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Inserting this into (1) yields After evaluating the 8 integral, we have
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Then, using (8) again, we have
d0 V=8(1—n) = eu'= e/r' (24)8R .

(~/e)L(1 0/~) 3' The inverse square potential (24) is just the one from
(21) which the cross section (19) was originally obtained.
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Calculation of the Scattering Potential from Reflection CoeKcients*
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It is shown how the scattering potential can be calculated from suitably de6ned refiection coeKcients
in the case of the one- and three-dimensional reduced wave equations by means of a formal series expansion.
The more general problem of calculating scattering potentials from elements of the scattering operator
is also discussed and it is shown that to calculate the scattering potential it is often sufficient to prescribe
the representation in which it is to be diagonal.

1. INTRODUCTION AND SUMMARY

OST and Kohn' have developed a procedure for
finding spherically symmetric potentials from scat-

tering phases. This problem is simplified by the fact
that the solutions of the radial equation are not de-
generate.

It has been found possible to generalize their pro-
cedure to cases where the outgoing eigenfunctions are
degenerate. One is able to show that in many cases the
scattering potential can be obtained from certain ele-
ments of the scattering operator, provided one specifies
the representation in which V is to be diagonal,

In the present paper the method is applied to the
one- and three-dimensional scattering problems, where
the scattering potential V is assumed to be a function
(not necessarily symmetric) of the space variables. It
is shown that in the one-dimensional case, the potential
can be obtained from the reflection coefFicient at one
end. The potential is calculated explicitly to the 6rst

*The research reported in this article was done at the Institute
of Mathematical Sciences, New York University, and has been
made possible through support and sponsorship extended by
Geophysics Research Directorate, Air Force Cambridge Research
Center.' R. Jost and W. Kohn, Phys. Rev. 8?, 977 (1952).

two orders in the reflection coeKcient where it is
shown that the results are the same as those obtained
using the Gelfand-Levitan procedure. ' '

In the three-dimensional case it is shown that the
potential can be obtained from the amplitudes of the
spherical waves reflected back along the rays on which
the incident plane waves are sent, the totality of such
rays being those pointing out at right angles to a
hemisphere whose center is at the origin.

The general procedure for obtaining the scattering
potential from the scattering operator is also discussed.
It is shown that one must specify the representation in
which U is diagonal to get a unique answer.

V/e restrict our discussion to cases in which the
unperturbed and perturbed Hamiltonians have purely
continuous spectra which coincide. However, it is
possible to generalize the results to cases where the

2 I. Kay, "On the Determination of a Linear System from the
RefIection Coefficient, "Research Report No. EM-74, Institute of
Mathematical Science, Division of Electromagnetic Research,
New York University, 1955 (unpublished).' I.Kay and H. E, Moses, "The Determination of the Scattering
Potential from the Spectral Measure Function. Part III. Calcu-
lation of the Scattering Potential from the Scattering Operator
for the One-Dimensional Schrodinger Equation, "Nuovo cimento
(to be published).
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total Hamiltonian has point eigenvalues in addition to
the continuous spectrum.

2. REFLECTION COEFFICIENT AND OUTGOING
WAVE SOLUTION: ONE-DIMENSIONAL CASE

Let us consider the one-dimensional reduced equa-
tion:

d2

+V(x) e(xjk) =k%(xjk),
dx

T (k'jk)= e ""—'*V(x)+ (xjk)dh
(2s.)&~

V(k'jk")I (k"jk)dk". (2.8)

In (2.8), V(kjk') is just the operator V(x) in the
representation of the operator —d'/dx', i.e.,

1 f+"
where the scattering potential V(x) vanishes as j xj—&~.

For k) 0, let %(x j k) have the asymptotic form: 2m~

+(x j k) - +b(k), as x~—~;
(2') ' (2~) ' (2.2)

1 +"
V(x)e—'&"—'i'dx. (2.9)

2~~ „
+(x j k)-+c(k) e'"' as x~+ ~. The function y (P) is defined by

Then we define b(k) to be the reflection coef]icient.
The reRection coeKcient gives the amplitude of the
reflected wave moving toward the left when the incident
waves moves from —~ toward the origin.

