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By combining two irreducible representations of the proper inhomogeneous Lorentz group, certain
irreducible unitary representations of the complete Lorentz group including space and time inversion are
obtained, together with a Schrodinger equation whose solutions constitute the representation space for
these representations. The representations thus de6ne a "canonical" form for covariant particle theories, in
which not only the wave equations but the manner in which the wave functions transform under Lorentz
transformations is prescribed. It is shown that by a suitable choice of representation, the Dirac, Klein-
Gordon, and Proca equations can all be reduced to this canonical form. It is further shown that in the
representation space provided, several possibilities exist for the identification of the transformations to be
associated with space inversion, time inversion, and charge conjugation, thus suggesting the existence of
several distinct relativistic theories for particles of any given spin. Conjectures are made as to the physical
signiicance of these different possibilities when the equations are second-quantized. It i.s shown that each
of the conventional theories employs only one of the available possibilities for these transformations, the
choices being different for integral and half-integral spin theories.

INTRODUCTION

'HE one-particle equations which, when appro-
priately second-quantized, seem most promising

of providing a permanent basis for describing actual
elementary particles are the Klein-Gordon, the Dirac,
and the Proca equations, ' the associated descriptions
being relevant to particles of spin 0, —,', and 1, respec-
tively. Whether the same can be said of equations to
describe particles of higher spin such as those of Dirac,
Fierz, and Pauli, ' is not so clear. All of these equations
have the common property that they are invariant
under the transformations of the inhomogeneous
Lorentz group, or more explicitly, that their solutions
constitute a representation space for this group. On the
other hand, it is not at all clear as to the extent to
which the condition of invariance under this group of
transformations singles out the above equations for
their special role. It is to this question, and some of its
ramifications, that the present paper is devoted.

One of the considerations which led to the present
investigation was the question as to what analogies
could be established between the three fundamental.
equations referred to above. While there have been a
number of investigations relevant to this question, we

believe that the approach presented here diGers

* Supported in part by the U. S. Atomic Energy Commission
and by the National Science Foundation.

' The literature on covariant particle equations is very extensive,
and much of it is not directly pertinent to the contents of the
present paper. A rather complete bibliography on this subject
is contained in the volume by E. M. Corson, Introduction to
Terssors, Spiders, used Retutivisttc Wuve Eqgutioas (Blackie and
Son, Ltd. , London and Glasgow, 1953). Further recent papers
which may be of particular value to the reader, apart from those
speciically referred to in the text are: S. Watanabe, Revs.
Modern Phys. 27, 26, 40, 179 (1955); R. H. Good, Revs. Modern
Phys. 27, j.87 (1955); R. Haag, Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 29, No. 6 (1955); A. S. Wightman and S. S.
Schweher, Phys. Rev. 98, 812 (1955).

v W. Pauli, Revs. Modern Phys. 13, 203 (1941).
v P. A. M. Dirac, Proc. Roy. Soc. (London) A155, 447 (1936);

M. Fierz, Helv. Phys. Acta 12, 297 (1939); M. Fierz and W.
Pauli, Proc. Roy. Soc. (London) A173, 211 (1939).

sensibly from what has been done in the past. The
recent work of Case in showing that the Klein-Gordon
and Proca equations could be cast into a form in close
analogy with the Foldy-Wouthuysen' representation,
together with the known relation of the latter to the
irreducible representations of the proper inhomogeneous
Lorentz group determined by Wigner and Bargmann'
provided the clue for establishing a very close analogy
indeed between these various equations. Ke shall
demonstrate below that this analogy is even closer
than an identity in form of the equations; it extends to
the manner in which the wave functions in each of
these theories transforms under the transformations of
the Lorentz group. The common form to which the
three equations can be reduced is characterized by the
fact that it parallels exactly the reduction of the
representations of the Lorentz group provided by these
equations into the two irreducible Kigner-Bargmann
representations of which they are compounded. Thus,
this canonical form of these equations, as we shall call
it, would appear to be one of the most promising
approaches to any fundamental analysis of the familiar
covariant particle equations.

The present paper will be limited to the discussion
of one-particle equations describing primarily charged
particles of finite mass and noninhnite spin. Much of
what we do can be taken over completely for the case of
neutral particles, but certain theories of neutral particles
(such as the Majorana theory) are not encompassed by
our analysis. The subject of the second quantization

4 K. M. Case, Phys. Rev. 95, 1323 (1954). The author under-
stands that similar results were obtained by E. J. Kelly in his
doctoral dissertation at Massachusetts Institute of Technology.' L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950);
S. Tani, Progr. Theoret. Phys. (Japan) 6, 267 (1951);R. Becker,
Nachr. Akad. Wiss. Gottingen, Math. -physik. , Kl., No. 1, 20
(1945).' E. P. Wigner, Ann. of Math. 40, 149 (1939); U. Bargmann,
Ann. of Math. 48, 568 (1947); V. Bargmann and E. P. Wigner,
Proc. Nat. Acad. Sci. U. S. 34, 211 (1948). See also E. P. Wigner,
Z. Physik 124, 665 (1947).
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of the equations treated and their consequent extension
into field theories will not be considered here but will
be treated in a later publication.

The outline of this paper is as follows: We consider
first certain of the irreducible representations of the
proper inhomogeneous Lorentz group derived by
Wigner and Bargmann in the context of a Schrodinger
coordinate representation (as contrasted with the
Heisenberg momentum representation which is essen-
tially employed by these authors). We show that the
corresponding representation space admits a repre-
sentation of the space inversion transformation by a
unitary transformation. On the other hand, the time
inversion transformation can be represented only by an
antiunitary' transformation of the Wigner type. The
covariant one-particle equations associated with these
representations do not include the three familiar
equations mentioned above. To obtain these last equa-
tions, without obtaining the former, we may impose the
requirement that they provide one with an irreducible
representation space for a completely Neitary repre-
sentation of the complete Lorentz group, including
time inversion. We derive such equations by combining
two of the Wigner-Bargmann irreducible repre-
sentations. In this way a "canonical form" is established
for theories of this character which includes not only a
canonical form for the equation but for the associated
transformations under the Lorentz group. This
canonical form is essentially unique except for the
matrix to be associated with space inversion. It is
shown that an antiunitary transformation satisfying
the relations required of a time inversion transformation
continues to exist in the representation space and is
identified as the Wigner time inversion transformation
as contrasted with the unitary transformation which
we call the Pauli time inversion transformation.
Similarly, there exists in this representation space
another antiunitary transformation which is identified
with the charge conjugation transformation. The
formal requirements also do not determine uniquely
certain matrices associated with these latter trans-
formations. For the three matrices involved in space
inversion, Wigner time inversion, and charge conju-
gation, apart from a unitary equivalence and an
arbitrary phase factor, the arbitrariness in the choice
of each is twofold. Thus, apart from a unitary equiva-
lence and arbitrary phase factors, there are found to
exist essentially eight distinct theories for a particle
of definite mass and spin satisfying the requirements
we have imposed. Following this it is shown that
the conventional Dirac, Klein-Gordon, and Proca
theories can all be put into the above canonical form
by an appropriate choice of representation. Each of

