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The general features of the small-amplitude oscillations of a two-component ionized gas are discussed. The
eRects of the random thermal motions of ions and electrons are described by one-particle distribution
functions. When collisions are neglected, there are two types of waves for a given wavelength. One is a high-
frequency electron plasma oscillation, slightly modified by ionic motions. The other is the Tonks-Langmuir
positive-ion oscillation which is shown to be undamped when the electron temperature is considerably greater
than the ion temperature. The eRects of collisions are treated by a kinetic model which satis6es the conserva-
tion laws, and provides for energy and momentum exchange between components. The low-pressure waves
are damped primarily because of the decreasing electron temperature with increasing collision frequency. The
validity of transport treatments is investigated. At high density and high frequency one 6nds the correct
sound wave for a mixture of gases. Study of the frequency as a series of inverse powers of the collision fre-
quency shows that the 6rst-power term yields absorption independent of the electric charge. Higher powers
give contributions to the absorption and dispersion which depend on electrical polarization as well as on
diRusion, viscosity, and heat conductivity. The behavior at the more frequently realized case of low frequency
and high pressure depends on the electric charge more directly.

1. DtTRODUCTIOH
' 'N paper I of this series, ' a theoretical scheme for the
~ ~ study of collision processes in gases was introduced.
This approach is aimed at treating situations where, for
example, a Boltzmann equation for a one-particle dis-
tribution function is an adequate description, but where
the mathematical difhculties of handling that equation
are very great. Ke introduce alternative kinetic equa-
tions with collision terms that satisfy the instantaneous
conservation laws, but which have a simpler structure
than the Boltzmann collision terms. In I the procedure
was illustrated for a constant-collision-time model.
Within the limits of small-amplitude theory, it was
possible to solve deinite initial value problems ex-

plicitly, for arbitrary values of the collision time. The

* The research in this paper has been supported in part by the
Geophysics Research Directorate, Air Force Cambridge Research
Center, Cambridge, Massachusetts, under contract with Harvard
University. A preliminary account was given at the meeting of
the American Physical Society, New York, January, 1954 t Phys.
Rev. 94, 778(A) (1954)g.

'Bhatnagar, Gross, and Krook, Phys. Rev. 94, 511 (1954),
henceforth referred to as I.

present article deals with an extension of the methods
and results of I to two-component systems. Attention is
again focused on the nature of the small-amplitude
vibrations of a plasma.

For non-Coulombic force laws, our kinetic equations
provide a less accurate description than does the
Boltzmann equation. However, because of the mathe-
matical simplicity of the equations, it is possible to
obtain an over-all survey of the dynamical properties of
gases. For systems of charged particles, on the other
hand, there exists at present no rigorous set of equations
describing the nonequilibrium properties. One can use
experimental information concerning some nonequi-
librium processes (e.g., the stationary transport proc-
esses), to fit the parameters of our semiphenomenological
theory. The equations are then used to discuss other
nonequilibrium processes, e.g. , small-amplitude oscilla-
tions. This procedure will be discussed in a forthcoming
paper; it leads to results of semiquantitative validity.
Even for collisions in which many bodies are simultane-

ously involved, as is certainly the case for Coulomb
forces, the division into absorption and emission has
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perhaps some validity. Other descriptions of ionized
gases by one-particle distribution functions are no less
phenomenological, since they neglect the screening
properties of a plasma. The main justification of the
present method is its utility in investigating many
dynamical properties of ionized gases. We use it here for
a preliminary study of the oscillations of a two-com-
ponent ionized gas.

For systems of charged particles, the work of I is
chieRy of methodological interest. There the problem
was simplified by replacing the positive ions by a
positive continuum. This has two main consequences.
First the ion motions have been neglected; these mo-
tions lead to a negligible change in the frequency of the
electronic plasma oscillations. More important, under
certain circumstances (electron temperature much

greater than the ion temperature), a low-frequency
"positive ion" oscillation can propagate. The second
consequence of overlooking the discrete character of the
positive charges is that electron-ion and ion-ion collisions
have been disregarded. In I we found a dispersion rela-

tion toe=coo'+ (5/3) (kT/m)P' for sufficiently high elec-
tron-electron collision frequency. The frequency remains

high because of the restoring forces arising from charge
separation. In a real plasma the electron-ion and ion-ion

collisions play a vital role at high pressures; they lead to
a dispersion relation &o'= p'(5/3)L2kT/(mr+ms)$. Here
m~ is the electronic mass, m2 the positive-ion mass, T the
common temperature of the two components. This is a
sound oscillation, not involving the charge, and without

dispersion. The sound speed is appropriate to particles
of a mass equal to the mean of that of the ions and
electrons. The intermediate region of densities is charac-
terized by frequencies whose imaginary parts are in

general larger than the real parts; no definite waves are
then propagated. We shall be interested in ascertaining
the role of charge separation for the absorptive and

dispersive effects as the pressure is lowered.
In I an electron-electron collision frequency P was

introduced; no attempt was made to express X in terms
of the actual temperature, density or mass of the
electrons of the system. For the two-component system
one requires the relative magnitude of electron-electron,
electron-ion, and ion-ion collisions. For three-component
systems with neutral particles, the collisions of neutrals
with charged particles may alter entirely the behavior of
the ionized gas. A rough estimate of the magnitudes of
the collision frequencies has been obtained by binary
collision arguments. ' The work of Jeans' and Cohen,
Spitzer, and Routley' shows, however, that for most

2 R. Rompe and M. Steenbeck, Ergeb. exakt. Naturw. 18, 257
(1939);S. Chapman and C. Cowling, The Mathematical Theory of
Nonuniform Gases (Cambridge University Press, London, 1952);
K. C. Westfold, Phil. Mag. 44, 711 (1953).' J. Jeans, Astronomy and Comogony (Cambridge University
Press, London, 1929), second edition; Cohen, Spitzer, and
Routley, Phys. Rev. 80, 230 (1950).

processes the collisions with impact parameters between
the mean interparticle distance and the Debye length
are of overwhelming importance. All the considerations
indicate that in any case for common ion and electron
temperatures the electron-electron and electron-ion col-
lision frequencies differ by a factor of the order of unity,
and that the ion-ion collision frequency is at least an
order of magnitude lower. This suffices for our purposes.
Investigation of the numerical constants shows that for
most fully-ionized plasmas the collision diameter is
much smaller than the mean distance between particles,
the Debye length or the mean free paths. Collisions of
charge particles with neutrals play an important role for
a degree of ionization less than a few percent.

t)f' ctf t)f hf'i hf's
+v" +at' = + p

&= 1p 2p (1)
Bt Bx; Bv; 6t bt

where a, (x,v, , t) is the acceleration of a particle of the ith
type, of velocity v;, at x, t due to body forces. For the
longitudinal oscillations of an ionized gas, one may put
a;= (e,/m;)E(x, t) where m; and e; are the mass and
charge of the ith type of particle and E(x,t) is the
electric field at x, t. For more general problems the
acceleration is determined by full Lorentz force. 8f;,/8t
is the change per unit time at (x,v;, t) of the number of
ith type particles as a result of collisions with the jth
type.