It is our objective to show how the potential V(x)
can be calculated from the reflection coef]icient b(k).

The "outgoing wave solution" 4 (x j k) is the solution
of (2.1) which is the sum of an incident wave and an
outgoing scattered wave. It satisfies the integral
equation

+ (xjk)= e'"*
(2m)'*

P f
~ (P)= —i~&(P)+—= lim"'$+ie

(2.10)

where the symbol P means that in integrations over t,
the principal part of the integral is to be used.

From (2.4) and (2.8), we see that

b(k) =
0—Z7r

T (—kjk), k)0.
k

(2.11)

The eigenfunctions%' (xjk) or equivalently I (k'jk)
can be shown to form an orthonormal set. They satisfy

2jkj
e'~ "~ ~'-"~ V(x')+ (x'jk)dx'. (2.3)

e *(hjk)e (xjk')dx=b(k —k'), (2.12)

If we take k) 0 and let x approach —~, we see that
4 (xjk) takes the form (2.2), where

I-"(k"
j k)N-(k" j

k') dk"=b(k —k') (2»a)

Z7f' We shall assume that there are no bound states.
Thus the following completeness relations are valid:

k~ „(2m)&

Though b(k) has been defined for k)0 only, we can
continue this function analytically to negative values
of k. From (2.3) and (2.4) it can be shown that

b(—k) =b*(k), k)0. (2.5)

The asterisk means complex conjugate.
It will be useful to express + (x j k) in terms of the

representation of the operator —d'/dx'. If we write

p+00

e*(xjk)e(x'jk)dk=b(x —h'), (2.13)

f+00

I ~(kjk")Q (k'jk")dk"=b(k —k'). (2.13a)

We shall now show how V(h) and U(kjk') can be
obtained in terms of V(—k j k). I.et us write

1 +"
e—"*+ (xjk)dh=e (k'jk),

(2m.)»
(2.6)

r+
W(k) = V(—k j k) =—

~ V(x)e"'*dx. (2.14)
27r

it can be shown that the integral equation (2.3) can From (2.14), a re]ation which wil] ]ater prove usefu] is
be written obtained, namely,

I (k'jk)=b(k' —k)+y (k' —k")T (k'jk), (2.7) W(—k) = W*(k). (2.15)
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From (2.14), it is seen that

V(x) =2 W(k)e ""~dk.

On using (2.9) and (2.16), we find

(2.16)

To extend this result for k(0, let k= —p, where p&0.
Then from (2.15) and (2.5),

w(k) =w*(P) =—b*(P)

k' —k
v(krak') =w]

2 )
(2 17) + T *(—pik")y (k"'—p')T (pik")dk", (3.6)

Equation (2.17) shows that any element of V(k~ k') can
be obtained from the knowledge of the elements
V(—kfk)=W(k). This observation is, in fact, the
principal departure from the original Jost-Kohn treat-
ment.

3. BASIC EQUATIONS

We shall now set up two equations which, with
Eq. (2.17), will permit us to solve for the three un-
knowns W(k), V(k~k'), and T (k~k') in terms of the
reflection coeKcient b(k). Having obtained W(k), we
can find V(x) from (2.16).

