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cipitate oriented along certain crystallographic di-
rections. Bozorth, Tilden, and Williams have suggested
that the presence of such an oriented precipitate in
cobalt ferrite may explain their results obtained by
heat treatment of this material in a magnetic 6eld.
More recently Williams, Xesbitt, and Heidenreich
have found more direct experimental evidence for this
idea by the use of torque curves and electron diffraction.
It is possible that this view couM be confirmed by a

Williams, Nesbitt, and Heidenreich (to be published).

study of the diffuse scattering of x-rays from single
crystals of these substances.
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The residual resistivity associated with the presence of interstitial atoms or vacancies in copper is studied
with particular attention devoted to the scattering of conduction electrons resulting from lattice distortions
surrounding the imperfections. For interstitials this scattering is found to be an order of magnitude larger
than that from the defect itself. For vacancies it is smaller but still important. Interference between scat-
tering from the defect and the surrounding lattice distortion is computed and found to be very small. The
calculated resistivity associated with one atomic percent of interstitial atoms is 10.5 pohm cm. The corres-
ponding value for vacancies is 1.5 pohm cm. Using nominal values for the energy of formation of these defects,
the stored energy to resistivity ratios associated with interstitials, vacancies, and interstitial-vacancy pairs
are 1.4, 3.4, and 1.6 cal/g per tsohm cm, respectively.

I. INTRODUCTION

~ 'HE increase in the residual resistivity of copper
arising from the presence of interstitial atoms or

vacancies has been studied by several workers. Dexter'
approximated the scattering potential associated with
the imperfections by a shielded Coulomb interaction,
(e'/r) exp( —tsr), and computed electronic transition
matrix elements by the Born approximation. The
shielding constant p was adjusted so that the compu-
tation yielded experimental values when applied to the
analogous problem of substitutional impurities having
adjacent atomic number. The estimated resistivity
change for 1%%u~ of interstitials was 0.6 tsohm cm,
and for 1% of vacancies was 0.4ts ohm cm. Dexter
also investigated the scattering arising from the
elastic distortion of the lattice surrounding the im-

perfections. He concluded that such effects probably
contribute less than 10'%%uo to the scattering cross sec-
tions for both types of imperfection. In making this
estimate the discrete positive ion lattice was approxi-
mated by a smeared-out positively charged continuum.

ln treating the same problem, Jongenburger' used
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' D. L. Dexter, Phys. Rev. 87, 768 (1952).' P. Jongenburger, Appl. Sci. Research 84, 237 (1953).

for the scattering potential of a lattice vacancy a
shielded Coulomb interaction with constants adjusted
so as to fit as closely as possible the Hartree field of a
copper atom. The scattering cross section was computed
by the partial wave method. Jongenburger obtained a
resistivity of 1.8 pohm cm per atomic percent of
vacancies. (Jorigenburger gives a value of 1.3, but
apparently a numerical error was made in converting
phase shifts to resistivity. ) He estimated the contri-
bution arising from elastic distortions by comparing
the displacement of nearest neighbors of the vacancy
with the root mean square atomic displacements caused
by lattice vibrations, which are responsible for the
temperature dependent electrical resistivity. A value
of 0.04 tsohm cm was obtained. Jongenburger' has also
estimated by the same method the extra resistivity
caused by interstitial atoms. For the contribution of
the interstitial scattering potential alone a value of 1

to 2 p,ohm cm was found, and an additional 3.5 pohm
cm resulting from nearest neighbor displacements was
obtained.

More recently, Blatt4 has computed the resistivity
associated with one atomic percent of interstitial atoms,
assuming that the scattering effects of elastic strains
can be neglected. An appropriately screened Hartree

' P. Jongenburger, Nature 175, 545 (1955).
F. J. Blatt, Phys. Rev. 99, 1708 (1955).
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Geld for a Cu+ ion was used in conjunction with a
partial wave analysis of the scattering. The calculation
yielded 1.4 pohm cm. The method was applied also to
the problem of substitutional impurities having ad-
jacent atomic number. The results were generally larger,
by about a factor of two, than experimentally deter-
mined resistivities. Blatt concluded that systematic
errors (arising perhaps from the use of the free electron
approximation) were being made, and suggested that
the computed resistivity associated with either inter-
stitial atoms or vacancies should be divided by a factor
of two. This conclusion indicates that the contribution
of one atomic percent of interstitial defects or vacancy
defects to the resistivity is about 0.7 and 0.9 pohm cm,
respectively.