VAn antiunitary transformation is one which transforms the
sealer product into its complex conjugate and carries a linear
combination of two vectors into the same linear combination of
their transforms but with the complex conjugate coefficients. Its
form is that of a unitary transformation applied to the complex
conjugate vector.

these theories corresponds to a realization of only one
of the eight possibilities which appear to be acceptable
on the grounds of covariance alone. The physical
di6erence between the conventional theories and the
possible alternatives, and the possibility of realizing
the alternative theories are discussed briefly but without
reaching any definite conclusion. It is suggested that if
some of these alternate theories can indeed be crystal-
lized into a physicaHy consistent theory, then quanti-
zation according to either Bose-Einstein or Fermi-Dirac
statistics is possible for particles of any spin.

In what follows we shall consistently employ units
in which A and c are unity. Certain groups of equations
which may often be referred to collectively are desig-
nated by a capital letter as a prefix to the number of
each of the equations of the group, but all equations
are nevertheless numbered in consecutive order.

PP;,P;]=0,
t P;,B]=0,
[J;,P;]=i e;; I,PI„,

[J;,a]=0,
[J;,J;]=ie;;pJI„

[P;,E;]= iB;;8, —

[8,E;]= iP;, —

$J;,Et]= ieuiEg,

[E;,Er]=

ieger

JI, —

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)

(A-8)

(A-9)
8 See reference 6; also, P. A. M. Dirac, Revs. Modern Phys. 21,

392 (1949).

THE LORENTZ GROUP

We shall use the term inhomogeneous proper Lorertts

group to describe the group formed by the space and
time translations and those Lorentz transformations
which are continuously connected to the identity.
(The adjective irthomogeneous will usually be omitted
since we shall have little occasion to refer to the
homogeneous Lorentz group. ) The above group is a
ten-parameter continuous group whose infinitesimal
generators may be taken to be the following'. the
generators of infinitesimal translations along the three
coordinate axes, P=(Pi,P2,P3); the generator of an
in6nitesimal time translation, Il; the generators of
infinitesimal rotations about the three coordinate axes,
J= (Ji,J2,J'3); and the generators of infinitesimal
Lornetz transformations along the three coordinate
axes, K= (Ei,E2,E3). We shall use the symbol L to
refer to any of these ten generators. The infinitesimal
transformation A. associated with any of the ten
generators can then be written h. = (1+ieL), where
e is infinitesimal.

The ten generators satisfy the following commutation
relations which can be thought of as abstractly defining
the inhomogeneous proper group:
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S(1+ieP,) = (1—ieP~)5,

S(1+ieH) = (1+ieH)5,

S(1+isJ~) = (1+isJ;)5,
S(i+ieK,) = (1—ieE;)5,

S'= 1.

(A'-10)

(A'-11)

(A'-12)

(A'-13)

(A'-14)

When the time inversion transformation T is adjoined
as a generator to the Lorentz group we obtain a group
which we shall refer to as the ful/ Loremts group The.
transformation T satisfies the following relations:

T(1+ieP,) = (2+ieP;) T,

T(1+ieH) = (1—ieH) T,

T(1+isJ,) = (1+ieJ,) T,

T(1+ieE;)= (1—ieE;) T,

TS=ST,
T2 1

(A"-15)

(A"-16)

(A"-17)

(A"-18)

(A"-19)

(A"-20)

In the above, $A,B)=AB BA—, 8;, is the Kronecker
symbol, e;;I, is the Levi-Civita three-index symbol, and
the summation convention is employed for repeated
indices.

When the space inversion transformation is adjoined
as a generating element to the proper Lorentz group,
we obtain a group which we shall simply call the
(inhomogeneous) Loreefs grouP. The transformation 5
satisfies the following relations:

function and the operator co is defined by

ro —=(m'+ p') &, p—=—iV. (22)

(24)

A unitary representation of the inhomogeneous proper
Lorentz group is provided by this space through the
following identification of the generators of the infini-
tesimal transformations of the group:

J=rXp+s,

sgpI= —', (res+(or) — tp. —
m+re

(8-25)

(8-26)

(8-27)

(8-28)

Here s=—(st,ss,ss) are three (2s+1)X (2s+1) irreducible
Hermitian matrices satisfying the commutation
relations

This operator is a linear integral operator whose
precise definition is

1
cu1t(r, t) = ~t (m'+k')re'" &' "'1t(r',f)dr'dk. (23)

(2s-)'&

The solutions of Eq. (21) form a Hilbert space with a
scalar product defined by

si,sj = z6ijksA:& (29)
IRREDUCIBLE REPRESENTATIONS OF THE

INHOMOGENEOUS LORENTZ GROUP

The irreducible representations of the inhomogeneous
Lorentz group have been studied by Wigner and
Sargmann. Our present discussion will be confined to
those representations which are suitable for describing
a particle of nonvanishing mass and noninfinite spin.
We shall discuss these representations from the view-
point of a covariant Schrodinger wave equation whose
solutions form a representation space for these irre-
ducible representations. The representations obtained
by Wigner and Sargmann are essentially in a Heisen-
berg momentum representation.

Each of the representations in which we are interested
is infinite dimensional and unitary (insofar as the
proper group is concerned), and each inequivalent
irreducible representation is specified by a mass m
which may take any real positive value and a spin s
which may take any positive integral or half-integral
value including zero. A representation space for the
representation (m, s) is provided by the solutions of the
following Schrodinger equation:

iBX (r, t)/f) t = roy (r, t). (21)

In this equation y(r, t) is a (2s+1)-component wave

so that they are simply the infinitesimal generators of
an irreducible (2s+1)-dimensional representation of
the three-dimensional rotation group. It is well known
that there is one and only one irreducible representation
of these matrices of each dimensionality, ' so that these
matrices are just the spin matrices corresponding to
the spin s.

From (29) and the commutation relation

(30)

one can easily verify that the identifications (B) do
indeed satisfy the commutation relations (A) as
required. For the representation space to be indeed
the space spanned by solutions of Eq. (21) one must
further verify that this equation is left invariant under
the transformations

(31)

where e is a real infinitesimal and I is any of the
operators (B). This means that x' as given in (31)

H. Weyl, The Theory of Groups and Quantum Mechunics
(E. P. Dutton and Company, New York, 1932); E. P. Wigner,
Grupperitlgeorr'e led ihre Aeutelduwg (Friedrich Vieweg und Sohn,
Braunschweig, 1931). The two-valued representations of the
rotation group (half-integer spin) are here admitted, of course.
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must also satisfy Eq. (21); it is easily verified that this
is indeed the case for each of the ten generators.