Our first equation is that for T (k~k'). From (2.8)
and (2.7), we have

ikb(k) p+
w(k) = +) T (—k/k')Qvg(k)y *(k"—k2)

+&(—k)~ (k"—k') jr *(k~k')dk', (3.8)

where p(k) is the Heaviside step function defined by

or
ikb (k) t

+"
W(k)= + r (-k~k")& (k"2 k2)—

Xr

*(krak")dk",

k&0. (3.7)

We can combine (3.5) and (3.7) as

T (krak')= V(krak')
g(k) =1, k&0;

q(k) =0, k&0.
(3.9)

+) V(k(k")y (k"—k'")T (k"(k')dk". (3.1)

We now want to find V(k~k") in terms of T (k~k').
In reference 1 this task is accomplished by solving
(3.1) for T (k~k') in terms of V(k~k') through the use
of a series. The series is then inverted to get V(k~ k')
in terms of T (k~k'). Rather than go through this
complicated procedure, we shall use the completeness
relation to find V(ktk') in terms of T (ktk'). From
(2.8) and (2.13a), we have

v(k~k')= j T (k~k")I *(k'jk")dk" (3.2).
However, on using (2.7), we see that

v(krak) =r (krak)
p+00

+ T (k)k")y ~(k'"—k")T *(k')k")dk". (3.3)

In particular,

T (k(k')= Q er '"i(krak'),
n=I.

(3.10)

V(krak')= P e"V&"'(krak'),
n=l

substitute into (3.1), (3.8), and (2.17), and equate
coeKcients of the same power of e. The lowest orders
can be expressed quite simply in terms of b(k). It is
seen that

W~»(k) ='kb(k)/~,

i(k' —k) f'k' —kg
V&»(k)k') =- b(

2s. E 2 )

Equations (3.1), (3.8), and (2.17) are our basic equa-
tions for T (k~k'), W(k), and V(k~k'). To solve these
equations we replace b(k) in (3.8) by eb(k), where e is
a smallness parameter. Furthermore, we write

W(k) = Q e"W'"'(k)
n=l

V(—krak)=T (—k(k)
i(k' —k) pk' —k yT &'i k k' = V&" (k k' =—

T ( k t k")y (k"'—k')—T *(k
~

k")dk". (3.4) 2lr E 2 ) (3.11)

If k&0 we have, on using (2.14) and (2.11),

ik I+"
W(k) =—b(k)+) T (—

krak")y

~(k'll —k')

Xr '(k(k")dk", k&0. (3.5)

1 ~ k"+k k"—k)
W"'(k) = &2]

b(k")b(k —k")dk",
(2-) ~
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etc. It is easily seen by induction that all orders of the Equation (3.18) together with (2.3), which we rewrite as
unknown can be obtained in terms of a knowledge of
b(k). 1

x~k = e'"
We can obtain V(x) in terms of the lowest orders of

b(k) quite simply. Writing

V(x) = Q e"V&"&(x),
f4~1

we see, from (2.17), that

p
+00

V&"&(x) =2 W&"& (k)e-""dk.

(3.12)

(3.13)

Z f
e'~~& ~ '~V(x')@ (x'i k)dx', (3.19)

2/kf J

are suflicient to solve for%' (x~k) and V(x). As before,
one replaces b(k) by eb(k) and writes

On using (3.11), we obtain

2'L f'+
V&" (x) =—~' kb(k) e 2&"~dk = —2—F(2x), (3.14)

F Q&&
cfx

V(x) = Q eV&"&(x)
e 1

(3.20)

00

e (x~k) = e'~'+ P e"e &"i(x~k). (3.21)
(2~) &

where F(x) is the Fourier transform of b(k),

1 t-+"
F(x)= b(—k)e '"*dx

2Ã—

[It is to be noted, that as a consequence
F(x) is real. ) Also,

4 +co ~+oo

V'"(x) — dke "" ' b(k")b(k —k")dk"
(2~)' 21

V(x)—V&'&(x) =— kb(k)e-"~*dk
+oo

e ""b(k")dk"
(2~)' for x~—oo. (3.22)

~
+QO

e-" &" "b(k k")dk— It is also useful to note that even to the lowest order
approximation,

(3.16)=4)F(2x))'.

