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EfFect of Defects on Lattice Vibrations: Interaction of Defects
and an Analogy with Meson Pair Theory*

ELLroTT W. MQNTRoLL AND RENFREY B. PQTTst
UNeeerssty of Maryland, College Park, Maryland

(Received December 21, 1955)

An analysis is given of the determination of additive functions of the frequencies of the normal mode
vibrations of a lattice. The method is applied to the problem of calculating the self-energies and interaction
energies of defects in lattices of any dimension. In particular results are derived for the self-energies and
interaction energies of isotopes, holes, and "source" defects in simple cubic monatomic and diatomic
lattices. For example it is shown that two holes in a simple cubic lattice attract each other, the energy of
interaction being inversely proportional to the cube of the distance of separation. The general method is
also applied to the problem of the interaction of lattice defects with the boundaries of the lattice. Finally,
if the lattice approaches the limit of a continuum, it is shown that the energy of interaction between two
holes is just that obtained by Wentzel for the interaction between two Axed nucleons according to the scalar
meson pair theory.

INTRODUCTION

HE inAuence of defects such as impurities and
holes on the physical properties of crystals has

been one of the most studied phases of solid state
physics in recent years. This paper is the third report
of a detailed mathematical investigation of the effect
of localized irregularities on lattice vibrations' (the
first report will be referred to as D-1 and the second as
D-2). Although the authors are interested in the general
defect problem, they have decided that various suitable
mathematical techniques can more easily be applied to
perturbations of lattice vibrations than to other degrees
of freedom in a solid and have elected to examine that
problem 6rst. The work of Koster and Slater' on the
theory of semiconductors via Wannier wave functions
parallels our analysis to some extent (as do the brief
remarks of Lax and Smith' on lattice vibrations). Work
is now in progress on the inAuence of defects on the
spin wave, Ising, and spherical models of magnetic
materials.

D-1 is mostly concerned with those vibrational modes
which are localized around lattice defects. It is shown
that under certain conditions discrete normal modes
exist which are diplaced out of the continuum of modes
of the unperturbed lattice. Only a few atoms in the
immediate neighborhood of a defect participate in these
modes. Generally motions of all atoms in a perfect
monatomic crystal contribute equally to the energy in
each normal mode. However, the atoms which par-
ticipate in localized modes are responsible for more than
their normal share of the internal energy of the crystal.
Hence the region around a defect is equivalent to a
"hot spot" in the lattice. A localized mode (either in the
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t On leave from the University of Adelaide, South Australia.
' E. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955);

Mazur, Montroll, and Potts, J. Wash. Acad. Sci. 46, 2 (1956).
s G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954);

G. F. Koster, Phys. Rev. 95, 1436 (1954).' M. Lax, Phys Rev. .94, 1391 (1954).

interior or on the surface of a crystal) might catalyze
physical and chemical processes which would not
normally occur at the existing temperature of the
crystal. D-2 is concerned with localized modes in linear
diatomic lattices.

It was also pointed out in D-1 that at low tempera-
tures an attraction exists between "like" defects (for
example a pair of isotopic impurities of the same mass)
and a repulsion between "unlike" defects (for example,
two isotopes of diferent mass, one heavier than a normal
atom in the crystal and one lighter). This interaction is
greatest at absolute zero. A consequence of the attrac-
tion between like defects would be a clustering tendency
between atoms of like atomic weight in a mixed crystal
of two isotopic species. Indeed one would expect a
separation int'o two isotopic phases at T=o (actually
the equilibrium 'time for such a process might be very
long). This effect has been discussed by Prigogine,
Bingen, and Jeener. ' It will be shown in Sec. 6 that light
isotopes and holes are attracted to the free boundary
of a crystal.

This paper is mainly concerned with the development
of a formalism for the discussion of the eGect of the
interaction of defects on additive functions of the
normal mode frequencies. The formalism will be applied
to the calculation of the interaction energy between
defects (as determined from the change in zero-point
energy) and of that between defects and surfaces.
Although thermodynamic quantities are additive func-
tions of the frequencies, we shall postpone a discussion
of their behavior until part 4 of this series. Detailed
calculations are made here on simple cubic lattices with
interactions (described through both central and non-
central forces) between nearest neighbors only. Both
one- and two-component systems are analyzed.

Some remarks will be made concerning continuum
field theory by letting our crystalline lattice spacings
vanish. It was pointed out to the authors by Professor

' Prigogine, Bingen, and Jeener, Physica 20, 383 (1954); 20,
516 (T9S4).



EFFECT OF DEFECTS ON LATTICE VIBRATIONS

T. D. Lee that our methods are similar to those used
by Wentzel' in his investigation of the meson pair
theory of forces between nucleous. We show that pair
theory is mathematically equivalent to the continuum
limit of the theory of the interactions of holes in a
crystal lattice.

The reader is referred to D-2 for a detailed discussion
of the model' used here.

S=g g(z)—(»gD(z) }dz (12)
2+i 4~

We represent the function whose zeros are normal mode
frequencies of a perfect lattice by Dp(z), and represent
the corresponding function associated with a lattice
with defects enumerated by n, P, by D(n, P, ~; s).

The change in an additive function S which results
from a single defect, n, is

2

g(z)—(logD(n; s) —logDp(z) }dz
2m' ~g dg

1. GENERAL FORMULAS FOR CALCULATION OF
ADDITIVE FUNCTIONS OF NORMAL

MODE FREQUENCIES

Let us suppose that the normal mode frequencies of
a lattice are co&, co2, . Many quantities of interest
can be expressed as sums of functions of the normal
mode frequencies

S=Zt g(~t)

For example, the zero-point energy of the lattice is
given by S if g(z)=2hz. The characteristic function,
E(ezpincos), WhOSe FOurier tranSfOrm iS the frequenCy
distribution function, corresponds to

g(z) =x—' exp(inz2),

where E is the number of degrees of freedom of the
lattice. Thermodynamic quantities are generally of the
form of (1.1).

J.et us also assume that the frequencies are roots of a
characteristic equation

D(co) =O.

It was pointed out in D-1 that if g(s) is an analytic
function inside of a closed counter-clockwise contour C
and if D(z) has all of its zeros but no poles inside the
contour, then7

lattice. The "interaction-S" of a defect pair (n,P) is
de6ned as the diRerence between the S of a system of
two interacting defects and that of a pair of isolated
defects and is given by

If e, ep, ~ are the parameters which characterize
defects n, P, ~, and D(n; z) is of the form

D(n; z) =Dp(z)t 1+ sh. (z)$ (1.5a)

(as we shall show to be the case in a wide variety of
situations), and

D(n, P; z) =Dp(z)L1+e h (z)+ephp(z)
+e eph p(z)$, (1.5b)

we And

I
h-'(z)g(z)dz

65 =
22ri & c 1+e.h. (z)

(1.6a)

where the prime denotes the derivative with respect to
the argument. Also

1
t

d e ep(h p hhp)—
AS p= g(z) —log 1+— ds,

22ri "o dz (1+e h )(1+ephP)
(1.6b)

so that as e and ep—&0

f~tp
g(z) [h (z)hp(z) h.p(z) j—'dz

2x$4 g

and the interaction S is of second order in ~, ep in the
limit of "weak defects. "

The total interaction S due to a large number of
defects is g DS p over all defect pairs and is a quad-
ratic form in e, ep, - in the limit of weak defects,
but cubic and higher order terms occur when "strong"
defects (large c's) exist.