The present approach to the theory of oscillations of
neutral and ionized gases is based on the following
expressions for the collision terms:

rt f, n, rt;
+ 4;,, i j=1 2.

Ojj. 0 j,
(2)

The 0-;; are collision parameters; they are chosen to be
independent of velocity, although they depend on the
masses mi and ms. The quantity ni/a» has the dimen-

sions of a frequency; it is the collision frequency of
particle 1 with others of its own type. rt, (x,t) is the
density of the ith type of particle at x, t; it is defined as

n;(x, t) —= f, (x,v, ,t)dv; (3)

2. MATHEMATICAL FORMULATION OF
BASIC EQUATIONS

To treat the kinetic theory of mixtures of particles, we

define a distribution function for each type of particle.
For convenience, discussion will be limited to the case
where two types of particles are present. f;(x,v;, t)dx;dv,
represents the number of particles of the ith type be-
tween x, v; and x+dx, v~+dv, . The kinetic equations
governing the distribution functions are
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The quantities C;; are

m, y' - —m,
C;,=( — —

( exp (v, —q, ,)',
(22rkT;, I 2kT;;

4 j;dV;=1.

1
q;;(x,t) —=— v;f, (x,v;, t) dv, ,

e, ~

3kT,,(x t) 1
(v, q, ;)'f—,dv;

e;~

(5)

In the expressions for C,; we have introduced the Qow
velocity vector qjj and partial temperature Tjj of the
jth component. The definitions are

type of particle; they are exchanged by the particle
types by collisions. Second, the collision terms must
express the irreversibility of kinetic phenomena. This
aspect can be investigated by examining the time be-
havior of a spatially homogeneous non-Maxwellian
distribution. We require that the system relax to a
Maxwellian distribution of velocities.

To investigate conservation of particle number one
integrates over the entire velocity range for v;. Instan-
taneous conservation of particle number for each con-
stituent results; this property has been built into the
structure of the equations.

The collisions of ]ike particles leave the momentum
unaltered; the time rate of change of the ith component
momentum as a result of collisions with the jth com-
ponent is

tt f,; nn;
m, v, dv, = m, (q, ,—q;,).

m

V E=42r(e2n2+elnl), (6)

The collision term of Eq. (2) postulates that the number
of particles of the ith type absorbed from the velocity
range v;, v,+dv; at x, t, per unit time, is proportional to
f,. It is also proportional to the total collision frequency,
i.e., for type 1, (nl/&rll)+(n2/021). The number of
particles of ith type emitted into the velocity range
v, , v,+dv; is made up of contributions from collisions
between like and unlike types. The total number of like
collisions per unit time is n;/o;, these particles are
emitted with a Maxwellian distribution of velocities,
centered about a flow velocity q, ;(x,t), and with a
kinetic temperature T;;. For collisions between unlike
types the total number is nln2/0. », which is also the
total number of absorptions per unit time. The particles
are emitted with a Maxwellian distribution of velocities
centered about a Bow velocity qj, and with a kinetic
temperature Tj;. These "mixed" quantities must be
specified to complete the kinetic equations; the next
section deals with general requirements which enable
one to partially determine q j;, Tj;.

For a system of charged particles, we must add the
electromagnetic equations which couple the fields with
the particle motions. For the longitudinal oscillations of
an ionized gas, it sufFices to use Poisson's equation

Since the number of collisions per unit time by particles
of type 1 with particles of type 2 is the same as the
number of collisions made by type 2 with type 1 we have
a-~2=a». Thus the conservation of total momentum is

ml (q21 qll) +m2 (q12 'q22)

Similar calculations yield for the requirement of con-
servation of total energy

3k(T21—Tll)+3k(T12 T22)

+ml(f21 fall )+m2(f12 f22 ) 0 (g)

Equation (7) is a vector relation yielding three condi-
tions on the six components of q», q», Eq. (8) gives one
relation for the two additional numbers T~~, T». We
have therefore four relations between eight independent
quantities. Further conditions will now be obtained
from a study of relaxation problems.

In I the one-component system was described by
Eqs. (15)—(20).For processes in which there are no space
gradients the density, How velocity, and temperature are
constants with respect to time. However, the distribu-
tion function itself, and other velocity moments such as
heat Row and stresses, can change with time. If at /= 0,
f(v, t= 0)=A (v), the solution of (15) is

t n2

where el and e2 are the charges of the two components. f(v» ~(v)e +n~
The problem reduces to finding solutions of Eqs. (1) and

(22rkT)

(6) under appropriate boundary conditions.
Xexp

3. CONSERVATION LAWS AND RELAXATION PROBLEM
where

—m(v —q)'
(1 e

—1 &) (g)
2kT

To be acceptable the collision model must satisfy
certain general requirements. First, the collision terms
must be such as to conserve the number of particles of
each type, the total number of particles, the total
momentum and the total energy. Energy and mo-
mentum are not conserved instantaneously for each

X=n/o,
fe= Adv,

t 3kTy
nq= "vAdv, n~ I

= I (v —q)2Adv.
~m)
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This yields the correct Maxwellian distribution as 3—+.
The distribution function decays to equilibrium ex-
ponentially, at a rate which is independent of the size
and nature of the initial deviation from equilibrium.
This is a special property of our oversimplified relaxation
model; nevertheless an account is given of the irre-
versible nature of collision processes.