On substituting (3.21) and (3.20) into (3.18) and (3.19)
and equating coe%cients of ~, one again sees how one

(3 15) may obtain V&"'(x), 4 &"&(x~k) from a knowledge of
b(k) alone. On looking at (3.18), it is seen that as

of (2.5), x~—~, the second term on the right becomes small
compared to first term. Hence, when x—+—~, V(x) is
approximated by the first term which is just V&'&(x),

The expressions for V&'&(x) and V&'&(x) are precisely
those which one would obtain using the Gelfand-
I evitan procedure of references 2 and 3.

An alternative, but entirely equivalent procedure
for obtaining the potential V(x), is obtained when one
substitutes W(k), as given by (3.8), into (2.16). On

using (2.8) and the fact that

e'~*bi(k)r *(k"—k2)+»( —k)v (k"—k') 3dk
2 J„

sink'x
= —»(—x), (3.17)

u'

it. is seen that

2$
V(x) =— kb(k)e 2o~~dk

f~ dk—2 —
~ V(x")+ *(x"

)
k)dx"

+ (x~k)— e"*++ &'&(x~k)
(2m)'*

will reproduce the exact reflection coeflicient b(k). For

e
—i I&;x

+ &'& (x
~
k)——— V&"(x')e""o'

2k (2x)» „
when k)0 and x~—o&&, (3.23)

e
—iI&:x

b(k).
(2x) &

It can further be shown that 0'& "& (x
~
k)~0 when

x—&—oc, k)0. Hence, when V(x) and 4 (x~k) are
solved to any order in e, the exact reflection coeKcient
b(k) will be reproduced.

4. SIMPLE EXAMPLE

p2s o

V(x) =Ab(x). (4.1)

I,et us consider the case where the scattering
potential is

V(x')4 (x'~ k) sink(x'+x" —2x)dx'. (3.18)
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From the direct problem, it can be shown that the ray on which the vector k lies and.

where

+ (x)k)= e'" + e'l'l l'lC()k)) (42)
(2s.)& (2m)'

k= )k~ sign k„ (5 2)

where k, is the s component of k.
Any function of the vector k, f(k) may be written

(4.3)
f(k) =f(k,8,0),

0(y&2~, 0(8&m/2, —~ &k( ~, (5.3)

From (2.2), it is clear that the reflection coeKcient is
given by

(
b(k) = ——',iA

i i
=C(k).

l k+-,'iA)
(4.4)

V&"(x)= —2—F(2x) =Ah(x) —A'g(x)e "*; (4.6)
dS

while from (3.16),

V "(x)=41 F(2x)]'=A'il(x)e '"'. (4.7)

Hence to the two lowest orders in the smallness param-
eter, after setting ~=1.

V(x) =Ab(x) A'g(x)Le ~ —e'"*g. (4—.8)

The second term on the right of (4.8) represents the
error arising from the fact that we are working only to
the second approximation.

From the inverse point of view, we must show that
with b(k) given by (4.4), Eqs. (3.18) and (3.19) for
V(x) and 4' (x~k) are satisfied by (4.1) and (4.2).
That this is the case is easily proved by substitution.

It is, perhaps, interesting to evaluate the lowest two
orders for V(x) using the expansion scheme. We have

1 I+"
F(x)= b(k—)e "dk= ~(x)e ~*I'. (4.—5)

2m~ „2
Hence, from (3.14),

if one wishes to show explicitly the dependence of the
function f(k) on k, and the angles 8 (which is the angle
made by the ray with the positive s axis) and p (which
is the angle which the projection of the ray on the x-y
plane makes with the positive x axis). Vector integrals,
written in terms of ray coordinates, have the following
form:

p2vr ~
m/2

J
f(x)dx= l

dkk' ~ ' sin8d8f(k 8 y) (5 4)

The integral on the right of (5.4) is the same as that
obtained using the usual spherical coordinates except
the limits of the integral in the variable 8 now range
from 0 to s./2, and the integral in the variable k ranges
from —~ to+~.

In terms of the ray description, we can now de6ne a
reQection coeficient along a ray in three dimensions
analogous to the reQection coefFicient for one dimension.