The purpose of the present paper is to examine in
greater detail the contribution of the elastic displace-
ment of atoms near the imperfections to the increase
in the residual resistivity. We shall find that such eGects
are not so small as has been supposed. In fact, for the
case of interstitial atoms, we shall Gnd that the scatter-
ing from the strained regions of the lattice is an order of
magnitude larger than the scattering from the inter-
stitial atoms themselves. The treatment of the problem
to be given has several virtues: the free electron ap-
proximation is not made, and unknown parameters such
as the effective mass and the electron-lattice interaction
constant are eliminated by comparing the Gnal formula
with the theoretical resistivity associated with lattice
vibrations, in which the unknown parameters appear
identically. The experimental lattice resistivity is then
used, due account being taken of the role of umklapp
processes, to obtain the residual resistivity resulting
from the strained lattice.

II. SCATTERING CROSS SECTION OF
INTERSTITIAL STRAINS

In treating the interaction between the conduction
electrons and the lattice distortion we shall make use
of the rigid-ion model, ' so as to be specific. We could
employ instead the deformable-ion model, but the
results will not depend upon the particular model
chosen so long as the same approach is used in com-
puting the scattering associated with lattice vibrations.

Let U(r —L) be the effective potential energy of an
electron arising from the atom located a,t the lattice
point L of the crystal. The wave functions of the con-
duction electrons for the undistorted lattice will be
Bloch waves,

fs =use'"'/N&

where S is the number of atoms in the lattice. If an
atom is displaced from its normal position, the per-
turbation is

U(r —L—ur, ) —U(r —L) = —ul. VU(r —L),

5 See, for example, A. H. Wilson, The Theory of cVetuls (Cam-
bridge University Press, Cambridge, 1953), Chap. 9.

Vls = —N ' Pz ur.
~

Ns *Nke '&'VU(r L)d—r,

where q=k' —k. This expression can be written

Vss = —N 'Pr, ur. e '&'L~ us *lee '&'&' L&V'U(r L)dr.—

The integral extends over the entire crystal, but it has
contributions only from the lattice cell L, since U(r —L)
is zero outside of the cell. The integral is independent
of L and, when evaluated approximately, ' yields iCq,
so that

Vss —— iCN —t Qr, q ur, e '& L,

where C, the electron-lattice interaction constant,
generally has a magnitude of several electron volts (and
is negative for the rigid-ion. model).

The differential scattering cross section, o. (k,k'), for
scattering from the state whose wave vector is k to
states in the solid angle dQ(k'), is given by

o (k,k') = =yA,

where y = ez'Cs/4~'Nsh' and

A= (PL, q ul„e
—'&.L)'.

We must now calculate 2 for the set of lattice displace-
ments ul, associated with an interstitial conGguration.

Huntington' has considered in detail the elastic
strains around an interstitial atom in copper for two
types of interstitial configuration. We shall assume that
the configuration of lowest energy is the one for which
the interstitial a,tom is located at the body-centered
position of a cubic cell, since the calculations yield
essentially equal energies for the two configurations.
The displacement of the atoms of the lattice from their
normal positions were chosen as follows:

ul. ——eL, for nearest neighbors only,

ur, ——ga'L/Ls, for all other atoms.

The values of c and g were determined by minimizing
the energy associated with the elastic strains, and were
found to be 0.21 and 0.04, respectively. The lattice
constant is u. The displacement of second-nearest
neighbors is probably not given very well by (5) since,
as Huntington has pointed out, the displacement of the
nearest neighbors actually reduces the outward pressure

s H. B. Huntington, Phys. Rev. 91, 1092 (1953); Acta Metal-
lurgica 2, 554 (1954).

where u~ is the displacement vector of the atom. The
total scattering potential is, then,

V= —Pr, ur, VU(r —L).