We shall simply assert without proof that the
representations given above are indeed irreducible and
hence equivalent to certain of the representations
obtained by Wigner and Bargmann. These authors have
also shown that for each (m, s) there is one and only one
such representation to within a unitary or antiunitary
equivalence transformation. We note, however, for
later reference that there exists an antiunitary trans-
formation" which transforms Eq. (21) to

and H and K to

iBy(r, t)/Bt= —(uy(r, t), (32)

(33)

SXp
K = —-', (r(u+(ar) + ty, —

m+(u
(34)

while leaving P and J unchanged.
We shall now show that there exists a unitary

transformation in the representation space we have
defined above which can be employed to represent the
space inversion transformation S. We must note first,
however, that in quantum mechanics one requires only
a ray representation, not necessarily a vector repre-
sentation, of a group. This follows from the fact that
two vectors y and e' x represent the same state. For
those elements of the group which are not continuously
connected with the identity, such as S, we are then
required to impose only the weaker condition

(35)

in place of (A'-14), where the symbol means "equal
to within a multiplicative factor of unit modulus. "The
possibility of employing ray rather than vector repre-
sentations makes no difference in the representation
of the elements of the proper group except for the fact
that it gives us the freedom to use the two-valued
representations of the three-dimensional rotation group
for s as we have already assumed above.

A unitary transformation to represent S in our
representation space is provided by the following
identification:

~X(r,&) =~- X(—r, &),

where 0., is an arbitrary real number which is un-
determined in view of the weak condition (35) . One can
readily show that this transformation satisfies the
required relations (A') and that it leaves Eq. (21)
invariant.

If we try to include a transformation to represent
the time inversion transformation T in our representa-
tion space, we encounter a new feature in that there
exists no unitary transformation which satisfies the

This transformation is y ~ my* where r is the matrix defined
by Kq. (44).

required relations. To see this we note that if T is
unitary then Eq. (A"-16) requires that T anticommute
with H. This then means that if P is an eigenvector of
H belonging to the eigenvalue E, then Tp is an eigen-
vector of H belonging to the eigenvalue —K But this
is impossible, since from (8-26) we see that all the
eigenvalues of H are positive. While at first sight it
thus appears that the Hilbert space of solutions of
Eq. (21) cannot provide us with a representation of the
full Lorentz group, this is not really the case. For, as
Wigner has pointed out, the physical interpretation of
quantum mechanics is such that there is no reason why
a disjoint transformation like T cannot be represented
by an aetiueitary transformation. Indeed, we shall now
show that the representation space provided by Eq.
(21) does admit an antiunitary transformation which
satisfies the required relations (A").

If T is represented by an antiunitary transformation,
then the set of relations (A") require

TP;= —P;T,

TH= HT,

TJ;=—J;T,
TK;=K;T,

TS~ST,

(C-37)

(C-39)

(C-40)

(C-41)

(C-42)

The first four of these follow from the fact that the
complex conjugation involved in an antiunitary
transformation leads to T(1+i&X)= (T ieTI). The-
last two weak relations again follow from the fact that
we require only a ray representation of the group. The
above conditions can be fulfilled through the following
antiunitary transformation:

Tx(r, ~) =~g*(r,—~), (g/t 43)

provided that there exists a (2s+ 1)-dimensional
unitary matrix 7 satisfying the following conditions:

7 Si 7 $i. (44)

77*=&1, (45)

which allows (C-42) to be satisfied. One can show

But it is easy to prove that such a matrix always exists
as follows: Since the matrices —s;* satisfy the same
commutation relations as the $;, and since there is only
one irreducible representation of these commutation
relations of each dimensionality, it follows that $; and—s;* are related by an equivalence transformation of
the form (44). Combining (44) and the Hermitian
conjugate equation, one finds using Schur's lemma
that g r+ is a real positive multiple of the identity, so
that r may always be chosen to be unitary. By a
similar consideration of (44) and the transpose equation,
one can show that 7. is either symmetric or anti-
symmetric, which implies that
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further that r is unique to within a multiplicative factor
of modulus unity and that it is symmetric for integral
spin and antisymmetric for half-integral spin.

One can now verify that the transformation (B"-43)
does indeed satisfy ail of the required relations (C).
The fact that (B"-43) leaves Eq. (21) invariant may
be demonstrated by taking the complex conjugate of
this equation, reversing the sign of I,, and multiplying
by the matrix v. Thus so long as we do not require a
completely unitary representation of the full Lorentz
group, Eq. (21) does indeed provide us with a repre-
sentation space for an irreducible representation of the
full group.

While Eq. (21) thus provides one with completely
Lorentz covariant theories of a free particle of any
spin value, it does not encompass the familiar theories
like the Dirac, Klein-Gordon, and Proca theories. In
particular, the representation space does not provide
one with a transformation corresponding to the charge-
conjugation transformation in the familiar theories,
and thus, presumably, even after second-quantization
it corresponds to a theory in which particles are not
necessarily accompanied by antiparticles. To what
extent a completely satisfactory particle theory can be
based on this equation is not known at the present time,
but this represents a problem which is well worthy of
further investigation. We shall not enter into this
problem here but shall defer it to a later publication.
It may not be amiss to mention here, nevertheless, that
we have found that it is possible to build a completely
relativistic many-particle theory with interaction based
on this equation.

For the present, however, we shall return to our
prime objective of discovering a basis for the synthesis
of the familiar Dirac, Klein-Gordon, and Proca
equations.

PAULI TIME INVERSION AND CHARGE
CONJUGATION

By our earlier analysis we have been led to certain
unfamiliar Lorentz covariant equations rather than
to the familiar equations in which we are primarily
interested. We shall now show that we can indeed
obtain the equations of interest in a special rep-
resentation by the imposition of the following
requirement:

The solutions of the equation shall constitute a
representation space for an irreducible urinary repre-
sentation of the foal/ Lorentz group.

This means then that we reject the antiunitary
transformation that we have admitted previously to
represent the time inversion transformation, and we
must extend the representation space suKciently that
there exists a unitary transformation in the space which
satisfies the relations (A") for a time inversion trans-
formation. We shall say that a theory satisfying the
above requirement is strorIgly Lorentz covariant, while
we shall use the term creak Lorentz covarance to describe

the transformation properties of the theories we have
considered earlier.