For mixtures of particles the relaxation problem is
defined by the equations:

mentum conservation Eq. (7), one 6nds

rrtl~r22 nt2(1 rr12) j nt&11 rttl(1 &21) (14)

Use has been made of the fact that q1, q2 can be pre-
scribed separately and arbitrarily at )=0.

The relaxation requirement, Eqs. (12), together with
Eq. (13), yields, (since q„ is arbitrary),

&22 ~ +21) &12 ~ &11~

'S; R~ P s; s,11~,2

= —
)
—+—

( fi+ @,;+-
&jit &22 (tl2/rjtl)&11 (16)

Because of the structure of Eqs. (14) the single addi-

(10) tional condition

Since collisions conserve the number of particles of each
component, e1 and e2 are constants. The quantities
q;;, T;;, q;;, T;; are in general functions of time. By
forming the moments of Eq. (10) one finds that the
time dependence of these moments is governed by the
equations:

Bq;; n;=—(q;;—q;,),
Bt 0', ,

BTss=—T;, T,i+ (—q, ,—q;;—)' .
Bt 0-, , 3k

If the q11 T21 are determined, straightforward inte-
gration of Eq. (10) yields the time dependence of the
distribution functions. The requirement that the system
tends to equilibrium implies that a common Row velocity
and temperature for the two components is reached.
Thus

is obtained. There is thus only one free quantity; this
measures the average fraction of momentum transferred
per collision. For the Boltzmann equation this parameter
would be connected with the law of force between the
two types of particles. In our approach we do not take
account of the detailed geometry of an encounter. For
the electron ion case, to a sufhcient approximation,
n21 ——rrt 1/(m 1+ ms). '

The momentum change per unit time as a result of
collisions between components, now becomes

(rttlrtirt2/&21)1222 (q22 ql 1)~

This agrees with the equations of Chapman and
Cowling' and VVestfold2 with the appropriate value for
1/a»L1/a»= (1/~1+ 1/~2)'*3.

For the temperatures T21 and T12, we assume

T21 &22 T22+er21 Tll++tt22 +j-iqll q22++gll
(17)

T 2 1212 T22+&11 T11+Dq22 +all�'q22+~qll .

t2

011 + &21 ~ (18)I q I
%22 i Q12 )

q;j(ee)=q, ,(oe)=q„and T;;(ee)=T;;(~)=T„. (12)

The ten constants are of course not independent. Insert
(18) into the energy conservation law (8), and set the
coe%cients of T», F22, q»', q22', and q» q» separately

Inaddition, onemusthave (Bq;,/Bt)(ee) = (BT;,/Bt)(ee) equal to zero. The coef5cients of T» and T22 yield the
=0, which results in relations

We now introduce a further basic assumption in order
to complete the theoretical scheme (1)—(6) in the
simplest manner. We take q» and q» at any point x, t to
be linear combinations of q1 and q2 at x, 3:

qs'i= otjjqjj+&jiq it) (13)

where o.,;are constants which depend only on the masses

m1 and m2. These constants measure the average Irac-
tion of momentum transferred from one component to
the other by collisions. The assumption of a linear
combination is restrictive, since the mean velocity of
particles coming oft is given in terms of the first mo-

ments q1 and q2 alone. It is however in keeping with the
general type of investigation of this series of papers.
(The limitations of these assumptions will be discussed
in paper III.)

If the expressions for q;; are inserted into the mo-

1 c I I
+22 & 21 ) &12 + &11 ~

These equations imply

(2o)

(21)
' J. Jeans, Introdnction to Kinetio Theory of Gases (Cambridge

University Press, London, 1946).

The coeKcients of q1', q2' and q1 q2 give three relations
for the six quantities 3, 8, C, D, E, and F.

Further relations are obtained by considering spatially
homogeneous relaxation processes. For a process in
which ql and qs are zero, T»(oe) = Tl(oe) and T12(oe)
= T2(oe), Thus)

et22 T2(~ )+ (&21 1)Tl(~ ) Oy

(~»' —1)T2(")+~11'Ti(~)=o

If furthermore the plasma is isothermal, " the common
temperature T„=Tl(oe) = T2(ee ) is reached and
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Thus one of the four 0,
' remains free. If one considers a

more general process in which q» and q2& tend to the
common value q„, the conditions T»(~) = Tr(~) and
T»(~) = T&(~) yield the additional relations

A+B+C=O, D+E+F=0. (22)

Only one of the six quantities remains free. We are left
with three undetermined constants, say n», 0,»', and A.
For the small-amplitude processes dealt with here, the
constant A will not appear since it occurs as a coefFicient
of the second-order term q»'. The quantities n», e»'
measure the average momentum and energy exchange
between components as a result of collisions.

A correct mathematical treatment of the plasma
oscillation problem should include the processes main-
taining the plasma in a steady state. Our procedure is to
assume that the steady-state distribution is known and
to consider the e6ects of elastic collisions and space
charge forces in determining the character of small
oscillations. The eGects of inelastic collisions are only
taken into account insofar as they determine the
steady-state distribution. This is probably a good ap-
proximation provided one takes into account the non-
Maxwellian character of the distribution. For low-pres-
sure discharge-tube plasmas, the electron temperature
may be considerably higher than the ion temperature
and there may exist mutual diffusion of the constituents.
It is possible to deal with some aspects of these more
general cases very schematically within the framework
of the present theory. One throws the entire burden of
maintaining the non-Maxwellian steady state onto the
elastic collisions. The relations between n;, -. F are
modified so that the momentum and energy conserva-
tion laws hold, and such that there is a prescribed
steady-state ratio of electron to ion temperature. This
will not be done here, since these considerations are
important only for the low-pressure ionized gas, the
main features of which are deducible from the limit of
zero collision frequencies.

4. LOW COLLISION FREQUENCIES-POSITIVE ION
0SCILLATIONS

The characteristics of the oscillations of a two-
component ionized gas are very varied, since the system
is described by many independent parameters. In the
present section, we treat the low-pressure plasma for
which the frequency of close collisions is small compared
to other characteristic frequencies. We study the pos-
sible waves as a function of the parameters m~/ms,
Tyr/Tss) etc.