The matrix element for the scattering of an electron
from its to fk is
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sinx =nix+ n3x'+ n3x3, (7)

where n&, o.&, and n& are determined by minimizing the
difference squared between sin@ and the right-hand
side of (7) throughout the interval (0,33r/2). The ap-
propriate values are

eg ——0.8992, o.2 ———0.1228, o.g
——0.00335.

When this approximation is used, A~ can be averaged
easily over all orientations of the crystal axes. The
calculation yields

on the second-nearest neighbors. However, the inward
pressure exerted by the third-nearest neighbors is
reduced by their displacement. Consequently, the
magnitude of the second-nearest neighbor displacement
probably lies between 0 and the value given by (5).
We shall calculate the scattering cross section for both
of these limiting cases.

Unfortunately it is very dificult to evaluate the sum
occurring in Kq. (4) without approximation. We shall
treat the problem by calculating the following cross
sections: O.i, arising from nearest neighbor displace-
ments only; o.2, arising from second-nearest neighbor
displacements only; 0~, arising from all other displace-
ments; and 0.

~, 2, a~, ~, cr~, ~, the contributions to the
total cross section associated with the interference
terms. These latter terms, of course, may be negative
or positive.

The six nearest neighbors are at a distance b=~a
from the interstitial atom and lie along the x,y,s axes
passing through the interstitial site. The contribution
to A, Eq. (4), from these neighbors is

A q
——433b3(g; q, sinbq, )' (i =x,y,s). (6)

The corresponding cross section 0-~ is proportional to
2 &, and therefore depends not only on the scattering
angle but also on the orientation of the scattering event
with respect to the crystallographic axes. This latter
dependence can be eliminated by averaging A~ over all
orientations of the crystal axes. The maximum argu-
ment of the sine functions in (6) is approximately 3m./2.
In performing the averaging process it is convenient to
approximate sinx as follows:

The appropriate average cross section that is needed in
calculating the resistivity is

0 = a (8) (1—cos8)dQ. (10)

Consequently,

f tl

0 &

—— yA &'(2 co—s8) 23r sin8d8.

This expression can be evaluated readily, and yields

0 g =344''y

There are eight second-nearest neighbors at a distance
V3b from the interstitial. Because this distance is so
large, the (almost exact) method applied above to
nearest neighbors is too cumbersome. We shall evaluate
the sum which occurs in the expression for A2 by re-
placing it with an integral, corresponding to a uniform
distribution of the eight atoms over a spherical surface
of radius V3b

p3 q. uLe
—i% L &(2go3/3rr3) ql, cos8e 3L coc—HdQ

One finds, then,

A 3
——(64'g'/27) Lcosv3bq —(%3bq) ' sinV3'bq]'.

Using Eq. (10), the corresponding average cross section
is

0-2= 753g'y. (12)

There are 24 third-nearest neighbors, 30 fourth-
nearest neighbors, etc. We shall assume that it is justi-
fied to treat the scattering from the remaining region
of the lattice as though it were a continuum. The ap-
propriate terms in the summation, Kq. (4), can be
evaluated as follows:

q. uLe—;&.L +4g q cos8e—4 L ccc3dQdl.
d„p J

where kp is the wave number associated with the Fermi
surface:

k3a = (123r3)'"=4.9109.

where

A 1 43 (plq +p2q +p3q +p4q +p3q ) g

p3=apb4,

p3= (6/5)n3n3b3,

P3——$(41/105)n33+ (6/7)a3433jb3,

P4 ——(46/77) n3n3b",

P,= (241/1001)~33b»

where the lower limit, r3, of the radial integration is the
radius of a sphere of volume equal to 14 atomic volumes.

(43r/3) r33 ——14u3/4.

The integrations yield

A3+——2563r3g3(qr3) ' sin'(qr3).