Since we shall find that an antiunitary transformation
satisfying the condition (A") will continue to exist even
in our strongly covariant theories, it wi11 be convenient
to introduce nomenclature and notation to distinguish
the two types of time inversion transformations we
encounter. We shall continue to designate an umti-

Nnitary transformation satisfying the conditions (A")
and hence (C) by the letter T and shall call such a
transformation a lV~geer time inversion transformation,
since it is closely related to the time inversion trans-
formation introduced by Wigner in nonrelativistic
theories. " On the other hand, we shall designate a
Neitary transformation satisfying the conditions (A")
by the latter Z, and shall call such a transformation a
Pauli time inversion transformation since for the
Dirac equation it is exactly the transformation intro-
duced by Pauli in his investigation of the Lorentz
covariance of this equation. " The transformation Z
must then satisfy the following relations with the
infinitesimal generators of the proper Lorentz group
and with the space inversion transformation:

ZI';= I'g,
ZH = —HZ,

ZJ;=Jg,
ZE; = Eg, —
Z5 SZ,

(C'-46)

{C'-47)

(C'-48)

(C'-49)

(C'-50)

{C'-51)

If, as we have asserted, the representation space
provided by an equation satisfying the strong covariance
requirements nevertheless contains a Wigner time
inversion transformation T, then the transformation

C=ZT, (52)

is an antiunitary transformation which commutes with
all infinitesimal Lorentz transformations A. = (1+ieL),
and thus satisfies the following relations:

CP.=—PC
CH= —HC,

CJ;= —J,C,

CE = —EC

(C"-53)

(C"-54)

(C"-55)

(C"-56)

Furthermore, if T and Z commute" in the sense that

TZ~ZT~

"E.P. Wigner, Gott Nachr. 546 (1932l; see also, R. H. Good,
reference 1.

"W. Pauli, Haedkuch der pkysfk (Verlag tuIius Springer,
Berlin, 1933), second edition, Vol. 24, part 1.

'3 Although we know of no compelling reason for assuming that
the two types of time reversal shall commute in the sense of (57),
it seems reasonable to make this assumption. It will be assumed
in all our later work.
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CS~SC,

CT TC,

CZ ZC,

C' 1.

(C"-58)

(C"-59)

(C"-60)

(C"-61)

and we shall see that there always exists a trans-
formation T having this property, then

tesimal generators of the proper Lorentz group:

P=p)

II=p(u,

J=rXp+s,

psXp
K=-(r(a+cur) — tp. —

2 m+cd

(D-64)

(D-65)

(D-66)

Ke shall call the transformation C having the properties
(C") the charge conjugation transformation, . The justifi-
cation for this identification is that the charge conju-
gation transformation as ordinarily defined for the
one-particle Dirac, Klein-Gordon, and Proca equations
does indeed have these properties. (When on.e goes to
second-quantized theories one must carefully re-examine
these definitions of time inversion and charge conju-
gation. This will not be done in the present paper. )

where P is a 2(2s+1)X2(2s+1) diagonal Hermitian
matrix of the form

I'1' 0'q

Eo'
(63)

where 0' and 1' are respectively, the null and unit
matrices of rank 2s+1. Then in view of our earlier
results, the solutions of this equation provide us with
the following (reducible) representation of the in6ni-

THE CANONICAL FORM

We shall now consider the problem of constructing
equations satisfying the extended I.orentz covariance
requirements by a method which involves combining
two antiunitarily equivalent irreducible representations
of the type we have obtained previously. We do not
know whether this method will lead us to all equations
of this type which are suitable for describing charged
particles of finite mass and spin, but we strongly
suspect that this is indeed the case.

The clue to how we must proceed is provided by the
fact that the additional requirements of strong co-
variance postulates the existence of a transformation Z
which anticommutes with II. As we have noted earlier,
this implies that the eigenvalues of H must occur in
pairs, equal in magnitude but opposite in sign. This
suggests then combining Eq. (21) and the represen-
tation of the proper Lorentz group which it provides
with its antiunitary equivalent Eq. (32) and the
representation it provides as given in Eqs. (33) and

(34). To this end, for the description of a particle of
mass m and spin s we assume a 2(2s+1)-component
wave function z (r, t), now satisfying the equation

iBg (r,t)/Bt =p(vX (r,t),

In the foregoing, the s; are now matrices of rank
2(2s+1) of the form

I' s, 0$
&0' s,'i' (68)

f's;= s;f', (73)

(74)

(75)

satisled if f is of the form

(76)

These conditions can only be

0'

(e"21'

where the s are the matrices of rank 2s+1 which we
previously designated by s;. The new matrices s;
continue to satisfy the commutation relations (29), of
course. (Note that we could have employed the freedom
we have available to use two diGerent but unitarily
equivalent representations of s for the two matrices
occurring in (68); however, since there exists a unitary
transformation in that case which would restore (68)
to the form above without changing the form of p, we
actually lose no generality by our special choice. )

We now turn our attention to the representation of
the space inversion transformation S. One easily 6nds
that if it is represented by .a unitary transformation as
we require, then its representation must be of the form

Sy(r, t) =aX( r, t), — (69)

where o is a unitary matrix which commutes with P
and with the s; and which satisfies the condition
o' 1. With P and s; having the forms given above,
these conditions require that 0. be of the form

1' 0'y
o =e"s! (70)(0' +I')

Thus apart from the phase factor 0. can be represented
by either the unit matrix or the matrix p.

We must now search for a Unitary transformation to
represent the Pauli time inversion transformation Z.
Taking Z to be of the form:

ZX(r, t) =fx(—r, t), (71)
one 6nds that the conditions (C') then require that
the unitary matrix satisfy the following conditions:
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However, we can always find a unitary transformation with
on our matrices which leaves the matrices p and s;
unchanged in form, but reduces f to the form

]0'

E.' 0')
t'0' 1'q

f =e"*]
E1' 0') (77)

Thus, apart from equivalence transformations (which
we shall discuss in greater detail later) and the phase
factor in (77), the Pauli time reversal transformation is
uniquely determined in the representation space
provided by Kq. (62).

Next we shall show that the representation space
always admits a Wigner time inversion transformation
T satisfying the conditions (C). This transformation
we write as

Tx(r, t) = Tx*(r,—t),

with 7 a unitary matrix satisfying the conditions:

TP*T '=P,

70.*7 ~ 0

77~ 1.

(78)

(79)

(80)

(81)

To determine if a matrix 7 exists satisfying these
conditions, we note first that since in our present
representation p is real, (79) requires that T commute
with P. This means that T must be of the form

~T' 0'
q

T=
Eo' T") (84)

The condition (80) then requires that both T' and T"
satisfy the conditions given in Eq. (44). We have
already proved that a matrix satisfying these conditions
always exists, and furthermore that it is unique to
within a phase factor. Calling any such matrix simply
7', we then have as possibilities for 7.