2. ON THE GENERAL FORM OF THE CHARACTERISTIC
EQUATIONS OF NORMAL MODE FREQUENCIES

The normal mode frequencies (co;} of a set of coupled
harmonic oscillators are zeros of the characteristic
determinant

AS, p
—— g(z)—

dz

Xlog(D(,P; )D ()/D(; )D(P; )}d (1&)

2

g(z)—log(D(n; z)/Dp(z) }d».
27' ~ g

t211+~ltO t212

D ( )
t221 1222+~sco
~si 832

g23 ~ ~ ~

1222+M sees
~r (21)

This quantity might be referred to as the self-5 of the

' G. Wentsel, Helv. Phys. Acta 15, 111 (1942).
6 See also E. W. Montroll, Third Berkeley Symposium on

Statistics and Probability, 1955.
& See E. C. Titchmarsh, Theory of Fnncteons (Oxford University

Press, Oxford, 1932), p. 116.

Here the M s are particle masses and the u;, 's are
related to the force constants of the "springs. " We
shall assume that defects in a lattice alter the deter-
minant through the introduction of a set of parameters
5, bp, ~ at the nth, Pth, . elements along the main



E. W. MONTROLL AND R. B. POTTS

diagonal so that these elements become g +M ~~+8,
etc. (Although it is sometimes necessary to perturb
oG-diagonal terms as well, the analysis of such cases is
essentially the same as that given below. )

In the case of a single defect, the determinant can be
expanded by the 0.th row in the usual manner to yield

D(n; a) = Do(cu)+b. A... (2.2a)

where A is the cofactor of g +(O'M in the deter-
minant Do((0). It is well known that if (g;,' ') (co)} is the
set of elements of the inverse of the matrix of Do((d),
then

A =Do(ru)g ( "((0),
and

the determinant D(n; co). This is, however,

A pp(n) =A pp+A

where A is the second-order cofactor obtained by

we have

= Dp(s))
g (—&) g p(

—&)

gp (—&) gpp(
—&)

striking out the nth and /th rows and columns of Do(co).
Since this cofactor is

gp (—&) gpp(
—&)

1+I) g ' " (5 l))»g
=Do(cv)

(~-hp)'gp-( " 1+&pgpp( " (2.4)
D(()(,P; (p) =D(n; a)+bpA pp(n),

where A pp is the cofactor of the Pth diagonal element of The reader can verify the three-defect formula,

D(n, co)=DO(co)[1+b~g..' "(co)]) (2.3) D(o P. „) D,(„) 1+( g (-i)(„)+p g (-i)( )

which is of the form (1.5a) where h is to be identified
(—~)

gaa(-1) gap(-1)
with Q~~ +8 ()p

Now let there be two defects, one at 0. and the other

at P. Then, if we expand D(u, P; (d) with respect to the

Pth row, we Gnd

1+8.g..(-') (S.Sp)«g.,(-» (S.S„)»g.,(-»

D(-,~,~;-)=D.(-) (~p~-)» p-(-»+~p»(-)
(I) I) )»g (—i) (b t)p)»g p(

—i) 1+) g (—i)
(2.5)

and may generalize these results to any given number

of defects.
Since the elements of the inverse matrices appear in

all formulas independently of the specific nature of the

defects, we derive formulas for these elements in the

next section.

3. ELEMENTS OF INVERSE MATRIX FOR
CERTAIN MODELS

+le shall now Gnd the elements of the inverse of the

matrix Do which corresponds to one-component, n-di-

mensional. simple cubic lattices with interactions

between nearest neighbors only (and both central and

noncentral forces). We assume the lattices to be cubes

containing X" lattice points. At the end of this section

we discuss the case of a diatomic lattice.
The mechanics of these systems are discussed in

detail in D-1 and in reference 6. A mathematically
convenient (but physically somewhat unreal) feature

of this model is the independence of the x, y, and s
components of the motions of the lattice particles.

The equation of motion of the x component of the
displacement of a particle at lattice point (mi, m2, .

,m„)
is

Mx(s)si es )=Q y;Lx(mi, , m;—1, , m„)
j=l

—2x(mi, ,m )+x(mi, . , m,+1, , m„)], (3.1a)

where y; is the force constant associated with displace-

ments parallel to the jth coordinate axis. Similar
equations exist for the other components of the dis-
placement. We choose solutions of the form

(xe , i,m„) =e'"'I (e,,nz„.) (3.1b)

and And Do to be the determinant of the coeKcients
of the I's in

4PMQ(mi, m2, )+P y,LQ(, gg,—1, . . .)
j'-1

—2e(,m;, )+I(,no+1, )j=o, (3.2a)

l), (si, s~, ) =MoP —2 P y, (1—cosy', ),
j=l

p, =2irs, /X. (3.3)

The elements of our determinant can be expressed as

g(m; m')=E " P X(sa,s2, )
81,s2 ~ ~ =1

)&exp(2iris (m —m')/E}, (3.4)

We first assume the existence of periodic boundary con-
ditions; later we discuss the cases of free and rigid
boundaries. The characteristic vectors of the matrix of
the coefficients of N(m) are of the form

u, (m) =N «" e px(2 its m/S), (3.2b)
where

s= (si, ,s„), m= (e&,m2, ,e„)
and the characteristic values
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while those of the inverse are

a' "(m; m') =X "Q, X '(s)
&(exp{2sris (m —m')/E}. (3.5)

In the limit as X~,

(1&" t
a( '&(-m; m') =

I

—
I

exp[i(m —m') q]d" q
X

[M(o'—2 +1"y, (1—COS(o;)]

where Q„(s) is the rtth Legendre function of the second
kind and

0= (et+Vs)/h 1Vs)' (3.9b)

An asymptotic expression for a( '&(s&,ss) can be
obtained when

sl Vl +s2»
is very large. However, since in the general case
a( '&(s&,ss, ,s„) canbeconsideredassimplya( '&(s&,ss),
we proceed with the general case to find the asymptotic
expression for a( '&(sr,ss, ~ ~,s ) when

These integrals are essentially the Green's functions
-discussed in D-1. In that notation,

a( '&(m; m') = (yr+ys+ .+y„) 'g(rtt —rtt'). (3.6b)

In the one-dimensional case,

—s each&exp( —
I jlx) if fs&0

pr cschy exp{—
I jl (y+~i)} if 'f')1, (3.7)

where f=(o/per, and

a( "(s&ss )=-
(2sr)" ~

~ ~ ~

exp(is. rp)d"q

—M(os+2 (yt+ )—2yr COSq 1

S= [sA + . +s.'y„-']~

is very large.
First let ~'&0. Then

(3.10)

(3.11)

exp(iS q)dqrd(osPst
a( '&(s s)=

(2sr)s ~ ~ 4bs+2yr cosqr+2ys cos q s
0 (3.8)

where
if f'= (eo/col)'&O

( 1)s+t if fs) 1

4b'=
I
M(os —2(yr+») I.