The cross section associated with this term is
If Eq. (8) is inserted into Eq. (3), the resulting

expression for the (partial) cross section depends only
on the scattering angle 8, since

(13)

q= 2kp sin-,'g,
We must consider next the inteference or cross terms

(9) of (4) that arise from our decomposition of the sum-
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mation into three parts. The Grst such term is

256eg sinv3bq)
!A i, s= — (P; q~b sinq, b)! cosv3bq—

3~ v3bq ]
This expression must be averaged over all orientations
of the crystal axes. The following integral occurs for
each of the three terms in the summation.

qb cos8 sin(qb cos8) sin8d8= co—sbq+ (bq)
' sinbq.

the remaining Gve terms are individually much smaller
and sum to zero.

pp ——5kpo/100e', (18)

where the eGective cross section 0 has been found to be

III, RESISTIVITY OF INTERSTITIAL STRAINS

We shall evaluate next the residual resistivity as-
sociated with the elastic strains caused by one atomic
percent of interstitial atoms. The resistivity is given by

o = 15m'C'/4z'X'fi' (19)

fT &, 2= —449~gy. (14)

The calculation of the inteference term associated
with nearest neighbor scattering and third and further
neighbor scattering proceeds similarly.

sinbq
~

sinqrs
Ai, s+'=192~eg! cosbq-

bq& qr,

Consequently, the average value of A &, 2 is

256eg ( sinv3bq) ( sinbqy
A&, s'= ! cosV3bq cosbq-

v3 vSbq ) ~ bq )

Using Eq. (10), as before, to determine the average
cross section, we find

The resistivity arising from scattering by lattice
vibrations in the temperature region above half the
Debye temperature tY is'

3mm'C'T
pi=

P~2$Ifg2

pi =fpexp (21)

where p, is the mass density of the metal. The theoretical
formula (20) does not take into account the contri-
bution of umklapp processes to the lattice resistivity.
Consequently, we must equate pt to only the fraction f
of the experimental resistivity that can be attributed
to normal scattering processes:

The average cross section is

0 y, 3+=536gp. (15)

Combining Eqs. (18) to (21), we find

f pk pK8

pp
——15 pexp

(300nsfssÃs T)
(22)

Finally, the interference term associated with second-
nearest neighbor scattering and all further neighbors
yields

2048~gs p sinv3bq ) sinqrs
!As, ~—— ! cosv3bq—3' v3bq ~ qro (16)

and
o-g, 3+——249g'y.

The total eGective cross section is the sum of the
six terms, (11) to (16). Using Huntington's values for
e and g, quoted above, we find

o-= 14.j.y,

If we assume that second-interest neighbors are not
displaced, then we must sum only (11), (13), and (15).
This sum yields

a = 16.2y.

Since the second-nearest neighbor displacement proba-
bly has a value between these two extremes, we shall
adopt the following intermediate value for the eGective
cross section:

(17)

It is of interest that the major contribution to this
cross section arises from the nearest neighbor dis-
placements alone. In fact or, Eq. (11),has a value 15';

It should be noted that the effective mass m and the
electron-lattice interaction constant cancel out and do
not appear in (22). The numerical factor in the brackets
of this equation has a value 0.767, with 8=315'K and
T= 293'K. The experimental resistivity of pure copper
at 20'C is 1.673 pohm cm.

We have only to determine the factor f. Bardeenr
has studied the relative contribution of normal and
umklapp processes to the resistivity of monovalent
metals. His results are contained in the integral, Kq.
(51), of his paper. This integral evaluated over the
interval (0,2 'I') is associated with normal scattering
processes, whereas the value for the interval (2

—'is, 1)
is associated with umklapp processes. The integrations
yield the following value for copper:

f=0.50

The residual resistivity is, therefore,

pp= 9.6 yohm cm.