A feature not present in the one-component plasma is
that under certain circumstances two types of modes can
propagate for a given wavelength. One wave is a high-
frequency electronic plasma oscillation, slightly modi-
fied by the motions of the positive ions; the second
mode is a low-frequency positive-ion oscillation. These
ioniq waves have Peen discussed previously by Tonks

and Langmuir' and Rompe and Steenbeck. ' In the
Tonks-Langmuir derivation the random temperature
motions of the ions are neglected; the ions have, how-

ever, an organized component of motion. The electrons
partially follow any displacement of the ions so as to
neutralize the space charge created, and take positions
in accordance with a Boltzmann distribution. Mathe-
matical analysis based on this idea leads to the disper-
sion relation:

~2 ps~ 2/(p2+k 2)

where k& is the Debye wave number for electrons,
krs=4rrme'/kT», n is the mean density of electrons (or
singly ionized atoms), and us= (4mne /ms)i is the posi-
tive ion plasma frequency. For wavelengths shorter than
the electronic Debye length, the frequency tends to
co=co2 so that the mode becomes highly dispersive. The
reason is that the electrons cannot respond electively to
periodic charge displacements over distances less than
the electronic Debye length. The electrons then form a
practically uniform negative background for the posi-
tive ions; this is the inverse situation to the electronic
plasma oscillation. For long waves, i.e., p((kr, the
dispersion relation becomes aP~p'(kT»/ms) This sh.ows
no dispersion; the spectrum is that of a sound wave with
a speed determined by the electronic temperature and
the ionic mass. It does not contain the charge because
the electron motions tend to compensate the positive
space charge so that there is no electrical restoring force.

The theory to be presented substantiates this picture
in broad outline, with, however, some qualifications. We
find that the low-frequency modes are damped at a rate
which depends on the ratio of the electron temperature
T~~ to the ion temperature T22. For waves long compared
to the Debye length and T»/T&s&)1, the ratio of
imaginary and real parts of the frequency, i.e., the
damping per cycle, is negligible. For T» comparable to
T», the damping is appreciable. In many plasmas (e.g. ,
in discharge tubes) where the collision frequency is
small, Trr/T» is actually large. In considering the
damping per cycle as a function of wavelength, one
must consider three regions. For example, for Trr/Tss=9
the electronic Debye length is three times the ionic
Debye length. The region pcs/~s&-'s represents waves
longer than both electronic and ionic lengths; the
damping per cycle is negligible. The second region

s &pcs/sos&1 covers waves of lengths between the two
Debye lengths; the damping per cycle has already be-
come appreciable. For pvs/&us)1, i.e., waves shorter
than both Debye lengths, the damping is so great that
no organized oscillations can be said to exist.

To treat the problem mathematically, set the right-
hand sides of Eqs. (1) equal to zero. In the zero-collision
frequency case a Laplace transformation treatment is
necessary since one deals with "drift" damping. '

' L. Tonks and I. Langmuir, Phys. Rev. BB, 195 (1929).' Seq t.eference 1, p. 52/,
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the set of equations is

f;=uG, (1+&,),

( m; )' t' —mo, )
E2mkT, ,} ~ 2kT, , )

(23)

8$, 8$; E v,
+v,'- —e, =0,

Bt 8x; kT;,

The P; are dimensionless quantities, which are of first
order in the electric fields which occur. We will consider
deviations from a steady-state Maxwellian distribution.
(The fact -that the distribution is in general non-
Maxwellian may be important for the excitation of
oscillations. ) The linearized equations are

where

6 V2y, =
F, (Qi) ( Fi(Qi) q

p'ki2 )p2k 2

t y;, (v,0)G,dv
M, =)"—

o+ipu;

The denominator 6 is

1 pF, (0,) F,(0,) i
p' ( ki2 kP )

F,(0,)~ F,(0,)
1— )Mi — M2,

p'k 2 ] p'ki2
(26)

(27)

(~ E=4~n~ e2 ~ &2G2dv2+ei QiG]dvi l.

(24)

As in paper I, initial-value problems will be studied. We
therefore perform a Fourier transformation with respect
to the space variables and a Laplace transformation
with respect to the time variables. Introduce the
notation:

1
P(v, x,t) = ~I ik~(v, t)e'i' *dp, '

(2~)l &

Q~(v, t)e "dt.

The usual inversion formulas hold. For disturbances
along the x-direction, the transformed equations are

(o.+ipu, )y;,.= +4'.(v', 0),
k

(25)

ipEi, „=4nn~ e2 42y G2dv2+ei @ii„Gidvi ~.

l'

E.

Here I; are the x-components of the velocities v;;
p;~(v;,0) are the Fourier components of the distribution
functions at t=0.

The solution of Eq. (27) is obtained in the manner
indicated in Eqs. (37)—(44) of paper I. One finds a set
of linear inhomogeneous coupled equations for the
density perturbations

The integrals occurring have been studied in I LEqs.
(79) and (80)j.We define 0,= (o-/p) (m/2kT;)~ and use
the derivative of the error function, Fi(0) =20F(0)—1

Lwhere F(0) is given by Eq. (59) of If. The solution of

6=0. (2g)

For a given value of the wave vector p there are
infinitely many roots; one is mainly interested in finding
the cases where there is at least one approximately
undamped root.

The simplest special case of interest is that for which
the temperature T22 of the positive ions is zero. The
ions, however, have ordered motions appropriate to
the oscillation in question. It will be seen that
)02~ = ~o/pa&2(&&1 for both the high- and low-fre-

quency modes. 02 lies in the second or third quadrant of
the complex 0 plane. We therefore use the asymptotic
development

1 ( 1 3
F(02) =m& exp(022)+ I

1— +
202 4 20 ' (20 ')'

In most cases the exponential term is unimportant. In
the limit of zero ion temperature we retain only the
second term; this yields a contribution to 6 of
(1/p2) (Fl/k12)~io22/io2

For the electrons the velocity ai ——(kT»/m, ) l is high,
both because of the small electronic mass and the high
electron temperature. For the high-frequency electronic
plasma waves the condition ~Qi~&&1 is satisfied when
one considers waves longer than the electronic Debye
length. When

~
Qi

~

= 1 we find, as in I, a heavy damping
for these waves. Using the asymptotic expression for the
electrons, and neglecting the exponential term,

3p2ii 2

4P=co2 +oui 1+—
(p'&p) '

I
+".

io ) (30)

The expressions for E~, and p;~, are obtained by
inserting the expressions for v,~, into Eq. (25). The
asymptotic time behavior of the densities is determined
by the root of 6 with the largest real part. For the case
of zero collision frequency, the asymptotic dependence
of the distribution functions differs from that of the
densities or electric field Lsee discussion of I following
Eqs. (43) and (51)].