This integral can be expressed in terms of generalized
hypergeometric functions of two variables. ' This form
is not particularly useful for our purpose. However,
when s&=s2=s a relatively simple expression exists for
a( "(s,s).

Pss P f f'
a(—'&(s,s) = dx

~

(2sr)' "p
0

&&exp( —4b'x —2xyr cosq1 —2xys cosmos)

yexp(is. q)dq 1dq, (3.9a)

coshy=
I
2f' —ll. (3.7a)

The case 0&fs&1 corresponds to scattering problems
and will not interest us here.

The elements of the inverse of the matrix for a two-
dimensional square lattice has the form

%hen S is large, the integrand oscillates very rapidly
except in the region of

I q I
close to the origin. Hence we

can expand each of the cosines as a power series in q
and retain only the first few terms. Also, since the
remote regions in q space contribute practically nothing
to the integral, after this expansion is made we can
integrate over the entire p space without signi6cantly
changing the integral (in the limit as S—+oo). Hence

a( '& (s&,ss . )
1

(2~)"~

expt[(sl'Yl ' q'1Y1 )+ ' ' ']dq'1' ' 'dq'n
X- (3.12)—Mo& +r&%1 + ' ' '+r~q&~

X rs"[r'+ (—Mto')] 'J;(„s&(Sr)dr (3.13).

If we introduce new coordinates x;= y;y;:, the integral
becomes an e-fold Fourier transform of a function of
r'= +xrs+x„'. Such integrals have been discussed
by Bochner' and lead to the following result after a
transformation to polar coordinates:

(2')''"
a( &(s&,ss . )

(2~)n(~ ~ . . .~ ,)$S ( s~3&o

ass f
(2sr)s ~ p

Pss

exp (—4b'x) I.(2' 1)f', (2' s)dx

aJ 0

Here the J function is a Bessel function of order
sr (st —2), while the integral is a Hankel transform which

' S. Bochner, Vortesttngert s'ther Fottreersohe Irttegral (Chelsea
Publishing Company, New York, 1948), p. 187.

I
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is well known. ' One Gnds and

a( '&(sl,s2, )~— ( ~~2) ss (n—2)

(v "v-)'*(2 )'"S"""
XE;(„2)(L—M(o23lS), (3.14)

a$(n 2—) ( ~~2/+ )+$(n 2)—+ n/2

a(—'&(rl, ,r„)=-
(~i. . .+ )sos(n —2)(2~)sn

where now we define E (with units of length) by
where E„(s) is that Bessel function which is commonly
referred to as the E function. In particular,

E;(S)= ( 2r/2 S)-:e ',
while as 2~~

E„(S) (2r/2S)'*e

for all positive i if
i args t &22r. Finally as S~co (with

(o2&0), we have, when 22 )&3,

a(—') (sl, s2 .)
( ~~2) —,' (n—2)

(2~)in(~ . . .~ )$ Sl(n—l)

Xexp{—(—3II(o2)lS). (3.15}

One can determine a' '& (s,,s2, ) in a similar manner
when (2f' —1))1.We replace the (o s by (o,+2r to
obtain

( 1)ss+ ~ +sn
a(-"(sl, s2 ) = ~ ~ ~

exp(iq s)d"q
X-

M(d' —2 (pl+f2+ )—2yl cos(ol+

and (when (o2)(oz,')

a(—1) (sl s2 . . .)~
(Vn 2 V-)'(2~)'"S"" "

XE*,(„2)(LM((o' —(ol.')) S), (3.16)

by using the arguments given in the foregoing.
It is to be noted that if we let

as=r, k= q/a,

a being the lattice spacing, (3.f1) becomes

m/a

a

(22r)" ~ —m. /a

a( '&(rl r2 )=—

exp(ir k)d"k
X—M(os+2(pl+ )—P 2y; COSak;

so that, as a—)0 in the continuum limit, (3.14) corre-
sponds to an exact rather than asymptotic expression

1('-= [ri'+r2'(Vl/&2)+ +r„'(pl/p„)]&. (3.17b)

Section 6 will be devoted to a discussion of the inter-
action of defects with crystal boundaries. For this
purpose we shall record the inverses a( '&(m, m') which
correspond to rigid and free boundaries. Vfe shall
sketch the manner in which results were obtained by
examining one-dimensional chains.

Jet us consider a chain of f&'/+2 masses with the end
two held fixed at their equilibrium positions (the rigid
boundary case). This corresponds to boundary condi-
tions of (3.2a) (with 22=1):

se(0) =N(X+1)=0.
The components of the jth characteristic vector of the
matrix whose elements are the coefficients of the I's in
(3.2a) are

N, (m) = L2/(/V+1) jl SinLm jlr/(X+ f)],
the associated characteristic value being

l(;=M(o2 —2&{f—cost jlr/(iV+1))).

Hence the elements of the required inverse matrix are

a(—'&(m; m')

2 & sinLmj2r/(cV+f) j sinLm'jsr/()V+1) j
. (3.18a)

&V+1 s' )M'(o2=—2y{1—cosfjlr/(X+1)])

The e-dimensional "rigid boundary" inverse is

( 2 ) n x N
a(-'&(m; m') =

i

l lV+ 1) sl=l sn=l

ssysp% mg sp~
sin sin

X (3.18b)
M(o2—2 Pl" pa{1—cosLs22r/(&V+1) j}

The boundary conditions at a free boundary are

N(1) —N(0) =N(X}2e—(X+f)=0.
This is obtained by noting that the equation appropriate
for an end-particle displacement N(1) is

N(1)Lilt~' —p)+pu(2) =0,

I(1)LMo)2 —2y)+yg (2)+yN (0)=0,

N(1) —N(0) =0.

~ g' Erdelyi, Magnus, Oberhettinger, and Tricomi, Tables of
Integral Transforms (McGraw-Hill Book Company, Inc. , New
York, 1954), Vol. 2, p. 23.
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The characteristic vectors which satisfy the boundary
conditions have components

Np(m) = (1/E)&,

1 (m) = (2/X)& cost (2m —1)prj/2N j
if j=1,2, ~ ~ ~ Ã—1.

with characteristic values

X;=M~'—2yt 1—cos(pr j/7)], j=0, 1, , X—1.