Let us consider the solutions 4' (x
~
k) of the equation

P
—7'+V(x)ge (x)k)= ~k)'e (x~k), (5.5)

which satisfy the condition that they are the sum of an
incident wave and an outgoing spherical wave. Such
solutions satisfy the integral equation:

4' (xik)= e'" *
(2s)'*

(/ +00

e'l'l l" *'lV(x')+ (x'jk)dx'. (5.6)

5. REFLECTION COEFFICIENT AND OUTGOING %AVE
SOLUTION: THREE-DIMENSIONAL CASE

In order to deine the reaction coeKcient for the
three-dimensional wave equation, it is useful to intro-
duce the "ray" or "optical" description of vectors
which pass through the origin of coordinates.

Let us introduce a rectangular coordinate system.
Let us also introduce a system of directed rays. These
rays are described by unit vectors whose origin is the
origin of coordinates. These vectors may point in any
directions so long as the angle 8 which this vector
makes with the positive s-axis is less than x/2. An
arbitra, ry vector, say k, which passes through the origin
may then be written

(5.1)

where r is the unit vector describing the direction of

where

e—'"'*'V(x')+ (x'~k)dx', (5.7)
~ (2~)t

k'= ikjx—.
ix[

We shall define the reQection coeKcient b(k) =b(k, 8,P)
as being the amplitude of the spherical wave which one
obtains from (5.6) when the optical coordinate k is
taken positive and when

~
x~ approaches infinity in the

negative direction on the ray on which k lies. Generally,
when

~

x
~

~~ we have, from (5.6),

1 ~xq 4 e'l~l lxl

4' (x[k)= e'" *—
]

—
(

(2s) & ( 2)
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On setting k&0 and k'= —k we have, by definition of
b(k),

6. BASIC EQUATIONS IN THREE DIMENSIONS

e~l. x eq~~ ~x)

+ (xik)= +- b(k),
(2~)'

where

Since the procedure for ending the basic equations is
almost identical to that for the one-dimensional case,

(5 ga) we shall merely summarize our results below.
The 6rst basic equation is

or
b(—k)=b*(l), k&o (5.9)

1
b(k)=b(kP, @)=—

~

—
~

i

e*'.*'
L2& ~ (2e.)&

XV(x')e (~'jk)dx', k&O. (5.gb)

It is our objective to show how the scattering po-
tential can be obtained from b(k), where k is such that
it makes an angle less than s./2 radians with the
positive z-axis. The development is almost identical
with the one-dimensional case.

We note first that though b(k) =b(k, 0,&) is defined
for k)0 only, we can analytically continue b(k, g,&)
(for fixed 8,&) to negative values of k. It can be shown
that

T (krak') = V(kjk')

f+ V(krak")y (k" —k "')T (k ik )d'k . (6.1)

/

v(l Jk')=wj
2

(6.3)

The second is

(2) k

W(k) = —
i

—
i b(k)+ T-(—k Ik') L~(kh-*(k"—k')

I ~)

+r}( k—)p (k" k—') jT *(k~k')dk', (6.2)

while the third is

b( k, 8, P—) =b*(k,g,p), k)0. (5.9a) One solves these three equations as in the one-dimen-
sional case. One replaces b(k) by eb(k) and writesIt is convenient to express 0 jx~kj in terms of the

representation of the operator —V'. If we write
T (krak')= P "T &"}(krak'),

n=l

I (k'~k) = e
—'&"'.*&4' (x~k)dx, (5.10)

(2'}&"

it can be shown that the integral equation (5.6) yields
the following equation for I (k

~

k'):

I (k~k') =b(k —k')+& (k"—ks)T (k(k') (5.11)

W(k) = Q e"W&"}(k),
n=1

(k' —k)
V(klk')= Z."Wi"l~ )'

(64)

where
Upon substituting (6.4) into (6.1)'—(6.3), one sees that
T&"& and 8"&"& can be obtained from a knowledge of
b(k) alone. To obtain V(x) from W(k), one uses

T (k~k')=-
~ e—"*V(x)+ (x~k')dh

(2x)»
V(x) =8 t W(k)e-"~ *dk (6.5)

V(krak")I (k" ik')dk" (5.12)

1
V(kjk') =

~

e'&"'—"'*V(x)dx.
(2e.)s~

(5.13)

~N *(krak')I (krak")dk=b(k' —k"),

~N e(k'ik)N (k"ik)dk=b(k' —k").