I
T' 0'y

(0' e"T')
(85)

The condition (82) then requires that 8=0 or s, and
hence apart from the arbitrary phase factor already
implicit in 7', we must have

0'q

Eo' WT')
(86)

The conditions (81) and (83) are then automatically
satisfied. I'or the charge conjugation transformation
we then have

~x (r, t) = ~Tx(r, t) =~x*(r,t)

Actually, we may prefer to define C not as TZ but as a
transformation satisfying the conditions (C"); then
one finds that the most general form of this trans-
formation is still (87) but with

0') (89)

P=P+, P'=1,

si= s;+)

Si)$j Zti jkSA:)

s;p= ps;,

00 =1) 0

op=po.

0$i= S;0,

K+=1

f'P = Pf', —
f's, =s t,

l o~gf

(E-90)

(E-91)

(E-92)

(E-93)

(E-94)

(E-95)

(E-96)

(E-97)

(E-98)

(K-99)

(E-100)

Note, for example, that these relations already imply
that P has eigenvalues +1 and —1 in pairs; for (E-90)
requires that its eigenvalues can only be these values,
while (E-98) tells us that if p&,@2, are distinct
eigenvectors of p, belonging to one of these eigenvalues,
then gi, f'P~, . are distinct eigenvectors belonging

with the ambiguous sign in (89) independent of the
ambiguous sign in (86) and tt, unrelated to 0,.

We have now shown that by combining two of our
irreducible representations of the Lorentz group, we
obtain indeed irreducible representations of the full
Lorentz group satisfying the conditions of strong
covariance. Whether by this process we obtain all
strongly covariant equations suitable for representing
a particle of finite mass and noninfinite spin we do not
know, but we conjecture that this is indeed the case.
This means that our procedure above has also led us to
what we may call "a canonical form" for strongly
covariant equations. This canonical form consists of
the Schrodinger equation (62), the identifications of
the unitary transformations which are a representation
of the Lorentz group as given in the set of equations
(D), (69), and (71), and a set of abstract relations
satisfied by the matrices p, s;, o, and |' which occur in
the above equations. These relations, which we sum-
marize below, may actually be thought of as defining
the matrices P, s;, o, and f', independent of repre-
sentation:
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to the other. As a corollary we have that any represen-
tation of these matrices must be even-dimensional.

So far we have not required that a representation
of a Wigner time inversion transformation or the charge
conjugation transformation exist in the representation
space, though we have seen that transformations having
the correct properties always do exist. If we wish to add
the requirement of the existence of a representation
of either or both of these transformations we can
supplement the above canonical form with the Kqs.
(78) and (87) and define the matrices r and K occurring
therein through the following equations supplementing
the set (E):

TT = i) TT ~i)
rp*r '=p,

TS;T = —S,,

TO' T ~O)

KK = i) KK ~i)
KP*K '= —P,

Kst' K = —Ss)

KO K ~O')

Kl K

KT ~TK

(E'-101)

(E'-102)

(E'-103)

(E'-104)

(E'-105)

(E'-106)

(E'-107)

(E'-108)

(E'-109)

(E'-110)

(E'-111)

The canonical form which we have described above
is itself invariant under a set of unitary transformations,
namely those transformations U which commute with

y and r. Under such unitary transformations, Eqs.
(62), (D), (69), and (71) retain their form but with
the matrices p, s;, o, and i, transformed according to

$~ U$U ' (112)

where P is any of these six matrices. These matrices
then continue to satisfy the relations (E). Furthermore
Eqs. (78) and (87) may be retained if the matrices r
and K are assumed to transform under U as

r —+ Ur(U*) '=UrU", (113)

K-+ VK(U*) '=UKU" (114)

The set of relations (E') and (E") are then also left
invariant. We shall regard representations connected
in this way as equivalent and shall not distinguish
between them. It will be convenient to call a represen-
tation in which P and the s, have the reduced form as
given in Eqs. (63) and (68) and in which ~, l', r, and
K have the forms (70), (77), (86), and (89) as the
normal canonical form.

It will be noted that the canonical form, and in
particular the relations (E), (E'), and (E"), are also
invariant under changes in the phase factors associated

with the matrices o, 1, r, and K:

o~e 'o )

T —+ e'~'T

K ~ e~'K.

(115)

(116)

(117)

(118)

The work of Yang and Tiomno'4 has indicated that
such transformations may not be devoid of physical
significance, and this raises a question as to whether
representations connected in this way should be
regarded as equivalent. For our present purposes
however, there seems to be no purpose served in
distinguishing between representations connected in this
way, and hence we shall not emphasize the associated
ambiguity in the choice of these matrices. This allows
us, if we wish, to impose on o and l' the stronger
conditions

o'= i
is=1,

(119)

(120)

and we shall assume that this is done. Then l is deter-
mined uniquely apart from sign in the normal canonical
form to be

I
0' I'~

E1' 0') (121)

while o- must be represented by either the unit matrix
or by p (apart from a sign).

The phase factors of 7 and K may jointly be changed
by a unitary transformation U= e". For we then have

r —+ Ur (Ua)—1 —eiBreiB —esfBr

K ~ UK(U*) '=e'*'K,

(122)

(123)

though the relative phase factor of the two cannot be
changed in this way. However, if we disregard the
phase factors associated with these matrices we see
that we have a choice of two distinct matrices by which
each may be represented as a consequence of the
ambiguity in sign in (86) and (89).

To summarize, even disregarding a phase factor in
the matrices associated with the disjoint transforma-
tions, there persists nevertheless a twofold choice for
these matrices in the case of space inversion, Wigner
time inversion, and charge conjugation. This ambiguity
is an essential one and each choice leads to a distinct
theory to be associated with Eq. (62). Thus if we do not
require the existence of a Wigner time inversion
transformation or a charge conjugation transformation,
we still have two theories for each mass and spin, one
in which the unit matrix is associated with space
inversion, the other in which the matrix p is associated
with space inversion. This distinction may be expected

'4 C. N. Yang and J. Tiomno, Phys. Rev. 79, 495 (1950);
Wick, Wightman, and Wigner, Phys. Rev. 88, 101 (1952).
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to lead on second quantization to the two situations
according to which there either occurs a change in
space parity or there does not when a particle and an anti-
particle annihilate one another in a state of definite
orbital momentum. We shall also see shortly that both
possibilities are employed in the usual theories.

The next part of this paper will be devoted to
demonstrating that the three familiar theories, the
Dirac, Klein-Gordon, and Proca, can all, by a suitable
choice of representation, be put into the normal
canonical form which we have constructed above.