YVe now study the dispersion relation
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F(n, ) =-,'~-:—n, +-,'~-:Q,2—",
F,(n,)= —1+2rlni— (31)

If the leading term for both positive ions and the
electrons is retained, one finds the Tonks-Langmuir
result

This is our earlier result for the electronic plasma
oscillations. The modification of the frequency arising
from the presence of the positive ions is negligible since
co22&(~12. For wavelengths long compared to the elec-
tronic Debye length we verify the conditions Pa,/cd«1,
insuring the validity of the expansions. Since 0;

i1—d/Pa, V2, the Q,2 are negative and large; the
exponential terms are therefore indeed small. For waves
comparable to the Debye length these terms are im-
portant and lead to heavy drift damping. The correc-
tions to the frequency arising from the finite ion
temperature are very small; they are obtained from the
higher terms of Eq. (29). The high-frequency oscilla-
tions thus occur for arbitrary values of Ti/T2 and
mi/2222. This type of mode propagates freely in a plasma
consisting of ions of equal mass as well as for the
electron-ion gas.

For the low-frequency positive-ion oscillations again
! Q2! )&1.For the electrons, however, !Qi!«1 so that we
must use the convergent series for F(Q1). The first few
terms are

Ph) 2

Q)

k]

C02

(35)

From Eqs. (45) and (46), we obtain

k12
I.22=—Fi(ni),

p2

'LcoS ASM

L 22~&2 + M &»y I 21 &2 &11~

2 2 l 2

0'21

The dispersion relation is

M2 2(%22/0 21)&11
~2

with neglect of collisions) the waves are heavily damped
slXlce T11~~22

Finally we consider the effects of collisions on the
positive ion oscillations. These can only lead to damping,
for the procedure of this section is based on the use of
the convergent series for F(Qi). The higher terms in this
series increase in magnitude with increasing collision
frequency; they have been shown to give damping
corrections. The situation is particularly simple if we
restrict ourselves to the case of zero ion temperature and
infinite electron temperature. Then a2—+0, u1~~, and

~2 p2~ 2/(p2+k 2) (32) 1—(k12/p2) F 1(Q1)

The solution by a method of successive approximations
reveals that the damping arising from the exponential
term is extremely small provided T»)&T».

If the ion temperature is set equal to zero but an
additional term is retained in the convergent series for
the electrons, one finds

p M2 ( kiQ&2 1
cd =—

! 1 22I'
p2+k12 4 aiV2 (p2+k12) 2)

(34)

The additional term gives damping which is of order
cd2/rvi times the real part of the frequency. Higher terms
give corrections which are smaller than the leading term
by powers of co2/&oi. Our conclusions are that relatively
undamped positive-ion modes can propagate when both
&d2/1di(&1 and T»/T22»1. This is the case for many low-
pressure electron-ion plasmas. At higher pressures (even

The condition for the validity of the positive ion
expansion, !Q2!))1 is satisfied in virtue of the assumed
zero ion temperature. For the electrons we evaluate! Qi!
by inserting from Eq. (32). This yields the condition
cu2«Y2&ui which is well satisfied in virtue of the small
electron-ion mass ratio.

Including higher terms for the asymptotic expansion
of the positive ions

p(d2 f 3p122 ) 21d M
or'=- ! 1+- !—(22r)'* exp(Q2') . (33)

p2+k12 E 1d2 J pa2 p2+k12

The higher terms of the convergent expansion of F1(Q1)
give small corrections of the order of (2221/2222) & times the
leading term. Neglecting these, we have

( 22 )P
K2 ZGO Q11i kP

The imaginary part of cd is then (22/o»1d 1) (p/2ki) (2221/2222)"

times the real part of the frequency. The damping is
thus appreciable only for collision frequencies greater
than the electronic plasma frequency. It would appear
that positive ion modes can propagate at relatively high
densities. In reality, the electron and ion temperatures
approach equality as the density is raised; as we have
seen, this acts to destroy these modes. It would be
possible to give detailed numerical discussion of the
nature of the low-pressure modes with the aid of our
general formulas; our goal is only to exhibit the general
features.

The ratio of the density perturbations is

V2/Vi —1+(p /ki ),

where we have used Eq. (32). The positive and negative
density variations are in phase and are approximately
equal for p(&k, . This expresses the adjustment of the
electron density to that of the positive ions. For P&)ki
the positive ions are mainly perturbed. In higher ap-
proximations one finds small out of phase components
dependent on n21/m2, T22/T11 and on the collision fre-
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quency. Examination of the distribution functions shows
that the largest perturbations are experienced by
electrons and ions moving near the wave speed.

The preceding conclusions have been obtained from
a formalism involving single-particle distribution func-
tions. It is possible that a more accurate treatment of
screening effects will modify the conclusions.

5. LINEAR APPROXIMATION —THE DISPERSION
RELATION

Equations (39) and (40) then yield

M 4+em
gi = vi—, E = (P2—Pi).

z

Using (13) and (17), we find

n; n uikP u 0~(n; n2
+ipi=vi —+ + + I + &2i

zp ai' p

(41)

We now write the general Eqs. (1)—(6) in linear
approximation. To the definitions (25) add

n, =n, (1+v;), T,&= 7;&(1+r,&), j, k=1, 2, (36)

I; eI, u
+P2 — —a22-

ap 0'1~' p

Njkj

zp-

n, and vj8j are the mean and Quctuating components of
the densities, r;j the fluctuating components of the
temperature. In the linear approximation,

vi=
J Gikidvi

where

(pi p s~. n2+,, I

—2I—+
&2ai2 ) ~;;

+rs2
E2a, 2 ') (42)

3k',;
(vii+rii) = JtGi4'Pi der

ili'i =
J Gimp dvi'

(3&)

In the present paper we work with the isothermal
approximation discussed in Sec. 4 of I. We set the
Quctuating temperatures 7 jj equal to zero and introduce
the notation

Expand all quantities contained in Eqs. (1)—(6), and
retain only first-order Quctuating terms. The kinetic
equations are (dropping the bars)

~4» ~4»
+v, + (E v)

Bt Bx kTj j
M' =k'8'i

A.j—uO

Qj=
pa,v2

( n, n2 $ 42m, e2

E 0'&'&' 0 2&') kT&
(43)

( B, n2 ) nz, v; (n, EJ;; niz12; t
v'

(0;; a2J) kT;; E (r,; 02; ~

(mpi2 ) ( ni n2 )
+I — —

2 II r —+r" I (38)
&2kT;; J ( o;; 02;i

For the two-component neutral gas the charge e—&0

and the densities n& and n2 are arbitrary. We shall be
concerned with the ionized gas where the condition of
quasi-neutrality requires that ej =n2= e. For the study
of longitudinal oscillations one uses Poisson's equation,

V E=4zren(P2 —vi)

and the linearized equations of continuity

(Bv;/Bt)+V il;;=0.