The elements of the required inverse are

2 N—&

c& '~(m;m')= —P
cos$ (2m —1)pr j/2Ã) cosL (2m' —1)m j/2E)

X
MoP —2&L1—cos(pr j/Ã) j

with an e-dimensional generalization

Ã3foP
(3.19a)

]2 q
"~—»-~ g~"{cosL(2m'—1)prsp/2/V j cosL(2mp' —1)prsp/21V j} t' 1 y

a& '&(m; m')=
~

—
) +o

81=1 81 1 Mpp' —2 P~" ppgi —cos(esp/1V)) &iv)
(3.19b)

The elements of the inverse matrix u& "(m;m')
associated with a two-component system with nearest-
neighbor interactions only can be discussed in a similar
manner. The one-dimensional case will be developed in
detail and the results merely stated for the general
e-dimensional lattice. We postulate the even-numbered
particles on our chain to be of mass M and the odd-
numbered ones of mass m. 'Then the analog of (3.2a) is
two sets of equation

gpss(2 j+1)+(Mpp' —2&)N(2 j)+yg(2 j—1)=0, (3.20a)

yg (2j+2)+ (nuu' 2y) N—(2j+1)+&N(2j)=0. (3.20b)

If we let
v(2 j)= (MsP —2y) 4(2j), (3.21)

p(2 j+1)= (nuv' —2y)'*u(2 j+1), (3.22)

we obtain the more compact single set of equations:

v~(i 1)+(M*~'—2V)~(i)+v—~(i+1)=o, (3 23)

where the mass M* is defined by

~~'=2(v~+ "+v-)/M,
while the lower edge of the top band is at

(3.28b)

(upP= 2(y,+ +y„)/m. (3.28c)

The Green's function (3.15) is valid for the diatomic
lattice if cv'(0 and 3E is replaced by 3E*.

4. CHARACTERIZATION OF DEFECTS

As in D-i, we shall be concerned mainly with changes
in masses and force constants but not in equilibrium
positions. If the mass of the particle at lattice point
n= (n»a&, ,n„) is changed from M to M, Kq. (3.2a)
with ns =o. can be put in the appropriate form by adding
the term

(o'(M —M)N(ni, np, )

If M &m, the largest frequency co&' is given by

ppr,
' ——2(yg+ +y„)(M+m)/Mm. (3.28a)

The top edge of the lower band is at

~ M = &+L(M~ &)(~ &)~ ( ) to the left-hand side. Then, we set (see 2.2a)

Clearly, if m=M these equations reduce to the one-
component ones and M*=M.

It can be shown that in the e-dimensional case the
new single set of equations is the same form as (3.2a)
with the mass replaced by M*, with

where we define
8~= QPMQ~ap

p =1—(M /M).

The single mass defect function D(n; pp) is then

(4.1)

(4.2)

pp'M*=2(vs+ +v„)+P(Mppp —2y& — —2y„)
X (maP —2ys — —2y )]~. (3.25)

The normal mode frequencies of an e-dimensional
monatomic lattice are

D(n; pp) =Dp((o) {1 uPM p.u& '&—(n n) }. —(4.3)

The characterization of a mass defect in a diatomic
lattice is obtained from (3.20). Let the heavy mass M
be replaced by M . Then Eq. (3.20a) has a correction
term

MppP=2 P y, (1—cosy, ), y, =2~s;/X,

the s; s being integers. In our diatomic lattice

M*aP= 2 g y;(1—cosy;).

pp'(M —M)m (e).

After the transformation (3.21) is made the new equa-

(3 26) tion in w(n) has the term

If we substitute (3.22) into this equation and solve for
co', we find two branches:

pp'= (y,+ +y„)(M'+m)/Mm

+ (mM)
—'L(yg+ +y„)'(M m)'—

+4mM (P;y, cosy, )')&. (3.27)

—MaP p~(cue' —2y) &/(Mpp' —2y) &

added to the left-hand side of (3.23).
In general, the mass defect function is

D(n; pp) =Dp(a)){1—aPu&
—'&(n; n)

XMp L(maP —2y)/(MaP —2y)$~} (4.4)
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if M is normal mass at 0, and

D(n ra)=Do(co){1—uPu' —'&(n a)
y rmo. f(Moo' 2—y)/(nuu' 2—y)]&}

if nz is normally at a. Generally,

(4.5)

is the defect "source" at n which we characterize by

8 =~y= constant independent of +.

5. SELF-ENERGY AND INTERACTION ENERGY
OF DEFECTS

defect mass at n y

normal mass at n]
(4.6)

The defect in force constant as well as mass is erst
discussed in the one-dimensional monatomic case. Let
the force constant associated with the interaction of o.
with n+1 and n —1 be changed from y to y'. Then
(3.2a) becomes (in the cases m=n —1, n, n+1):

!(u'M —(y'+y))N(n —1)+y'N(n)+pm(n —2) =0,
L~'M. —2y')N(n)+y'N(n —1)+y'N(n+ 1)=0,

I
aoM —(y'+y)$e(n+1)+y'u(n)+ye(a+2) =0

If we replace N(n) by a new variable (y/y')e(n), the
determinant of the coeKcients of the 0's and v is of the
form (2.1) with additions to elements along the main
diagonal:

In this section, the formulas derived above will be
applied to the calculation of the self-energy and inter-
action energies of various defects in monatomic and
and diatomic lattices.

The simplest type of defect is the source defect de-
scribed by (4.13). Although it does not correspond to
any attainable defect in a crystal lattice, we shall
discuss it first to demonstrate the ideas involved in
making more complicated calculations. We shall show
at the end of this section that source defects are mathe-
matically equivalent to holes in lattices if one is con-
cerned with the interaction of holes separated by many
lattice spacings.

The self-energy of a source defect of strength ~p is
given by

'

DEs= ——— (od log! 1+&yu& ' (n,n; (o)7, (5.1)
4m-i ~g

where

4-i= ~-+i= —Vr-/(1 —r-) (4.7a)

b =M(g'L(1 —o )(1—r )'—1]+2yr, (4.7b)

where use has been made of (1.6a) and (4.13). From
(3.6a),
u( i)(n,n; e)

r-=1—(V/V'). (4.8)

H both the mass and the force constant are changed,
three consecutive diagonal elements are changed in D0.

If defects exist at n, P, ~, the appropriate value of
the new M's and y's are substituted into (4.1—4.5) at
the appropriate diagonal elements in (2.1).

Equation (4.7) is still valid in the N-dimensional case
when y~=y2=y3= and when the force constants
between the nth particle and its nearest neighbors are
all changed to p'. Ho~ever, if p& Qp2, &3, , and only
force constants in the m~ direction are changed, the
normal mode determinant (2.1) is changed in several
o8-diagonal elements as well as along the main diagonal.
The functions (2.4) and (2.5) are somewhat more com-
plicated but can be easily found.

In the n-dimensional case, with y~= y~= . , a defect
at (n,p, .) yields

" =M~'I:(1—o-, p" )(1—r-, p ")'—1j
+2~qr. p. .., (4.9)

8 g&, p, ...=&,pyi. "= = —7r p" /(1 r p )(4 10)"
where the defect mass at (a,p, ) is M, p, ... and

1
I ) d P

(2or)" 3 & MoP —2 P~" y;(1—cosy' )
0

The contour C has to contain the positive real axis of +
since the frequencies of interest are positive real
numbers; it may be chosen to be the counter-clockwise
contour about the right haH-plane. Then the only non-
vanishing contribution to (5.1) is the integration down
the imaginary axis. Since the integrand is an even
function, the logarithmic term being a function of co,
the integral reduces to

f
D~s ————

I ~d logL1+~yu& ')(n,n; ice)j.

