the external charge is given by

Es —(48/——25RP) ' up'ui'r'dr,
Jp

(5)

if E2 is in Rydberg units and E. is in units aH. For the
integral of Eq. (5), to be called I, Das and Bersohn
have obtained I=0.2792. Our value as obtained with
the Pock-Petrashen function is I=0.2180. With the
function N~' calculated using the I.owdin wave function,
we found I=0.2738, in satisfactory agreement with
the result of Das and Bersohn. The rather large differ-
ence between the values of I for the two zero-order
functions sip' (as well as the corresponding difference
of the values of y„)is due to the fact that the Lowdin
function is somewhat more external than the function
of Fock and Petrashen. Thus, although the maximum
values of uo' which occur at r—0.55aH differ very little
[Np'(0. 55aH) = 1.064 for the Lowdin function and 1.078
for the Fock-Petrashen function], there is an appreci-
able difference in the region of large r, which is of
primary importance for E2. Thus the I.owdin and Fock-
Petrashen values of No' are, respectively: 0,217 and
0.205 at r=2aH, 0.0481 and 0.0388 at r=3aH,' 0.0092
and 0.0065 at ~=4aH. The corresponding values of
n~' are: 0.213 and 0.189 at r =2aH,. 0.158 and 0.116 at
r=3aH, 0.068 and 0.044 at r=4aH. Since the integrand
of E2 is proportional to No'I&' and is weighted heavily
(~r') for large r, this small difference of the wave
functions leads to an appreciable difference of the
values of E2.
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