(39)

We shall assume that all oscillating quantities have a
dependence on space and time of the form e"" "'&. The
relationship of this procedure to the exact method,
which solves an initial-value problem by a Laplace
transformation with respect to the time variable was
discussed in paper I.

where

vlL'11+ P2L'12

Vi+21+ V2~22
(44)

I '=1-
22

and

pai
~2i.i &1(~1;)

+ +'
I

—+ I ()i... .„) pa, I

F1(Q;) ( noi

p2ai2 4 0;2 )
The dispersion is obtained from the condition that

nonzero solutions exist. Setting the appropriate de-
terminant equal to zero,

~11~22 ~1ZL21. (46)

To find the dispersion relation, we make use of the
definitions v, =J'p,G;dv; and insert P; from Eqs. (42).
The result is a set of coupled equations for v~ and v2.
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When the solutions cd(p) or p(cd) have been found, the
ratio vi/vs is given by vi/vs ———L,»/1. ». The distribution
functions ci; may be expressed in terms of a single

quantity, say v&. These steps are important for inter-
preting the physical nature of the modes which are
permitted.

6. LIMITING CASES

I. Transition to One-Comyonent System

Set r»=r2~~~, so that there are no collisions be-
tween particles of the two components. Put ns2 —+ so
that the second component is immobile, and contributes
only its stationary space charge. Then

g,—+0,
~
Q,

~

-+~, F(Qs)-+0, Ei (Qs)—+0.

L» and L» tend to zero and L» to unity. Then L» ——0;
this is the dispersion relation for the one-component
system LI, Eq. (58)j. The ratio vs/vt tends to zero.

icoX

(
—c0'— +2cdp (

2 )
P'g' (+ (

X'——icoX —6(op [)(X—ic0)' 4 2

3pg ( 7
+

~

—~s+10~P+-~~
~

=0. (48b)
(X—ice)4 ( 2 j

Let us erst examine Eq. (48a). As X~~, oP~P'g', which
is the correct isothermal dispersion relation for sound
waves. The complete dispersion relation (48a) has of
course infinitely many roots. We are interested in those
roots which are approximately undamped, since in the
absence of undamped roots a detailed consideration of
a)l the roots and the boundary conditions is necessary.
It is clear that as A—+ ~ there are s'lightly damped sound
waves and that the frequency may be expressed as a
power series in (pg/X). We find, for pg/X«1,

2. The Case of Equal Masses
.Pg, (Pg& '

~=pg 1 —i—+sl —I+. (49)

Situations are not often found where most of the
negative and positive constituents of a plasma have
comparable masses. However, this case is relatively
simple from the mathematical point of view and permits
insight into some of the properties of the intricate
dispersion relation (46). For equal masses, all o.'s and
0. s are equal and a~ ——a2 ——a. Then LIg=Lgg, L»——L2g,
and

Examination of the full dispersion relation (47a)
shows that the damping increases as pg/X becomes
comparable to unity and that other roots play a role.
There are no undamped roots for low collision fre-
quencies. Since I-»——&I» the ratio vs/vi is &1 for the
equal-mass case. For sound waves vs/v, =+1 showing
that the two components are fully locked in phase. We
have

—

f 2) (-,'y P, (Q) ( a)
P(Q)

/
l~P+I licoX =0

I
47

pg &0) L1) p'g' E b)

where the upper and lower numbers arise from taking
the positive and negative square root of Eq. (46). The
lower equation does not involve the charge in any
manner, while the upper equation does through the»'
term.

In order to study Eqs. (47a) and (47b), with particu-
lar emphasis on the undamped roots, it is necessary to
use representations of F(Q). The asymptotic series is
particularly useful since the case ~Q~&&1 includes the
high-pressure limit. Even if X=0 (low pressures), from
the work of Sec. 4 we expect to find a solution if there
are waves of frequency cu&)pa.

Equations (47a) and (47b) are, respectively )after
multiplying by (X—ice)'),

2'—cos+ (Xs—4icoX)
(X—ico)s

3p'g4
+ (—9+64K)+ . =0, (48a)

(X ico)'—

fi= viX 1+
kTp

P.+i(pl —a)) j.

Now examine Eq. (47b). For X—+0, we obtain'

3p g
cds=2copi 1+ -+ ~

The roots with positive and negative sign will be dis-
cussed separately.

For the negative root we have (g«~, )

zA,

2~ = ———2coiv2L1 —(A'/64&v P)+
2

Note that ~~&2coc so that X/Mc gn~0 at low densities.

This is the correct dispersion relation for the case of
equal masses in absence of collisions. If the collision
frequency is small one can obtain corrections to Kq.
(47b) as a power series in X/co~. We consider the matter
from a slightly diferent point of view. Undamped roots
are obtained only for pg«cot, one first sets pg=O. The
solution of (48b) is

iP
2co = &2co]V2 1

2 32GO
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The real part of the frequency is negative; the damping
is proportional to the collision frequency. There are also
corrections to the real part starting with the second
power of the collision frequency. As X/o1, increases so
does the damping. For X'~&32ar&' the root is purely
imaginary; the imaginary part of co ranges between
—X/4 and —X/2 as X/eii varies. The complete Eq. (48b)
for pgWO has a solution which is approximately the one
we have been considering. Thus if Pg&«ut one finds that
psg2/(X —ice)2&&1 fOr all ValueS Of X SO that the SeCOnd

and third terms of (48b) give only small corrections.
The positive root has a behavior similar to that of the

negative root for X«4v2eei. For X&)4V2&ui, however, one
has

(d = 24M 1 /X.