IV. RESISTIVITY OF VACANCY STRAINS

We shall treat the scattering from the strain 6eld
about a vacancy in a manner similar to that used above

' J. Bardeen, Phys. Rev. 52, 688 (1937).
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for interstitials. The displacement of the twelve nearest
neighbors of a vacancy has been estimated by Hunting-
ton and Seitz' and is described by the relation

The parameter ) depends to some extent on the ion
core repulsive law that is used. For exponential repul-
sion, Huntington and Seitz found a value, X= —0.025.
The displacements of further neighbors were not esti-
mated. We have seen for the interstitial case, however,
that almost the entire scattering is associated with
nearest neighbor displacements, and this feature will

undoubtedly obtain for vacancies also. Therefore, we
shall evaluate only this one contribution to the cross
section. When one uses the method applied to second-
nearest neighbors of interstitials, Eq. (4) becomes

The residual resistivity associated with the strains
resulting from one atomic percent of vacancies is,
therefore,

p0=0.5 pohm cm.

V. INTERFERENCE BETWEEN DEFECT
AND STRAIN SCATTERING

In order to obtain a value for the resistivity associated
with an imperfection, we must add the scattering sects
arising from the interstitial atom itself (or vacancy)
and from the strained region of the lattice. The question
of importance here is the magnitude of the interference
term. The treatments of Jongenburger' and Blatt4
employ a partial wave method. Only the S, I', and D
waves contribute significantly to the scattering.
Consequently, the angular dependence of the scattered
wave can be written

k(8) =e'" sinbs+3e'" sinai cos8
+5e'" sinbs (3 cos'8 —1)/2,

where 80, 8~, and 82 are the S, I', and D phase shifts.
Similarly, the angular dependence of the wave scattered
from the nearest neighbors of an interstitial can be
written

h'(8) =E[cosbq —(bq) ' sinbqj,

where E is a real, positive constant (if C is negative).
The contribution of the interference term to the effective
scattering cross section will be proportional to

I= ~ b'(&+b*) (1—cos8) sin8d8.

' H. &. Hnntington and F. Seits, Phys. Rev. 61, 515 (1942),

(23)

A = 144K'[cosv2bq —(&2bq)
—' sinv2bq]'.

Using Eq. (10), the corresponding average cross section
js

0-= 1200K'y=0 75'

This integral can be evaluated readily and yields

I=E(—0.717 sin28s —0.521 sin28i+1. 778 sin28s).

Using Blatt's4 phase shifts for interstitial scattering,
we 6nd I=0.058E.

This interference term must be compared with the
corresponding squared terms for scattering by the
defect,

J=2 P [(21+1)sin'Bt
L 0

—21 sinbt sinbt i cos(b~ bt—i)7, (24)

and nearest-neighbor displacement scattering,

J' =0.70E'.

Using Blatt's phase shifts, we find J=0.78. Since J'/J
must be about 9.6/0. 7=14, it follows that E 4
Therefore, I/J' 0.02, a value which indicates that the
interference term contributes a resistivity of only +0.2
pohm cm. One should not be surprised that the in-
terference term is so small since the phases of both
scattered waves oscillate in sign as a function of scat-
tering angle. Two alternative sets of phase shifts de-
rived by Blatt using diferent scattering potentials
yield —0.2 and +0.6 iiohm cm for the interference term,
indicating that the relative smallness of this term is a
feature of the interstitial scattering phenomenon and
does not depend on detailed assumptions.

We shall calculate now the interference term asso-
ciated with vacancy scattering by the same method.
We have, now,

h'(8) = —E[cosv2bq —(V2bq)
—' sinv2bq],

where E is an appropriate real, positive constant. The
sign of Ii'(8) is opposite to that for the interstitial case
since the nearest neighbor displacements are inward
for vacancies. The evaluation of the integral (23) yields

I= —E(1.120 sin28s —2.564 sin2ht+0. 546 sin28s).

Using Jongenburger's' phase shifts for vacancy scat-
tering, we find I=0.114. The corresponding squared
term for scattering from the defect is given by Eq. (24),
using Jongenburger's phase shifts, and yields J=0.92.
The squared term for scattering from nearest neighbors
yields J'=1.33E'. Since J'/J must be about 0.5/0. 9
=0.56, it follows that E 0.6. The contribution of the
interference term to the resistivity is therefore +0.1
pohm cm. An alternative set of phase shifts given by
Jongenburger yields an interference term of 0.0 1iohm
cm. One observes that the relative smallness of the
interference term obtains also for vacancy scattering.

