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Detei-suination of the Potential from Scattering Data*
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It is shown that in classical mechanics a spherically symmetric repulsive potential can be determined
from the differential scattering cross section for particles of a single energy E. The potential is determined
explicitly, but only outside the radius of closest approach at energy E. Higher energies are required to probe
closer to the center. The results are compared with related quantum-mechanical results.

INTRODUCTION

UPPOSE that a particle of energy 8 is scattered by
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a spherically symmetric scatterer. According to
classical mechanics the particle will be scattered through
an angle 8 which depends upon the potential V (r), the
energy E, and the impact parameter b. We will show
how V(r) can be uniquely determined from the knowl-

edge of 8 as a function of b for a single energy E, if
V (r) is repulsive, i.e., is a positive monotonic decreasing
function of r, and if V(0))E. V(r) cannot be deter-
mined for all values of r, but only for r)r;„(E),
where r; (E) is the distance of closest approach at
energy E, i.e., the largest root of V(r;„)=E. This
limitation is to be expected since the potential inside

r;„does not affect the scattering of particles of energy
E, and therefore scattering data at energy E cannot
determine the potential inside r;„. It would be nec-
essary to use a higher energy to probe nearer the center
of the potential.

In scattering experiments the measured quantity is
the differential scattering cross section o.(8) = —(b/sin8)

(db/d8) rather than 8(b). However, from the differential
cross section and its delnition we can determine 8(b) by
integration. Since 8=x when b=0, we obtain

edge of the scattered wave for all energies 8 and they
determine U for all r. On the other hand, they do not
require the whole function o(8) but only the phase
shift for any one angular momentum l. However, the
potential is not uniquely determined unless there are
no bound states with this value of l. Otherwise a number
of parameters equal to the number of bound states must
also be known in order to determine the potential
uniquely. Our result is restricted to decreasing poten-
tials, for which there are not bound states. If V is not
monotonically decreasing, or if V(0) (E, additional
data must also be given in order to determine U
uniquely. ' Wheeler, ' using the W.K.B. method, has
shown that in the quantum-mechanical problem V(r)
can be determined from all the phase shifts for a single
E. This result is similar to ours, since we require o.(8)
for all 8 and a siegfe E. This similarity is to be expected
because of the relation between classical mechanics
and the W.K.B. approximation in quantum mechanics.

METHOD OF SOLUTION

In classical mechanics, 8 is related to b and V(r) by
the equation

dr

a (8) sin8d8= b'/2.

- Thus we can restate our result as follows: given the dif-

ferential scattering cross section o (8) at a single energy

E, we can uniquely determine V (r) for r&r; (E).
It is interesting to compare this result with related

quantum-mechanical results. ' The latter require knowl-
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We now define the functions P (I) and w(N) by

P(N) =1-V(N)E-', w=N'It-i.

In terms of P and w, (3) becomes

Ir —8(x) ~* g(w)dw
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In (2) rs is the largest root of the denominator. It is
convenient to introduce the new variables g=b ' and
N=r —' and to regard 8 as a function of x, and V as a
function of N. Then (2) becomes
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where g(w) =n—&de/dw. In (5), to determine the lower
limit, we have made use of the fact that the potential
vanishes at r= ~, that is, at N=O.

Equation (5) may be considered to be an integral
equation for the determination of g(w). Since it is of
Abel type, it can be solved explicitly with the result

d 1 ~" ir —8(x)
g(w) =——' ds

dw 27r&p (w —x)l
(6)

Solving this equation for v in terms of g(w), noting that
v= 1 when m =0, we obtain

Now, from (4), the relation between v and g(w) is
given by

du 1 gw dp

+ - —=g(w)
dw 2+w 2v dw

It should be observed that if (wn)& in (8) never exceeds
some upper bound u, then V is determined by (8)
only for values of u(u; i.e., for r)r; =1/I,„.
This occurs if the integral in (7) has a limit as w—+~
which is the case if vr —8(x) decreases faster than x~
= b as'b —+0.

Two examples of the use of our result will now be
presented.

Example I. Rutherford Scattering

Consider the Rutherford scattering formula,

a (8) =
4 sin' (8/2)

where A =e'/4E'. From (1) we obtain

x=A —' tan'(8/2), 8=2 tan —'t (Ax)&]. (13)

Now using (13) in (11)yields

2g(w) 1
p —exp

Lp QW W
(7) j. f j.

v= exp-
Qw

Since g(w) is given by (6), we see that (7) yields i in
terms of w. Then (4) yields the potential V(N) in the
following parametric form, with m as parameter:

~2 tan ~ [(Aui')~]

X,
"0

dw'. (14)
Lw' —A —' tan'(8/2) ]&

V=EL1—~]; u= (wv)'*.