This is purely imaginary, and the damping decreases
with increasing collision frequency. Nevertheless there
is no wave propagated since the real part of cu is zero. In
the case of a neutral gas (&er

——0) the root is identically
zero. For pgWO, we again verify that

~
pg/X ice

~

&—(1 for
all X when Pg&(coi. For X))oui,

ce & i (—4e—112+2psa2)/X

There is thus only a small correction to the imaginary
part. In higher approximations there will be contribu-
tions to the real part of cv. These are smaller than the
imaginary part so that the damping per cycle is over-
whelming and waves are not propagated.

In view of the fact that the low-pressure "ion" modes
are strongly dampled for equal masses, the additional
damping due to collisions will not be discussed.

3. Transport Approximations

In this section we discuss an approximation in which
the plasma is viewed as consisting of an electron- and an
ion Quid coupled by collisions and by electrical restoring
forces. Thus the ion-ion and electron-electron collision
frequencies are infinite while the electron-ion collision
frequency is arbitrary. We are particularly interested in
the manner in which the high-pressure sound waves are
modified due to the diffusion and polarization e6'ects.
The additional modifications arising from the viscosities
and thermal conductivities of the individual compo-
nents, can be treated with the full set of Eqs. (36)—(42).
Since the transport approximation leads to tractable
dispersion relations it is useful as orientation.

The transport approximation is essentially that made
in the treatments of Thomson and Thomson. ' For this
case X& and ) 2 are infinite so that only the lowest ap-
proximation in the asymptotic series of J (0) remains.

8 J. J. Thomson and G. P. Thomson, Colksction of Electricity
ihre1sgh Gases (Cambridge University Press, New York, 1933),
Vol. 2, p. 353.

Then

( Arsiee) ( Reich)
~2 2g 2 ~ 2 ~2 2g22 ~22

m, ) & 2222 )
( A22ia&) t' AN2oi't

2221 ) E 2222 )
with

n» f 2222 l (1
2221 0 21 (2221+2222) (a 21)

Thus Ae/222, is the electron ion collision frequency. This
is the form obtained if one uses the equations of Thomson
and Thomson, retaining the collision terms which they
discard in their subsequent analysis.

For an initial value problem, Eq. (50) is to be regarded
as an equation for ee as a function of p. It is then a
quartic equation and is best investigated generally by
numerical methods. We wish, however, to study the
general features so as to obtain insight into the mathe-
matical treatment of the complete dispersion relation.

Certain special cases are simple. If the masses are
equal,

o1'—o11'—p'gi'+ (2 222'oi/2121) =&fo11' (A 2—2i&e/2121) j, (51)

or
e12—P2g2

oi' —p'gi' —2ei,'+ (2A/2221) 22ite =0.

The first equation represents the sound mode. For the
present "two-Quid" model there is no e8ect of collisions,
i.e, , damping or dispersion. By way of contrast, in Sec. 4
we found that for the rigorous kinetic equations there
was no positive ion mode for equal masses. The fact that
the sound mode does not involve the electric charge is
special to the case of equal masses. The second equation
gives a plasma dispersion relation involving the electric
charge. When 322/rli)air, one finds highly damped
roots as discussed earlier.

For unequal masses we order the terms according to
the power of the collision frequency.

(M2 P2g 2 ee2 P2g 2)

rrs, 2222

—1e12te22 (te2 P2g 2 ee 2) (O12 P2g 2
O112)

g 22~0 one has (ee2 P2g 2 ei 2) (o12 p2g 2 o112)
=co~'~2'. This is a dispersion relation for coupled electron
and ion modes. When Ae is small the left-hand side may
be treated by a method of successive approximations
starting with one of the solutions for He=0. The eBect
of collisions is to cause damping. However, in this range
the dispersion relation has little relation to reality since
it is not permissible to let Ae—+0 while retaining the
assumption of infinite collision frequencies ) I, ) 2.

As Ae—+~ the expression inside the brackets on the
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left-hand side must tend to zero. This gives

~'~p' 2k T/(m, +m, ),
which is the correct sound speed for a mixture in the
isothermal case.

When Ae is large but not infinite, it is possible to
obtain a solution in which the frequency ru is expanded
directly in inverse powers of the collision frequency. In
order to bring out the relative roles of the plasma
frequencies and of the quantities pa;, we proceed in a
diferent manner.

Note that Eq. (50) is a quadratic equation for p'(&u).
This point of view is appropriate when one considers a
boundary value problem. The solution of the quadratic
equation is

aP (mg+ mg) +2 (A nice 47ree—')
2=

2kT

l
o)'(m~ —m2)'+4(ANia& —one')'j*'

2kT

more often. One finds

&a) (ml+ m2) co (ml m2)
p—'=

4 4xne22kT

~A(u (A(u ) '
x 1+ -l l+ . . (53.)

47re' & 4m e'~

The first term in the absorption is of the order of
(co'/a&22)(A~/4~e') times the real part of p'. The quali-
tative behavior of an ionized gas thus depends on both
the frequency of the waves considered and on the
density. The region where frequency, collision fre-
quency, and plasma ion frequency are comparable is one
of heavy damping.

We now return to the dispersion relation (50) con-
sidered from the &o(p) point of view. Introduce the
symbol

$=4see' —Ani(u,

and consider Eq. (50) as a quadratic for oP (in spite of
the fact that it contains &o). Then

To study the behavior further one expands the terms
in the square root. the expansion parameter is. . .f 1

f=oP(mj m2)/—2(Amia& krme—') The n. egative root is
ml m2

2p 2—aP(mg+mm) o)'(mg —m2)
+ l(1+V/2)

2kT
~1 1q' 4P-l

~ (5+&'kT)'l ——
I +

l&ml m2 mlm2
(54)

The positive roots yield plasma oscillations in the low-
pressure region but are heavily damped at high pres-
sures; therefore consider the negative sign.