In the case of the one-dimensional lattice, this integral
can be evaluated in terms of elementary functions. The
inverse u' "(n,n; ice) is given by —1/(4&f(1 f')&}-
(where f=a/( r), so that

AcoL,

~As= —
~~ fd log(1 —o~L1/f(1 —f')'$}

2' 0

o p ...——(1—M 'M, p, ...), (4.11) If we let f= tan8, we obtain after some manipulation:

while a change of the force constant to y, p, ... between

(n,P, . ) and its nearest neighbor yields

r, p. " = (1—~'r, p, " ') (4.12)

A defect which we shall discuss later, but which
corresponds to neither a mass nor force constant change, ~=4n/(1 —n') —1(n (1, (5.2b)

AGO 7l

aE8 ———- - — ——o.
7

2 ~ o n —sin8 & o 1+n sing
(5.2a)

where 0; is related to z by
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A%I, 7l A

~Ea= — —+ log
2zr 2 (1—n')'

1+(1 n—') &

—(1—n') leos 'n . (5.3a)

so that by letting n range from —1 to +1,K ranges from
—»0 to. +»0. Hence

The interaction energy between two source defects
separated by a great distance can be obtained as follows

for all numbers of dimensions ~& 3. The case e&3 must
be handled in a slightly diferent manner and will be
omitted here. We consider the special case yi+yz ——

=y. If one defect of strength K is at m= (mi, mz, )
and the other K' at m'= (mi', mz', ) we find

A
B,Eg ————

2x ~p

KK'y'a & '& (m&m'; z&d) a& '& —(m', m; iso)
GOd log

f1+y a&—'&(m m z&d))f1+yK'a& '&(m—',m'; z(o))
(5.3b)

As im —m'i~~, a& '&(m, m';z&0) —+0 so that at great
distances we obtain (after integrating by parts), in the
weak defect limit as K and K'~0,

AKK f
q'a&-'&(m, m'; i~)a&-»(m', m; i )d .

J,

attract each other, while a source and sink repel each
other, with an energy of interaction inversely propor-
tional to E.'.

A more realistic example is that of the isotopic
defects in a lattice. %'e examine the behavior of such
defects in both monatomic and diatomic lattices.

(5.3c)

A
t (od log f1—4~M&a'a& '&(n n cy)) (5 7)where

S=y '*fsi'+sz'+ . .+s„')
&

s; =m —m; and Mal, '——4' As in the previous case, our integration can be carried
from 0 to ~:we find

n—3

Since (a) Monatomic Lattice

a& '&(mm'i&0) =a& '&(m' m i&d) (Ma)L')&&" '& The self-energy of an isotope of mass (1—4 )M is

X f&&"—'&(-'z&)&(2zry) &&"S~&" '& exp{—(MaL')&fS),
given by

4(2zrp)"

&zz&dLKK'(e —3) 1

2(4 )- -*'i

.I,
Xexp( 2M&(MLSf—)df (5.4)

DEs —— (A lo——gf1+e MsPa& "(n,n; i&0)) (5.8).
2K Q

In the case of the one-dimensional lattice, this integral
can be evaluated explicitly; in fact using (3.7), (5.8)
becomes

In particular, if x=3,
+EI A&dLKK'/2 (4—zr)'V3

i

m' m i
', — (5.5)

or, if we let a be our lattice spacing and 8=a i
m' —mi,

AEs 1
fd logf1 —ef(1+f') &)

~kMI. 7l ~p

=-,'f (1—4')—&—1)+z&. '(1—4') & sin —'e,

(5.9a)

(5.9b)

in agreement with D-1, Eq. (4.15).
A similar analysis gives for the more interesting case

Two sources or "sinks" (we call the case K(0 a sink) of the interaction of two isotopes the formula

a' "(pn iM)a& "(n,p; i')
AEg = —— cled 10g 1 fet6pM 0)

2zr J, f1+a M&u'a& '&(nn i&0))f1+4t&M&d'a& "(P,P;ice))
(5.10)

or, for e, 4p
—+0 (in the general case the integration is

more difFicult but can be carried out either numerically
or through various series expansions),

A6~6p
AEI~ ~ &ud/3Pco4a& '&(n p zan)a& "(p&n; i(o))&

p

(5.11)
which after integrating by parts simplies to

For the one-dimensional lattice, (5.12) gives

BEL 4 4P &' f(1+fz)k f)zl~si

f'(1+f')

Getup

,-O(!+2I

—Pl)
2zr 16(n—P)'—-'

(5.13)

~Er=— +f(-,'+2
i n —P1) (5.14)

(5.12) in agreement with D-1 (5.31).

At~Op f
M'ca4a& '& (n,P; i(u)a& '& (P,n; i(v)—d(v

2~ ~o
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Of more interest is the expression for the interaction
energy for large distances. Then (3.15) may be inserted
in (5.12) to yield

This integral has been evaluated in D-2 for two special
cases, namely, when M= m(1+&), g small and M = i'mm,

f small. In the 6rst case,

A«. «p t
" (Mo)')&'" '&

Er ' ~2~4- gl—n

2m' " o (2m) "(ysy2 y ) 2 —,'h(4y/m) &

=——+ Lkx+sm '«j
2 ~(1—«')

or
Xexp( —2&aM&S)d(o (5.15) «g V2 erv2 m

+— log (1+42)— +-
4m. 1+«' 2 (1+«') 2«

k&~i 4(v~+ "+7-)'(2~)"(v~7«v.)S" '

7«n+ls 2ksdg—

(1—«') &

(-,'~+sin-'«} +O(g') (5.21)
«(1+«')

and in the second case,

~~8—««s(n+1)!S &'"+'&

(5 16) -,'a(2y/m) &

16(v + +7-)'(vn v-)(4 )"

1 1= —-+ (-', s.+sin '«}+
2 m (1—«') & 4(1—«)

For the case p].=p2= ' ' ' =p

y&S= (sP+s2'+ +s ')&=R/a

and the energy of interaction is given by

8Er «~«p(n+1) !a'"+'

16n'(4m) "R'"+'

Q2

+ (-',~+sin '«} +Op').
2n (1—«')& 2m (1—«')&

(5.22)

For the interaction energy between two isotopes,

A r"
(5.17) gEr — P (~)gs(ud)(a( —&) ((z P ~ ~)j2d(g (5 23)

2m. ~0

For one dimension, ~E~~R ' as derived in D-1. For
two dimensions hE~ ~ E ~ and for three dimensions

Ex~ R
An attraction exists when both M and Mp are larger

or smaller than M (like defects), while a repulsion
appears when M )M)Ms or M &M&Ms (unlike
defects).