(P.pPs) =, P,*(r,t)Pg(r, t)dr (125)

REDUCTION OF THE DIRAC EQUATION
TO CANONICAL FORM

We begin by writing the Dirac equation in the
familiar form

iit&(r, t)/Bt= (Pm+n p)P(r, t), (124)

where, as usual, P, rz~, ns, ns, are four Hermitian
mutually anticommuting matrices of four rows and
columns. The solutions of this equation form a represen-
tation space for the inhomogeneous I.orentz group
with the scalar product defined by

7m+= —vs*= —1) )

K=K ) KK =KK = 1)

(138)

(139)

(140)

(141)

(142)

(143)

The existence of such matrices can be established in any
representation of the Dirac matrices. One can show,
of course, that the Dirac equation (124) is left in-
variant under all these transformations.

The reduction of the Dirac equation to the canonical
form is accomplished by the Foldy-YVouthuysen
transformation':

The representation of the disjoint transformations
is given by

Sy(r, t) =Py( —r, t), (134)

ZP (r,t) =Pn,usnsg(r, t—), (135)

Ty(r, t) = nP(r, —t), (136)

Clt (r, t) = log*(r, t). (137)

The matrices ~ and ~ are defined by the following
relations:

x(r, t) = Vy(r, t), (144)The representation is fixed by the following identifi-
cation of the infinitesimal generators of the in-
homogeneous Lorentz group: tt~ y (p& ]U=exp — tan ') —.

[

2p &m) I(126)

(127)

(128)

(129)

(co+m ) ' Prr ' p (co—m ) *

,I+2cd / p 4 2a)

H=Pm+e y,

J= r&&y+s,

K= ', [r(Pm+-e y)+ (Pm+e p)r] —tp, m+a+Pe y

[2(0((8+m) ]' (145)where
(130)

Then
S&= Zt zg'PEy'CEk)

and hence
iciy (r,t)/Bt =P(ox (r,t), (146)

as required. One can easily transform the representation
of the Lorentz group and charge conjugation trans-
formations into this new representation. The results
are just the identifications (D), (69), (71), and (87)
with the fundamental matrices identified as

(131)S;,S& =Z6sjkSk.

The only one of these identifications which is perhaps
unfamiliar is (129), so we shall briefly sketch its origin.
For an infinitesimal Lorentz transformation, the
transformation of the wave function is generally
written"

p(r, t) p'(r, t)=[I+-,'( e]4(r—(t, t ( r) (132)—. .

Hence we have

y'(r, t) = [1+-,'( ~][y(r,t) —(t V4 —( r&/at]
=[1+'( ~][1 iV-y+i( —r(Pm+~ y)34(r, t)

=[1+i( {-',[r(Pm+n y)+(Pm+a y)r]
—ty}3P(r,t). (133)

's W. Pauli, reference 12. Note that (132) is the specialization
of the general case to the specilc case of a Lorentz transformation
as contrasted with a rotation, and with the transformation of the
space and time coordinates explicitly indicated.

O'=Py f=Pcrlrrsrrsq t= r) K=K. (147)

These then do indeed satisfy the canonical relations
(E) (E').

For the fundamental matrices to take the normal
form of the last section we need only choose the initial
representation of the Dirac matrices as

(1' 0') ( 0' —io,' )
(148)

EO' —I') &i~ 0'i

where the 0,' are the usual Pauli matrices. ln this case
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the matrices v and a have the form

0~ p
0'

EO —~'i (—7.' 0'] (149)

and

By'(r, t)/Bt=(1 i—g tp)8y/Bt i—g py g—rB'y/BP
=$1 ig-Ip)8y/Bt

+[ i—g y $—res']y, (156)

REDUCTION OF THE KLEIN-GORDON EQUATION
TO CANONICAL FORM'6

%e begin with the Klein-Gordon equation in the
form

Q2

y+ +81y=My
Bt'

Q2

-=0 (150)

Introducing a two-component wave function defined by

Since v is an antisymmetric matrix in this case, v is
also antisymmetric while ~ is symmetric. Hence
7m*= —1 while m*=1.

whence

x&'(r, I) =(1/V2)f" &B-q'/Bt k—u& y'j

=(I/~&){ 'L(1—it IP)By/BI

+(—i( p —'»') yj
~'5(1 i'—'u) q (—rBy!»5}

=(1+i( H(r~+"r) —Ipj)x (r,I). (157)

Similarly,

x''(r, t) =(1+i) $——',(r(o+cor) —tpJ)x2(r, t), (158)

from which follows

X'(r,I) =(1+i( PP(ra)+(ar) —tp))X(r, t). (159)

one has

x(r, t) =

1 8p
GO

~ — — ZM~P
83

Bp
MI +ZG)'y

8f

Under space inversion we usually have y(r, t) —+

~q(r, t) according as the field is scalar or pseudoscalar.
Then x(r, I) ~~x(r, t) so we have (69) with a=~1.
Actually the phase is not fixed even to this degree, but
in view of our expressed disinteIest in phase factors we
need only consider the choice o-=1. For the Pauli time
inversion we take y(r, t)~ —y(r, —t), whence
Bq(r, t)/BI —+ By(r, t)/Bt a—nd therefore

with p the matrix

zBx/Blr=Pcoxq

'1 0'
EO —I)

(152)

(153)

ZX(r, I) =)X(r,—I),

'0 1~

0)

(160)

(161)

Tx(r, t) = rx*(r,—t) (162)

For the Wigner time inversion we take y(r, t)~
The solutions of (152) constitute a unitary represen- y*(r, I) whence

tation space with scalar product

(x.,x') = x.*(r,I)x'(r, I)dr.
aJ

(154)
with v the unit matrix. These results yield for charge
conjugation [y(r, t) ~ y*(r,t)J the form

The transformation properties of y under a I.orentz
transformation then determine the transformation of
X. One finds the infinitesimal generators to have the
form (D) but with the s; now represented by nell
2)&2 matrices. To illustrate the derivation of these, we

again take the infinitesimal Lorentz transformation as
an example. We have

y'(r, I)= q(r-gt, I-& r)
= q(r, I) gt Vq grBy/Bt- —
=$1 i( Ipjy(r, t) (—rBq (r,t)/Bt, —(155)

"The reduction to canonical form of the Klein-Gordon and
Proca equations in this and the following sections is essentially a
transcription of that given by Case, reference 4. We have omitted
some intermediate steps which are important in the case of
external electromagnetic Gelds but are not necessary for our
purposes. The simpli6ed calculation given here facilitates the
calculation of the behavior of the functions under Lorentz
transformations.

CX(r,t) =zX*(r,I) (163)

with ~=f Thus —we. have put the theory into the
canonical form but with v', 7, and a represented in this
case by symmetric matrices in contrast to the Dirac
case. Therefore, 7 v*= I, m*= 1.