VI. RESISTIVITY OF INTERSTITIALS
AND VACANCIES

The contributions to the residual resistivity of inter-
stitial atoms and vacancies are summarized in Table I.
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TAsLE I. Contributions to the residual resistivity of interstitial
atoms and vacancies in Cu. The units are pohm cm per atomic
percent of the imperfection.

TAsLE II. Stored energy and resistivity values of interstitials
and vacancies in Cu. The ratios of stored energy to resistivity are
given in cai/g per pohm cm.

Defect scattering
Strain scattering
Interference term

Total resistivity

Interstitials

- 0.7
9.6
0.2

10.5

Vacancies

0.9
0.5
0.1

1.5

Interstitials
Vacancies
Int. -vac. pairs

Energy of
formation

(ev)

1.4
54

Resistivity
per percent
(pohm cm)

10.5
1.5

12

Stored energy
~ ~resistivity

1.4
3.4
1.6

It should be apparent that the accuracy of calcu-
lations of this type is necessarily limited, and it is
dificult to estimate limits of error for the foregoing
results. The displacements of atoms surrounding the
imperfections are not known accurately. Fortunately,
for the interstitial case, in which such effects play a very
important role, the problem has received careful study. '
The method we have used to evaluate the scattering
arising from such displacements appears to be satis-
factory. Ke have also estimated this scattering by
treating all but the nearest neighbors in the continuum
approximation. The result differed only slightly from
that derived here, indicating again the major role
played by nearest neighbor displacements and sug-
gesting that little would be gained by treating third-
nearest and further neighbors individually.

The rigid-ion model which we used to describe the
electron-lattice interaction is not without objection,
especially since Eq. (2) is only the first term in a power
series in q, and therefore is not accurate for large
scattering angles. However, as has been indicated
previously, the same expression was used to calculate
the high-temperature resistivity, with which the strain
scattering was compared, so that any errors arising from
the weakness of Eq. (2) tend to canceL

VII. EXPERIMENTAL CONSIDERATIONS

Interstitials or vacancies can be produced in metals
by irradiation with fast particles, plastic deformation,
or quenching from high temperatures. In any particular
case, it is very dificult to identify the type of defects
that are produced or are involved in a subsequent an-
nealing process. One of the authors' has emphasized
the importance of measuring simultaneously two

' A. W. Overhauser, Phys. Rev. 94, 1551 (1954).

physical properties attributable to the imperfections,
since the ratio of two speciic property changes will
probably differ according to the nature of the imper-
fection. Once such a property ratio has been measured
or calculated with sufhcient precision, it can be used
as a tentative means of identification.

Kith regard to point imperfections in metals of the
type we have been considering, the ratio of stored
energy to resistivity is perhaps the most fundamental
quantity of interest. Huntington' has estimated the
energy of formation of an interstitial atom in Cu to
be about 4 ev. The energy of formation of a vacancy
is probably 1.4 ev, since the energy of self-diffusion is
2.1 ev and the energy of vacancy motion is presumed to
be 0./ ev according to the quenching experiments of
Kauffman and Koehler. "The ratios of stored energy
to resistivity that result from these values are presented
in Table II.

Simultaneous measurements of stored energy and
resistivity have been carried out for two annealing
stages of irradiated copper in the temperature interval.
between —140'C and +20'C. The ratio of stored
energy to resistivity was observed to be 1.'/ caljg per
p,ohm cm for both annealing stages. Annealing kinetics"
of the higher temperature stage ( —30'C) has been
observed to be bimolecular, so as to suggest interstitial-
vacancy annihilation for the mechanism. Other reason-
able interpretations, " however, have been proposed.
The ratios of stored energy to resistivity that were
computed in the present study provide strong evidence
in favor of a hypothesis involving interstitial-vacancy
annihilation. A mechanism involving only the dis-
appearance of vacancies seems to be ruled out.

IJ.W. KauGman and J. S.Koehier, Phys. Rev. 97, 555 (1955).
"A. W. Overhauser, Phys. Rev. 90, 393 (1953).
u For a recent survey, see J. W. Glen, Advances in Phys. 4,

381 (1955).