From (5.8b) it is seen that

b(k) = —(~j2)&T (—k(k), k)0. (5.15)

If we assume that there are no bound states, we have
the equations

In the special case where V(x) is a function of ~x~

alone, i.e., where V(x) is a spherically symmetric
potential, b(k) will be independent of the direction of
the ray. In principle, one could calculate such a potential
by observing the amplitude for all energies of the
spherical wave reQected backward along a single ray
upon which an incident plane wave was sent. This
datum is quite diGerent from that of reference 1, where
one requires knowledge of the value of a scattering
phase for all energies for a single angular momentum.
It also divers from the data required in the work of
Wheeler. 4 Here knowledge of all phases is required for
a single energy. The classical analog of our result for
spherically symmetric potentials is given by Keller
et al. '

' J. A. Wheeler, Phys. Rev. 99, 630 (1955}.
~ Keller, Kay, and Shmoys, Phys. Rev. 102, 557 (1956).
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One can write the basic equations in the x representa-
tion in analogy to the one-dimensional case. Our basic
equations are then

(128''* p
V(x) = —

~ ~

' b(k)e-"'*dk

obtained the results for the one- and three-dimensional
case in terms of this procedure.

YVe shall now discuss the problem in detail. We shall
use the notation and equations of a previous paper. 6

Let H and Ho be the total and unperturbed Hamil-
tonians respectively, and let V denote the perturbation.
Then we have

+8 dk V(x')@ (x')k)dx', H=Hp+V. (7.1)

and

V(x")4' *(x"
~
k) dx"g&, (x'+x"—2X), (6.6)

In (6.6), the function g&, (x) is a Green's function for
the operator (V'+k') given by

g&, (x) =
(2pr)'~

e"*L~(p)v-*(b'-P')

+n( p)v (b'—p') 3-du—

—
&t(

—e) ~+" r+"
dX doe'"~e'"71

(2~)' ~ „
sin((k' —X'—»') &x$

X . (6.8)
(o'—v —v') &

In (6.8), k and p are the optical coordinates of k and p;
x, y, and s are the Cartesian coordinates of the vector x.

To solve (6.6) and (6.8) simultaneously, one replaces
b(k) by pb(k) and writes

e (xik)=
(2x) '

i
e'& "~ ~*-*'&V(x')e (x'~k)dx'. (6.7)

4 ~

Let the eigenfunctions of Hp be denoted by p&p(E,a),
where 8 is the quantum number associated with the
operator Hp (0&E&~) and a labels the degeneracy.
For example, n might denote the direction or angular
momentum in the case of a single particle. We shall
assume that H has the same spectrum as Hp (more
general Hamiltonians can be treated similarly). There
is one class of eigenfunctions of H which is of interest,
namely the "outgoing" eigenfunctions. We shall call
them p& (F,P). The variable F denotes the eigenvalues
of H (0&F&~). The variable P is the degeneracy
label for II. Since we have assumed the spectrum of H
to be the same as that of Hp, P will have the same
range as n.

It is convenient to work in the Ho representation.
The variables corresponding to co in the Ho representa-
tion, denoted by I (E,a~F,P), are

I (E,alF, t3) =(~p(E,a),~ (F,P)); (7.2)

the right-hand side of (7.2) indicates the inner product
of the eigenvectors involved. The eigenfunctions co are
characterized by the fact that the corresponding vari-
ables in the Ho representation satisfy the integral
equations

u (E,aiF,P) =b(F E)b(P,a)—
+v (F E)T (E,-'JF-,~), (-7.3)

where b(a,P) is a suitable generalization of the Dirac
or Kronecker 5 function, and where

V(x) = P p"V&"&(x),
n=l

y (x)= —orb(x)+P/x

(6,9) (P means Cauchy principal value), and

(7.4)

4 (x)k)= e'"'*+ P p"+ &"&(x~k).
(2~) &

Upon substituting into (6.6) and (6.8), one obtains an
iteration procedure for 6nding Vi"&(x) and 4 &"&(x).