(b) Diatomic Lattice

where 8 and bs are given by (4.4) or (4.5).
If

um= L(maP+2y) (MaP+2y)3: —2y, (5.24)

then the asymptotic expression for the element of the
inverse matrix can be inserted in (5.23), giving

DEI~
,

' b~(no)—bp—(za))
2~ ~0 2(2n.)"

The self-energy of an isotopic defect in a diatomic
lattice of alternating masses n«and M is given (by a
derivation similar to that for the monatomic lattice) by

But, from (5.24),
A

QEs —— cod——logL1 —D(n; ice)a& '&(n,n; ice)j,
2 J,

(5.18)
u'+O(u4)

ns+M
(5.26)

u" 'exp( —2uS) ko
X —du. (5.25)

(y)y2 y„)S" ' du

where D is given by (4.4) or (4.5) and for the one-
dimensional lattice

40 rrO P
b. (ia)bp(is&) = u4+O(u«),

(m+M)'
(5.27)

a& '& (n n iver) = —L(nuo'+2y) (M&o'+2y) —4y'$&. (5.19)

For an isotope of mass (1—«)ns, this integral becomes

DEB
Md

2ACOI, marl, ~0

«~2( (~2+2p) (M~2+ 2p) }4

&log 1—
(neo'+2y) {(nu0'+2y) (M(o'+2y) —4y'} '*,

(5.20)

where ~= en& or eM is the change in mass of the isotope
from the normal mass. As above, the integration can be
carried out with the 6nal result:

rr op(mM)&

2 (m+M)'

(n+1)!S—~2"+'&

X (5.28)
(4 )"(v v v )(v+v+ +v.)'
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If te=M, then

o oe(mM)&/2(m+M)'= p, p2/16 (5.29)

The 6rst term in Tr(B') is

L(6/v')(v' —v')1'L~' "(0,~;~)j', (535)
and (5.28) is obtained.

For y~
——y2= =y„, y&S=R/o, , (5.24) becomes

o g mM k n+1 !g»+~

~kcoL,

e( )( )
5.30

2(m+M)' (42r) "n& 22"+'

In particular, when n=3 our interaction energy varies
inversely as the 7th power of the distance.

An interesting consequence of (5.30) is obtained if
we consider a pair of defects whose masses lie between
SI and nz. If these defects move on the same sublattice
(the lattice of M's or m's), an attraction between the
defects results; whereas, if in their motion one defect
remains on one sublattice and one on the other sub-
lattice, a continuing repulsion exists.

The interaction of two impurities (or holes) which do
not distort the lattice equilibrium positions can be
discussed in the same manner as that of the isotopic
defects. We examine for simplicity the special case

=y which corresponds to equal central and
noncentral force constants.

Consider two similar defects, one at lattice point
(0,0,0) and the other at (l,m, n), characterized by a mass
M' and springs with force constants y' connecting these
lattice points to their nearest neighbors. The deter-
minant D(&o) is changed by the addition of

~i=v —v' (5.31)

f A B
~Sr= —— cod log

B A
(5.33)

where A and B are 7)(7 matrices given in Appendix I.
The product of the determinants can be simply ex-
pressed as

and this can be easily evaluated by taking account of
the symmetry of A and B. However, the resulting
expression is rather complicated and will not be ex-
hibited here. It simpli6es considerably if only the first
term in the expansion in inverse powers of the distance
r between the defects is required. In this approximation,
A can be taken as the unit matrix and (5.33) becomes

f

DEr =—— TraceB2dco. (5.34)

to the diagonal elements (—1, 0, 0), (1,0,0), (0, —1, 0),
(0,1,0), (0, 0, —1), (0,0,1), (t 1, m, n)—, (t+1, m, n),
(l, m —1, n), (l, m+ 1, n), (l, m, n 1), (t, np, n+ 1) a—nd

by the addition of

&2= (~/V')'(MY —7")+(6th")(V'—7) (5 32)

to diagonal elements (0,0,0) and (l,m, n). The energy
of interaction between two defects is

so that Er is precisely the expression (5.36) obtained
for the interaction energy between two source defects
with

= (6/vv') (v' —v)'. (5.36)

We have used the invariance relation a&-'&(m, m', i&a)
=a' "(O,l; ip!) if l=m m—' It .is to be noted that to
this first order of approximation the interaction energy
is independent of M'. When we set 3f'=0, our defects
become holes in the lattice. We then find that the inter-
action energy of two holes is attractive and varies as
the inverse third power of the separation distance (5.5).
Furthermore, the discussion of the interaction of a
pair of holes is equivalent to that between a pair of
source defects when the source strength ~ is defined by
(5.36).

6. INTERACTION OF DEFECTS WITH BOUNDARIES

As a first example of the interaction of a defect with
a boundary, we consider an isotopic impurity m lattice
spacings from the end of a chain. In the case of a rigid
boundary (end of chain held 6xed) the characteristic
determinant for normal modes is obtained by combining
(4.3), (3.18a), and (2.3):

(m2rj )
D(m;~)=Dp(~) 1—2~'MpN-'P sin

~

EN+1&

( m'J
M&u2 —2y 1—cosi

EN+1)

which, in the limit as N-+00, becomes for the case f2(0:
D(m; co)=Dp(pp)(1 —p(tanhps)(1 —e 2™)),

rigid boundary, (6.1)

with coshs=1 —2f2. As usual, p=1—(M'/M) with M'
being the impurity mass. The corresponding deter-
minant in the case of a free boundary is obtained by
combining (3.19a) with (23) and (4.3)

D(m;co)=Dp(p!) (1—p(tanhpz)(1+e '2 '&*)),

free boundary. (6.2)

It is to be noted that as the defect recedes from the
boundary the m dependent exponentials vanish and
(6.1) and (6.2) reduce to the ordinary single-defect
result:

D(~; p!)=Dp(co)$1 —p tanh-,'s$. (6.3)

Furthermore, the sign of the interaction terms are such
that if a defect is attracted to a free boundary it is
repelled from a rigid boundary and vice versa. The
interaction is of O(p) rather than p', hence interactions
of isotopes with boundaries are not of the "image" type
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e8 2 ' tanli-z
1+ rigid boundary

1—~ tanh-,'zD(m; co)

D(oo; ~) 1—
ee &'"+'&* tanh-'s

free boundary.
1—~ tanh-,'z

(6.4)

Then the interaction with a free boundary is

ALAI,

AEFs= — fd log 1—
2x' 4p

&
—(2m+1) z tanhlz

, (6.5a)
1—~ tanh-,'z

which exist in electrostatics and hydrodynamics. The
ratio D(m.; &o)/D(~; co), which is to be substituted into
(1.3) to find the interaction, is then

co'M&I (m, uv)

1+ Mero'I (~,i(a)

D(m, iv)) —1
D(~,i(o)

(6.7)

where

|'1 y" p
t

expis qdp& dy„
I(m, ice) = —

f

—
f

& 2m J & ~ Mate+2 P yi(1 —costi)