At high pressures,
l
p'kT+$l =

l $l for long wave-
lengths. Note that with ml(&m2 the second term under
the square root is of the order of m&/m2 times the erst.
The development of the square root yields

2 $2$+p'kT
CO = (55)+

(&+p'kT) (mg —mg)~'(mi+m2) &~'(ml m2)
2p '= — +

k

m2

We may develop in powers of m&/m&. To terms of order
(m /m )',( 'L4'Ir8 ) LM (my m'2)—

xl1— + "l—
A(o ) 32kT(An(u)'

2p'kT (p'kT)' (p'kT)'
GO =

m2$ m2p
(56)

m2

Since kree2 is real and Asm is imaginary the expansion
in powers of f converges if (a) aP &2An~/lm~ m2l, —i.e.,
frequency less than m&/m2 times the collision frequency,
or (b) ~'lm& —m2l &Arne', i.e., frequency less than ion
plasma frequency. If further, kre2(2Aco, an expansion
in terms of the inverse collision frequency is possible.
This limit requires both very high frequency and high
density. It is hardly ever realized in practice. The
expansion is

The first term yields damping, the second a correction to
the real part of p. The effects of the charge enter in the
second power of the inverse collision frequency, as a
dispersive correction. The term involving the first power
of the inverse collision frequency contains the mass
diGerence. Thus at high pressures the absorption is
mainly due to diGusion. The higher corrections, of
course, yield contributions of both diffusion and
polarization to the absorption and dispersion.

When 4re') l2Arul, one can obtain the dispersion
relation as a series of inverse powers of 4m.e2. This low-
frequency and moderate- or high-density case occurs

The discussion from this point on is similar to that given
earlier for when 4n-e2«A~, we expand in inverse powers
of the collision frequency:

2p'kT p'(kT)l 27rne'p'kT 3 p'(kT)'
OP= Z (57)

m2'A n2 A 2' 8 A'n2m2

The first inverse power of the collision frequency again
does not involve the charge; the second power does.
Note that the expansion in powers of 1/Ae is not the
same as an expansion of powers of p'kT. Thus there are
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corrections to the p2kT term which depend on 42re2/2222.

If the charge is zero, the expansions are the same.
The case in which 4~e'))Ace can be handled by

suitable expansions starting from Eq. (55). In like
manner one may find the corrections coming from
higher powers of mi/m2.

/. DISPERSION RELATION FOR THE
ISOTHERMAL CASE

We now discuss brieRy the complete dispersion rela-
tion for the isothermal case, Eq. (46). Our treatment
will make use of the asymptotic expansions of both
F(Q1) and F(Q2); these expansions are valid when

~
(X; icy—)/pa, v2~))1 Th. e case of high collision fre-

quencies is included in the following development, and
we may examine the effects of finite mean free path and
electric charge on the sound propagation. In addition,
at low collision frequencies the conditions for the
asymptotic expansion can be satisfied if )pu, ~&&~co~.

This is the case for the electron plasma modes where
co=co~ provided one deals with waves longer than the
electronic Debye length. It is interesting that such
different types of waves come from the same dispersion
relation. The frequencies of the electron plasma modes
are practically independent of wavelength while the
sound frequencies are proportional to the magnitude of
the propagation vector. The region where frequency,
collision frequencies, and plasma frequency are com-
parable is characterized by heavy damping, so that an
ionized gas does not propagate organized motions in this
region.

The expressions for L;, and L; 2 are given in Eq. (45).
We form the appropriate products in Eq. (46) and

group terms according to powers of P2a12. Retaining
terms of order p', one finds

( iCO22 ) P 111—My —M2
0.21 ) 1 (X, i(u)2—

31M 1Z

y 3(o'(u2 — n, i,+@12 4iuA;5—

icoe
Go 1 M — Qjj . (58)

Consider first the waves of infinite length, (pa;=0). The
solutions are ~'=0 and aP+iar(22/021) (01'—id2' 0. For
zero collision frequency, the second type is an electronic
plasma wave of frequency ~&. The term ~2' is a small
correction arising from the presence of the positive ions.
For nonzero collision frequency the discussion follows
that of Sec. 6.2 for the equal mass case. The waves are
appreciably damped when the collision frequency is

comparable to the electronic plasma frequency. For both
signs of the square root the damping per cycle is large,

for collision frequencies greater than the electronic
plasma frequency. It is easy to see the character of these
modes for finite wavelengths. We have, at zero collision
frequency,

3P'
~2 ~ 2+~ 2+ (g 2~ 2+a 2~ 2)+. . .

QP
(59)

The second term introduces a small wavelength- and
temperature-dependent effect which is small for waves
longer than the Debye length. The contribution of the
positive ions is again small. The damping arising from
collisions is still given in good approximation by the
term independent of wavelength.

The opposite case is that of high pressures. From our
treatment of the transport approximation, we know
that the grouping of terms in powers of p' differs from
that in terms of powers of the collision frequency. For
high collision frequencies, one must set equal to zero the
coefFicients of the terms proportional to the collision
frequency. There are such terms contained in the
constant and the p' group of terms of Eq. (58), but none
in the groups for higher powers of p'. We find

~'= P'(o2'~12+ ai'a21) = 2p'&&/(m, +m ),2

since
1221™1/(ml+m2) 1212—m2/(mi+m2) '

i.e., we have the correct dispersion relation for a mixture
of particles of equal concentrations under the isothermal
assumptions. Here one obtains sound waves; the charge
of nature of the particles does not enter since the two
components are "locked together. " In this limit of
infinite collision frequencies,

22/21 ——1, y, = 2,[1+(u,C/a, 2)5,

where c is the isothermal sound 'speed. This is the
linearized locally Maxwellian distribution. To gain in-
sight into the decoupling of the two charged components
as the collision frequency decreases, one can find the
frequency as a power series in the inverse collision
frequency. In order to do this consistently, we must
expand ~ wherever it occurs. To second order, it is
necessary to include contributions from terms not
written in Eq. (58). As in the transport approximation,
the 6rst power does not contain the charge, the second
power gives a charged correction proportional to p'.
From the work of Sec. 6.3 we know that there is another
high-pressure, low-frequency limit in which charge eGects
play a more dominant role. This is the case %re'&Aor,
now modified by the viscosity of the individual com-
ponents. The transport approximation is reached when
Xi, X2—+~ in Eq. (58). The detailed and intricate dis-
cussion of the relative roles of diBusion, polarization,
heat conductivity, and viscosity for the absorption and
dispersion of the "high-pressure" ionized gas will be
given elsewhere.