In analogy to the one-dimensional case, it can be
shown that, to any approximation, 4' (x

~
k) reproduces

the reflection coefFicient b (k).

'7. GENERAL PROCEDURE

There is a more general procedure which may often
be used to obtain the scattering potential from appro-
priate elements of the scattering operator provided one
has specihed the representation in which the scattering
potential is diagonal. In fact, the writer originally

T (E,aiF,P)

= t I V(E,a~E',a')I (E',a'~F,P)d 'dE'. (7.5)

In (7.5) V(E,a~E',a') is the "matrix" of V in the
Hp-representation. Explicitly,

V(E,a
~

E',a') = (p&p(E,a), Vp&p(E', a')). (7.6)

It can be shown that the scattering operator in the
Hp-representation is given by

S(E,a
~

E',a') =b(E E')b(a,a')—
27rib(E E') T (E',a &—E',a'). —(7.7)

8 H. E. Moses, Nuovo cimento 1, 103 (1955).
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Now, our problem is to find V(E,niE', n') in terms complet;e set of commuting variables in which we wish
of a given 5(EniE', n'), or equivalently T (E',niE', n'). V to be diagonal. Furthermore, let%'(qiEn) (assumed

. From (7.3) and (7.5) it is clear that known) be the eigenfunctions ruo(E, n) of Ho as given in
the q-representation. Then we have

T (E,niF,P)=V(E,niF,P)+ ~)tV(E,niE', n')

Xv (F E-') T—(E',n-'
i F,P)dE'dn'. (7.8)

V(EnlE', n') = t +*(qlE,n) V(q)+(qlE', n')dq, (711)

where V(q) is the potential as expressed in the q
Since we have assumed that the spectrum of H is the representation. In particular,
same as that of Ho, the completeness condition

I I *(E,niF, P)m (E',n'iF, P)dFdP

=b(E—E')5( n, n) (7.9)

must be satisfied. Using (7.9) and (7.5), we have

,
T (E,niF, p)N '(E", "iF,p)dFdp

f
V(EniEn')=) +*(qiE,n)+(qiEn')V(q)dq

= )~L(E,n,n'i q) V(q)dq. (7.11a)

The kernel L is defined by the second equation (7.11a).
Equation (7.11a) is to be considered as an integral
equation for V(q) which is to be solved in terms of
V(E,n i E,n').

~
V(E,nlE', n')d 'dE' V(q)= L '(Enn'Iq)

~
m (E",n" iF,P)N *(E',n'iF, P)dFdP

= V(E,n i
E",n").

Using (7.3) we have finally

XV(EniEn')dEdndn', (7.12)

where the operator L ' is the inverse of L. The existence
of this operator will depend on the choice of q. From
(7.11) we see that we can write V(E,niE', n') in terms
of V(E,niE, n') as follows:

V(E,niE', n')=T (E,niE', n')+ T (E,niF, p)
aJ

Xy +(F E')T *(E',n'—
i F,P)dFdP. (7.10)

On first thought it might seem that Eqs. (7.8) and

(7.10) can be considered as two equations in two

unknowns, namely V (E,n i
E',n') and T (E,n i F,P).

However, this conjecture is false, for if V(E,niE', n') as
given by (7.10) is substituted in (7.8) so as to obtain
an equation for T only, and if the orthogonality
relations

I *(E,niF,P)u (E,ni F',P')dEdn=h(F F')b(P,P')—
~J aJ

are used, the result is a trivial identity. Hence (7.8)
and (7.10) do not contain enough information to solve
for V. The additional information needed is obtained,
for example, by specifying the representation in which

V is to be diagonal. It will be shown that with such a
specification it is possible to solve for T (E,ni E',n') in

terms of T (E',ni E',n') (i.e., in terms of the scattering
operator). Then we can find V(E,niE', n') from (7.10).