S=pi '(2m, 0,0,0).

it to be m lattice spacings in the mi direction (x direction
when v= 3) from a rigid surface. It is easy to show from
(3.18b) by choosing mi ——m, m2=m~= ——2(X+1)
and letting E~~, that the generalization of the rigid
boundary equation (6.4) becomes (after replacing +
by iv))

When m is fairly large, (3.15) is applicable with &o

replaced by m. Then the analog of (6.5b) which is

(6.5b) approp»a«h«e ye~id~

while that with a rigid boundary is

ee ' 'tanh2z
fd log 1+~~RB

2m ~o ~ tanh~z
gl t

hERB~——
If we integrate by parts in the rigid boundary case, we 2x ~o
Gnd

1—~ tanh~lz

8 sinh-,'zdz as yg~ ~

A I. p" — ~e-2m' tanh&z-
AEas —— ' (cosh-,'s) log 1+ dz

4~ ~0

(6.6a)

e(MoP) l &"+"(-', vr)
'*exp[—-S(M(o') &]

&&log 1+
(2s),n(~ . . .~ ))S)(n—i)

A «(-,'~) ~[-,'(I+1)]!
(6.8)

(yi y )~S"+'( 2n)' "+' (M(ur')l,
= cAa I,/32m m',

while as m—+~ in the free boundary case

A&i s —
~Acorn, /32'. m'. (6.6b)

Hence, in both the free boundary and rigid boundary
cases, the interaction energy is inversely proportional
to the square of the distance of the defect from the
boundary. The interaction is one of attraction if

%&M'& ~ for rigid boundary,

0&&'(M for free boundary;

while it is repulsive if

0&&'&3l for rigid boundary,

M &3I'( for free boundary.

This is qualitatively expected. An interaction of an
isotope with a rigid boundary is equivalent to that
between the isotope and a particle of infinite mass. If
both are heavier than a normal lattice atom, an attrac-
tion exists; when the isotopic defect is lighter, it inter-
acts with the "infinite mass" boundary and a repulsion
ensues. On the other hand, a free boundary is equivalent
to a very light impurity at the end of the chain. Our
above results are consistent with Eq. (5.16).

These qualitative results are valid in three dimensions
as well. Without any extra difhculty we can discuss the
isotopic defect in an e-dimensional lattice. We postulate

with S=2m/yi&. It is easily verified that the case 6=1
is exactly the same as (6.6a).

The isotopic defect in a three-dimensional lattice is
repelled from a rigid boundary when e)0 (light
isotopic defect) and

AN J,E(pi/51cor, )~

ACERB~
(yea/yi2) &(2m.)'(2m)'

(6.9)

A free boundary attracts a light isotopic defect with a
force of the same magnitude but opposite in sign.

We therefore find that not only should an ordering
process exist at absolute zero' temperature but that
a coating or "frosting" of light isotope should develop
in a solid isotopic mixture, leaving the heavier atomic
species inside. It would be interesting to leave a hydro-
gen-deuterium mixture in a liquid helium bath at low
temperatures for a long period to observe whether the
separation process would require days or y|;ars. Note
that the energy of the boundary attraction diminishes
as the inverse fourth power of the distance while the
interatomic attraction energy [Eq. (5.17)] varies as
the inverse seventh power.

If the state of perfect order is to exist at low tem-
peratures, we should expect holes in a lattice to be
attracted to a free boundary and hence expelled from a
crystal. A repulsion from a rigid boundary should also
exist. We consider these eGects by using the source
defect model. This defect was shown in the last section
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The analog of (6.8) is

r"
AERQ— Ml

2m' ~o

KQ(MM )'&" z~(zzzr)& exp/ —S(M4&& )&)
Xlog 1+

(2~~)&&nS~&(n—11

«y (-', zr) lA pQO

(M(dz) I &" "expL —(Mco') &Sld(o
2zr (2zry)I"S&&" '& "

A y( /2M)zt-', (B—3)j!
, (6»)

2&r (2zrp) '"S"—'

with S=2my & and 3fco~'=4ny. The sign is changed
when the interaction is with a free boundary. In the
three-dimensional case,

to be equivalent to a hole when one deals with the
interaction of a pair of holes separated by a distance
large compared to a lattice spacing. VVe can also expect
the model to apply to the interaction of a hole with a
distant boundary. We restrict our discussion to the case

=p and first analyze the eGect of a rigid
boundary.

We recall from (4.13) that a source defect is charac-
terized by 8=~p and an isotopic defect by 8= —~'Me.
If co—+ice, this becomes co'M~ so that the expression
equivalent to (6.7) for a source defect is

D(m, ~) «yI (m, ia))=1-
D( ~,za)) 1+«yI( ~,z(o)

Here a mass m is associated with quanta propagated
from one source to another. The X 's (which have units
of length) represent the coupling strengths of the
defects with the medium in which they are immersed.
The 5 function is defined by the property

I 3(r)f(r)dr=pf(0)

If we divide our continuum into a simple cubic lattice
with unit cell cube edges u, introduce a mass M with
a single degree of freedom into the center of each cell,
couple it to its nearest neighbors by a spring of spring
constant y, associate each coupling constant y to a
dimensionless constant ~, and finally relate p, M, and

to the constants of the medium and sources p, c,
and X by

p=M/u', c'=7a'/M, and 'A =K g, (7.2)

we obtain

II= 'M Q z'&z(l, m,-l)

+zyaz P([z&(l+1& m, zz) &p(l&m—&l)]z/az+ }
1 m'c4 7+- M P z&z(l, m, N)+- Q K Nz(l. ,m ,zz ), (7.3)
2 A' a

where all summations except the last extend over all
lattice points. Once the conjugate momentum

p(l, m, zz) =M1p(t, m, l)
is associated with z&(l,m, zz), the application of Hamil-
ton's equations of motion yield

+3 lh~r«/(Szrm)z, rigid boundary
(6.11) m'c'

3&Ace—l.«/(Szrm)', free boundary. M &p(~,m, rz)+ M z& (~,m, zz)
A2

The hole corresponds to «y =6 (y' —y) z//y' and is
attracted to a free boundary as was expected.

814 t'2, 53 =0, 1
81+~2+83=1

L&p(l+ 41& m+ tz& rz+ ez)

7. REMARKS ON THE CONTINUUM LIMIT AND
ANALOGIES WITH QUANTUM FIELD THEORY

We shall now observe some consequences of letting
our lattice spacings vanish and show the similarity of
the continuum limit of a lattice with holes to Wentzel's'
pair theory of the interaction of neutrons and protons.