B=curl A,

p= —m—' div E,

BA/Bt= —E—grad q,

(164)

(165)

(166)

BE/Bt=m'A+curl B, (167)

where q, A, 8, and E are complex functions. Equations

REDUCTION OF THE PROCA EQUATIONS
TO CANONICAL FORM

Of the various alternative forms for the Proca
equations, ' we shall adopt the form
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(164) and (165) may be regarded simply as definitions
of B and p and if these are eliminated from the latter
two equations we have

E, those of x may be derived. These turn out to be of
the canonical form'~ (D), (69), (71), (78), (87) with
the following fundamental matrices:

aA/at = —E+ (1/2m') 'FE

+ (1/2') [curl curl+grad div/E, (168)

BE/Bt =m'A —-,'V'A+ i~ [curl curl+ grad div jA. (169)

YVe introduce the operator

$s 0)
s;=1

&0 s)'
t1' Oq

~0 1')

(181)

(182)

and note that
q= curl curl+grad div,

q'=P'= (io —m)'(co+m)'.

(170)

(171) J,(0 T ) EO 1I)
(183)

Then (168) and (169) can be written

BA/Bt = (1/2m') [—io2 —eP+ qjE,
aE/Bt= ', [oo'+m-'+qjA.

(172)

(173)

t0 1'q

0) (184)

%e now introduce two new vector functions u and
v dined by

(0 r ) (0 1'q

&.' 0) &1 0)
Here the s are the matrices

(185)

+i co+ad+ A, (174)1

io+St

si'= 0
0

0 0
0 —i,
i 0,

0
s2'= 0

0 i '0 —i0
0 0, s3'= i 0 0
0 0, 0 0 0,

(186)

v= (8(o) '* co+m—
co+m m

—1 Co+7Ã+ A '1

~o+m 1

) (175)

constituting a three-dimensional representation of the
rotation group. In this special representation of the
s the time inversion matrix 7' is simply the unit
matrix. Thus we again have the canonical form, in
this case with ~', 7-, and ~ all symmetric matrices as in
the Klein-Gordon case so that one has ~~*=1, ax~= j..

and then 6nd from (172) and (173) that

iau/Bt = ,~ou

iclv/Bt = —G&v.

(176)

(177)

(178)

we have
iBX/Bt =Prox, (179)

with the matrix P given by

)1' Oq

EO —1') ' (180)

where 1' is the unit 3)(3 matrix.
From the known transformation relations of A and

It is important to note that (174) and (175) can be
inverted so that u and v can serve as wave functions.
Finally introducing a six-component wave function

y through

COMPARISON OF THE CONVENTIONAL THEORIES

The work of the last three sections has shown that a
very close analogy may be exhibited between the Dirac,
Klein-Gordon, and Proca equations by writing these
equations in the particular representation which
corresponds to the canonical form that we have synthe-
sized earlier from the requirement that a covariant
wave equation shall provide us with a unitary represen-
tation of the complete Jorentz group. This analogy
extends beyond the equations thems'elves and includes
the manner in which the wave functions transform
under the transformations of the inhomogeneous
Lorentz group. We conjecture that by an appropriate
choice of representation with the elimination of
redundant components, the theories of the Dirac-
Pauli-Fierz type to represent particles of higher spin
can also be brought into this same canonical form.

By the above procedure, we have, however, also
brought out some interesting differences between the
equations. The most striking of these is the trans-

'7The only difFicult transformation to obtain is that under
Lorentz transformation. This calculation was carried out by
Dr. 3.P. ¹igam at the author's request. We are indebted to Dr.
Nigam for this favor.
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formation of the wave function under space inversion
in which our original synthesis allowed us two distinct
possibilities corresponding to the choice of the unit
matrix or the matrix P to represent the space inversion
matrix 0.. We now find that both of these possibilities
are realized in the familiar theories; we have 0 =1 in
the integral-spin theories (Klein-Gordon, Proca, and
presumably the integral-spin Dirac-Pauli-Fierz theories)
while we have o =P in the half-integral spin theories
(Dirac, and presumably the half-integral spin Dirac-
Pauli-Fierz theories). Further differences are apparent
with respect to the transformations employed to
represent Wigner time inversion and charge conjugation.
Again two distinct possibilities for each of these is
allowed by covariance alone. However, in the con-
ventional half-integral spin theories, one has

(7' 0'q ) 0

Eo' —.') '
& —.' 0') ' (187)

while in the conventional integral-spin theories, one has

(188)

No clue has been forthcoming in our analysis as to why
these particular choices should take precedence over
the other alternative made available by covariance
arguments.

We have already made a conjecture as to the physical
significance of the two choices 1 and P for the space
inversion matrix 0.. Namely, we expect that in the
second-quantized form of these theories, the two choices
correspond to whether or not there is a change in
space parity on annihilation of a particle and anti-
particle in a state of given orbital angular momentum.
Similarly, we may conjecture that the two choices for
the charge-conjugation matrix will correspond in the
second-quantized theory to whether or not there is a
change of charge conjugation parity on the annihilation
of a particle and antiparticle in a state of given spin
and orbital angular momentum. Thus the choice of
the matrices used to represent these transformations
is expected to be of great physical significance in
determining the selection rules associated with certain
reactions and decay schemes for the particles involved.
It is thus of great importance to know whether there
exist further reasons which impose the special choices
associated with the conventional theories, and hence
fix certain of these selection rules as soon as the spin
of the particle is assigned; or whether on the other
hand, there exist reasonable and consistent alternate
theories of these particles which employ the "abnormal"
or "unconventional" choice of the matrices to represent
these transformations. A specific example of such a
question is: Does there exist another theory of spin- —',
particles than the Dirac theory in which the annihilation

of a particle and antiparticle in an S state involves no
charge in space parity'

We are in no position to answer this question at the
present time, except to say that in the one-particle
theory, the requirements of strong covariance do not
impose a specific choice. Our analysis has only provided
us with certain raw material for the construction of a
complete physical theory. For these one-particle
equations to develop into a complete and consistent
theory, other requirements must presumably still be
met. Thus one may require: (1) that it be possible to
second-quantize the equations in a consistent way;
(2) that it be possible to introduce interaction in a
covariant and consistent manner and, in the case of
interaction with an electromagnetic field, in a gauge
invariant manner; (3) that the resulting theories give no
contradiction to an appropriate causality condition,
such as, that physically observable eRects are not
propagated with a velocity greater than the velocity
of light, at least on a macroscopic scale; (4) that one
can define densities like the energy-momentum density
tensor in these theories, that satisfy appropriate physical
conditions. A discussion of the necessity for these
requirements or of the feasibility of meeting them in
theories employing the "unconventional" choice of
representation matrices, lies beyond the scope of the
present paper. Thus we shall be satisfied here with
simply pointing out the possibility of such alternate
theories which satisfy the requirements of relativistic
covariance. It is worth emphasizing again however,
that our results above show that the "relative intrinsic
space and charge conjugation parity" of a particle and
antiparticle of given spin is not a consequence of
relativistic requirements alone. If, in fact, the spin does
determine the relative intrinsic space parity, it is for
reasons which go beyond the requirements of covariance.