I.et q denote collectively the eigenvalues of the

V(E,n i
E',n')

+*(E,
I q)+(E',n'I q)JJ~

XL- (F'' P P'i q) V (F' Pi F' P')dqdF'dPdP'

X(E,ni E',n'i
i
F',Pi F',P')

J

X V (F',P i
F',P')dF'dPdP', (7.13)

where JC(E, iE'n, n'i iF',PiF', P') is a known function of
its arguments and depends on the representation to be
chosen for the diagonalization of V. Equation (7.13)
provides the additional information needed to solve for
T (E,niF, p) in terms of T (E,niE, n') Equation (7.1.3)
shows how all of the matrix elements V (E,n i

E',n') may
be obtained from a knowledge of some of the elements
V(E,niE, n'). Equations (2.17) and (6.3) are the forms
that Eq. (7.13) takes in the one- and three-dimen-
sional cases. As will be shown below, those elements of
V (E,n i E,n') which are used to determine the remainder
of the elements V(E,niE', n') determine also which
elements of the scattering operator T (E,niE, n') are
needed to find V.



CALCULATION OF SCATTERING POTENTIAL

Using (7.13) and (7.10), we have

V(E~I E',~') = " "
Z(E,~IE',~'I IF,PIF,P')

XT (F,plF, p')dFdpdp'

When this equation is solved for T (E,nIE', n'), one
can substitute in (7.10) to obtain V(EnIF,p). The
Jost-Kohn procedure for solving (7.15) is to replace
T (F,PIF,P') by eT(F,PIF,P'), where e is a smallness
parameter. One then expands T (E,oIE',n') in an
infinite series in & as follows:

f f'

z(E,~ I
E',~'I

I
F,PI F,P') T (E,~-IF,p)= 2 ~"T '"'—(E,~IF,p),

n=l
(7.16)

XT (F,plG, ~)~ *(G F)—
X T *(F,p'I G,y)dFdpdp'dGdy, (7.14)

which we substitute into (7.18) to obtain

T-( E~
I

E',~') =
) ) &(»~ I

E',~'I IF p IF»' )

XT (F,plF, p')dFdpdp'

and, substituting (7.16) into (7.15) and equating
coeKcients of equal powers e, one obtains a series of
expressions in which the T '"'(E,nIF,P) are given in
terms of T ~ '(E,aIF,p), (m&N). One then can solve
for T ( ) by induction and substitute into (7.16) to
obtain T (E,nIF, P). For the lowest two orders, for
example, we 6nd

T '"(E,nIE', u')

+ ~(E,-IE',-'I IF,PIF,P')
J z(E, IE', 'I IF,pfF,p')JJJ

XT (F,plG, y)y *(G F)—
X T ~(F,p'I G,y)dFdpdp'dGdy

T &')(E,nlE', n')

xT (F,pl J,p')dFdpdp',

+ I t z(E,~ID,sl IF,pIF,p')
~J aJ

XT (F plF p')~ -(E' D)-—
X T (D,S I

E',n')dFdpdp'dDd8

+ E(E;ID,~l I
F,pl F,p')

J J

XT (F,plG, ~h *(G F)—
XT *(F,P'IG,y)y (E' D)T (D,SIE',—n')

XdFdPdP'dGdydDd6. (7.15)

r

E(E,-IE',-'I IF,plF,p')

XT "'(F,plG, y)7 *(G F)—
XT *~'&(F,plG, ~)dFdpdp'd&

f f+~'JJ~J~
XT o)(F plF p~)& (Ei D)

X T "'(D,b
I
E',n')dF-dPdP'dDdb. (7.18)