Thus to determine V we obtain 0 as a function of x= b '
from (1), use this result in (6) to compute g(w), insert

g(w) into (7) to get e in terms of w, and finally compute
I and V from (8).

This calculation can be simplified by integrating by
parts in (6), which yieMs

Then we have

tan(8/2) = (Aw')& sing. (15)

2 tsn i t(Atti')~j

[w' —A
—' tan'(8/2)]&

To evaluate the 0 integral, we introduce the new
variable g by

g (w) =—m» ——, (w —x)&8'(x)dx
7l"~ p

dy ir+A
(16)

/ '
p w/)$

=2A&)
1+Aw sin P (1+A

+— dx. (9)
2s.J p (w —x)'. Using (16) in (14) yields, uPon integration,

1 1 p'(") dg

g(w) = +—
~'

2gw 2~~ p [w—x(8)]&
(10)

Thus (7) becomes

I

p(p'i

e= exp-
7l~p Qw ~p

Now changing the integration variable to 0, and noting
that 8(0)=0, we obtain

p= 1+2AW+2PAW(2+Aw)]1. (17)

This is, of course, the Coulomb potential from which

(12) was obtained.

Example II. Inverse Square Potential

Let us now consider the cross section

If we use (17) in (8), we can eliminate v and then
solve for e in terms of I; thus we obtain

V=—2EAlu= em= e/r.

Now to determine V we merely compute x(8) from (1),
then m(w) from (11), and finally obtain u and V from

(g).

eL1—(8/s.)]
o (8) =

s E sin8 (8/~)'L2 —(8/m) ]' (19)
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Inserting this into (1) yields After evaluating the 8 integral, we have

E ( op
—'

t
exp

—
&

e Ed@
i7=~ 1—

I 1+—
I (20)

' "PJ, ,+(~/~)
e & ~i I &j

Upon substituting (20) into (11),we obtain
=exp log (22)

1+(ew/E) 1+ (ew/E)

f 1,

e= exp
'Il ~ p 5)

Now from (8), w=u'o —', so (22) yields

~=1—(e/E)u' (23)

XJ
~7r [I—(1+em'/8)

Then, using (8) again, we have
d0 V=8(1—n) = eu'= e/r' (24)8R .

(~/e)L(1 0/~) 3' The inverse square potential (24) is just the one from
(21) which the cross section (19) was originally obtained.
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It is shown how the scattering potential can be calculated from suitably de6ned refiection coeKcients
in the case of the one- and three-dimensional reduced wave equations by means of a formal series expansion.
The more general problem of calculating scattering potentials from elements of the scattering operator
is also discussed and it is shown that to calculate the scattering potential it is often sufficient to prescribe
the representation in which it is to be diagonal.

1. INTRODUCTION AND SUMMARY

OST and Kohn' have developed a procedure for
finding spherically symmetric potentials from scat-

tering phases. This problem is simplified by the fact
that the solutions of the radial equation are not de-
generate.

It has been found possible to generalize their pro-
cedure to cases where the outgoing eigenfunctions are
degenerate. One is able to show that in many cases the
scattering potential can be obtained from certain ele-
ments of the scattering operator, provided one specifies
the representation in which V is to be diagonal,

In the present paper the method is applied to the
one- and three-dimensional scattering problems, where
the scattering potential V is assumed to be a function
(not necessarily symmetric) of the space variables. It
is shown that in the one-dimensional case, the potential
can be obtained from the reflection coefFicient at one
end. The potential is calculated explicitly to the 6rst
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two orders in the reflection coeKcient where it is
shown that the results are the same as those obtained
using the Gelfand-Levitan procedure. ' '

In the three-dimensional case it is shown that the
potential can be obtained from the amplitudes of the
spherical waves reflected back along the rays on which
the incident plane waves are sent, the totality of such
rays being those pointing out at right angles to a
hemisphere whose center is at the origin.

The general procedure for obtaining the scattering
potential from the scattering operator is also discussed.
It is shown that one must specify the representation in
which U is diagonal to get a unique answer.

V/e restrict our discussion to cases in which the
unperturbed and perturbed Hamiltonians have purely
continuous spectra which coincide. However, it is
possible to generalize the results to cases where the
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