One generally starts an analysis of a quantum field
with the introduction of the proper Hamiltonian. Let us
consider the Hamiltonian of a continuous medium of
density p with propagation velocity c and a set of fixed
point source defects of strength) ~, ) 2, . at r~, r2,

l m'e4
II=—p &p'dr+ pc' ' (V &p)'dr+ —-p &p'dr—

2& 2 J 2' J

fb

+—CZ P lan 5(r—rn) Z&Z(r)dr. (7.1)
J

2Z&(l,m, ZZ—)+Z&(l 41, m —4z—, ZZ
—44)$ (7.4)

except at (l,m, rz) = (l,m, 4z ) in which case the terms
y«&p(l, m„n ) are added to right-hand side

If we let
&p(l, m, zz) =N(l, m, rz)e'"'

and define co* by

((v*)z=a)z —mzc4|z ',

(7 5)

(7.6)

the resulting equations are the same as (3.2a) when co

in (3.2) is replaced by co, that is, if the lattice phonons
are given a mass m.

It was shown at the end of Sec. 5 that the source
defect is equivalent to a hole in the lattice if one
considers the interaction of defects separated by a large
number of lattice spacings. As the lattice spacing di-
minishes, this number increases for holes a fixed
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(7.10)

This is exactly Wentzel's' result (with the exception of
a factor of —,

' which was left out of his paper since he
set E=P Euo rather than g s)tlap). The two limiting
results follow:

(7.11)
64m-'R'

X)).'Ac f'u ) «e '""

64~P» &R ) Rs
if R))p—'. (7.12)

where

distance apart. Hence the Hamiltonian (7.1) can be or after employing (7.8) and (7.2) we find
interpreted either as that of the continuum limit of a
set of holes in a simple cubic lattice (with nearest- AEz~—
neighbor interactions due to central and noncentral 32 'R'
forces of equal magnitude) or of a set of particles
interacting through a meson pair field.

When the mass m is included, our inverse

a& ')(ri, rsrp zaj)

given by (3.17a) must have a) replaced by a)a. Then
AA'A

a (rl r2 r3 ' zQ)) =a (R ' 'Lp))

a
~

—
~

exp( —a-'R[(~'yl 'c')M/y]«), (7.7)
yR(2')«&2)

QjV

we Gnd

Ei(s) = ~ exp( —s cosh@) coshxdx,
p

Aax 8 pC
AEi — E,(2Ra 'ljc[M/y]«), —

4(2n)sR'

R'= r '+r '+r ' and li= mc/ls. (7.8)
I

The interaction energy between two defects ~ and K

at two points separated by a distance R= a~ re —re'
~

is

given by substituting (7.7) into (5.3c). This reduces the
calculation of the interaction energy to quadratures for
all degrees of coupling In th.e weak coupling limit we
can rederive %'entzel's result as follows:

A~~' a (~)
(2a.)'R'I 2) &p

Xexp( —2a—'Rf (a)'+lisc')M/y]«) da). (7.9)

This integral can be expressed in terms of the modified
Bessel function of the third kind, E~. If we let

co= pc slnhS

and use the formula

These finite convergent results are unique to a three-
dimensional space. If we employ our e-dimensional
inverse [Eq. (S.4)], we can show that in the n-dimen-
sional case the weak-coupling approximation yields

[c s(a)s+psc&)]« ~ s)

(2~)n+1Rn —2 J

XE«(n s) [Rc (a) +)a c )«]du)

so that the lattice spacing a occurs only as a coefFicient
a'" ' while all other parameters in the equation repre-
sent macroscopic properties of the medium or defect.
When n&3, the continuum limit a—&0 gives an infinite
interaction energy at all separation distances between
sources. On the other hand, when e&3 the interaction
vanishes identically in the limit. Hence, if one were to
take pair theory of nucleon forces seriously, one would
have to conclude that only a three-dimensional universe
could contain condensations of nucleons as we know
them in atomic nuclei.

The continuum theory of the interaction of point
defects in solids has been discussed by Eshelby. "

APPENDIX L THE MATRICES A AND B OF EQ. (S.SS)

I+b&(0,0,0)
bi(2,0,0)
bg(1, 1,0)
b&(1,1,0)
bg(1,0,1)
a&(i,o,i)
(bzbs) «(1,0,0)

b&(2,0,0)
I+bi(0,0,0)
b&(1,1,0)
bi(1,1,0)
BI(i,o,i)
BI(1,0,1)
(bibs)«(1, 0,0)

b&(1,1,0)
bi(1,1,0)
1+bi(0,0,0)
By(0,2,0)
bi(0, 1,1)
a (o,i, i)
(bibs)«(0 1 0)

4(1,2,0)
bi(1,1,0)
bi(0,2,0)
1+by(0,0,0)
bi(0, 1,1)
Bg(0,1,1)
(bibs) «(0,1,0)

b&(1,0,1)
bi(1,0,1)
bg(0, 1,1)
bi(0, 1,1)
I+bi(0,0,2)
bg(0, 0,2)
(b&bs)«(0, 0,1)

bi(1,0,1)
By(1,0,1)
bi(1,0,1)
bi(0, 1,1)
by(0, 0,2)
1+a (o,o,o)
(bgb2)«(0, 0,1)

(bibs)«(1, 0,0)
(b&bs)«(1,0,0)
(bzbs)«(0, 1,0)
(b&bs)«(0, 1,0)
(bibs)«(0, 0,1)
(bibs)«(0, 0,1)
1+bs(0,0,0)

bi(l —2,m, n)
bi(l, m,n)
BI(l—i,m —i,e)

B= bg(l —i,m+1,e)
51(l—i,m,e—1)
81(l—i,m, n 11)
(bib') «(l 1,m,n-)—

a, (t,m, e)
bi(l+2, m, n)
b~(l+1,m 1,n)—
g(i+b1, +m1, )n

bI (l+1,m, n —1)
bg (l+ 1,m, n+ 1)
(bgbs) «(l+ i,m, e)

bi(l i,m —1,e)—
bi(l+ i,m —1,e)
bg(l, m —2,n)
81(l,m,e)
bi(l, m 1,n —1)—
bg(l, m 1,n+1)—
(bgb2) «(l,m i,n)—

bi (l 1,m+1,n)—
b, (l+1,m+1,n)
bi(l, m, n)
b& (l,m+2, n)
BI(l,m+ i,e—1)
81(l,m+ inn+1)
(bibs) (l,m+1,n)

bj. (l—i,m, n —1}
bi (l+1,m, n —1)
b&(l,m —i,n —1)
BI(l,m+ i,n —1}
bi(l, m, n —2)
bg(l, m, e)
(bib2) «(l,m, n 1)—

(bgbs) «(l i,m,n)—
(bA) «(l+ i,m, n)
(bgbs) «(l,m —1,n)
(bgbs) «(l,m+ i,n)
(bibs) «(l,m, n —1)
(b&bs)«(l, m, n+1)
b2(l, m,e)

bg (l 1&m,n+1)—
81(l+i,e,m+1)
Bg(l,m —i,m+1)
bi(l, m+1,n+I)
bi(l, m, n)
bg(l, m, n j2)
(bgbg) «(l,m, n+ 1)

(l,m, n) =—a &-i) (0,0,0; l,m,n; np)

IJ. D. Eshelby, Acta Metallurgica 3, 487 (1955).