It is perhaps not out of place to make a further
remark here about second quantization of these
equations. It is well known that in the familiar Dirac,
Klein-Gordon, and Proca theories, one can give certain
reasons to justify the fact that the integral spin equa-
tions are quantized according to Bose-Einstein statistics
while the half-integral spin theory is quantized accord-
ing to Fermi-Dirac statistics. These reasons are not
entirely dissociated from the particular choice of
matrices involved in the transformations associated
with space inversion, Wigner time reversal, and charge
conjugation. Thus, at least some of these arguments
concerning the connection between spin and statistics
may lose their cogency if it should indeed be possible
to develop theories based on the alternate or
"abnormal" choice of these matrices. There is perhaps
a slim possibility that the connection between spin and
statistics is not a rigid one. In view of the recent
discovery of many new "elementary" particles about
which almost nothing is known directly concerning
their statistics, it would be well to understand clearly
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in advance just how binding or how Qexible is the
connection between spin and statistics from the
theoretical point of view.

INTERPRETATION OF THE COVARIANT EQUATIONS

We have said little. so far concerning the physical
interpretation of the one-particle equation (62) which
we have developed. Of course, any direct physical
interpretation outside the scheme of second quanti-
zation has little meaning because of the presence of
negative eigenvalues for the Hamiltonian, but we can
at least attempt to make a comparison between this
equation and, say, the Dirac equation which suGers
from the same difficulty. To the same extent that the
latter equation has a hypothetical one-particle interpre-
tation, we can make an analogous interpretation for
our equation.

We may note first that we can introduce observaM'es

into the theory in the usual way and identify P, H, and

J, and s with the observables of momentum, energy,
total angular momentum, and spin angular momentum
as usual. The observable represented by r, however,
needs some explanation. Since this operator is defined

in the manifold of positive and negative energy solutions
of Eq. (62) separately, it does not coincide with the
usual position operator even in the Dirac theory. It is

in fact the position operator defined by Newton and
Wigner' which in the case of the Dirac equation was

called the "mean position operator" by I"oldy and
Wouthuysen. The first-named authors have shown that
it is only position operator which satisfies certain
reasonable conditions and is defined on the manifold
of positive- and negative-energy solutions of the
equation separately, and thus is the only position
operator defined within one of the irreducible represen-
tations of the Lorentz group as obtained by Wigner and
Bargmann. In the case of spin —,

' it is related nonlocally
to the conventional position operator in the Dirac
theory, and it has no simple Lorentz transformation
properties. It does have the property, however, that
its time rate of change is given by the eminently
reasonable expression Pp/~. We may note in addition
that s in this theory does not coincide with the con-
ventional spin operator of the Dirac theory in the case
of spin —,'but represents what Foldy and Kouthuysen
call the "mean spin angular momentum. " It has the
property that it is a constant of the motion for a free
particle which the conventional Dirac spin angular
momentum has not.

If we accept the hypothesis that by some experimental
arrangement it is possible to determine the position
observable r, then we can consistently regard
x*(r,t)x(r, t) as the relative probability of finding the
particle at the point r at the time t. Note, however,
that because of the nonlocal character of the represen-

» T. D. Newton and E. P. %igner, Revs. Modern Phys. 21,
400 (1949l.

tation (D-67) of Lorentz transformations, if in one
Jorentz frame the particle is localized at the point
r=0 at t=o, then in another Lorentz frame whose
origin coincides with the 6rst at t=o, the same state
will not be localized at the origin at time t=o. In fact,
the state will be represented by a wave function which
is distributed over distances of the order of the Compton
wavelength of the particle from the origin. This is a
consequence of the complicated transformation
character of r under Lorentz transformations, but it
implies no lack of relativistic covariance in the theory,

With x (r, t)x(r, t) representing a probability density,
one can always define a probability current density or
Aux, such that one has a diRerential conservation
theorem. This follows from the fact that the equation

divS = —8 (x*x)/Bt, (189)

has generally one, and actually many solutions.
However, one has no guarantee that any of these
solutions will define a probability current density
locally in terms of the wave function X. This need not
interfere with the interpretation of the theory, however.

To introduce the concepts of charge density and
current density, however, one must exercise more care.
If one wishes to assign to the particle a point charge
located at the point r, then the charge density will be
represented as usual by x~(r, t)x(r, t). However, it may
not then be possible to 6nd a current density expression
from (189) such that the charge and current density
transform under Lorentz transformations as a four-
vector. Hence it may well turn out not to be possible
to attribute to the particle a point charge located at r.
Nevertheless, it may be possible to define a charge and
current density which are both nonlocally defined in
terms of x(r, t), corresponding to attributing to the
particle a spatially extended charge distribution in the
space spanned by r, such that the densities transform
as a four-vector under J,orentz transformations and
charge is diGerentially conserved. This is exactly what
one finds when one takes the conventional charge and
current density expressions in the Dirac, Klein-
Gordon, and Proca theories and transforms them into
our canonical representation. Thus, for example, the
conventional expressions for the charge and current
density in the Klein-Gordon theory when written in
canonical form are

+{~ 'x)*l l&{~'x)

(I-t'~
I(r 0={~ 'ux)*l l{~ 'x)&2)

+( —:x)*l l{ -'px),&2)



SYNTHESIS OF COVARIANT PARTICLE EQUATIONS 581

and are thus nonlocally de6ned in the space of the
variable r. One can verify, nevertheless, that they do
transform as a four-vector under Lorentz transforma-
tions and satisfy a differential charge conservation law.
They are not, however, the only expressions which
have this property. One can show that the same is true
for the following identification of charge and current
density expressions in this theory:

u(r, ~)={~**x)*{~'*x)+{~ 'x)*{~*x}, (192)

j( )={ 'p )'P{ '* )+{ '* )*0{ '*u ) (193)

which simply emphasizes the point that the interaction
of a particle with an electromagnetic 6eld is not deter-
mined by the free-particle equation alone. Whether
from (192) and (193) one can build up a completely
gauge invariant theory, however, is not yet known. An
interesting difference between the expressions (190, 191)
and (192, 193) is that the former transform correctly
under space inversion only with the choice 0 = 1 for the
space inversion matrix, while the latter transform
correctly with either 0.=1 or 0 =P. In fact, the latter
are de6ned in the manifold of positive- and negative-
energy solutions of the wave equation separately, and
hence may be considered as defined even in one of the

Wigner-Bargmann irreducible representations. It is
these facts that make the author feel that it is not at
all certain~that one cannot construct theories with
interaction' based on the anomalous choice of matrices
to represent space inversion, Wigner time inversion,
and charge conjugation.
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