
SCATTERl NG OF. ELECTRONS

finite, characteristic of a short range potential. The
dispersion contribution however comes from the inter-
action with the atomic electrons clove, since the atom
cannot be excited via the static nuclear potential. Thus
the dispersion contribution is characteristic of scattering
in a toztg ra-lge potential (as in the nuclear case), and
contributes very strongly to the small-angle scattering.

The present analyses in atomic scattering, however,

always neglect the fluctuation scattering portion of the
dispersion contribution; it would be of some interest to
search for visible effects of these terms.
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The calculation of the wave function of a particle subjected to the field of two isolated potential wells is
arranged in such a way as to bring into evidence the penetration factors for passage through regions of
negative kinetic energy between the wells. The Schrodinger equation is replaced by an equivalent integral
equation and the eigenfunction system of the latter is used for the expansion of the wave function. The
dependence of the kernel on energy and the transformation from the reference system of the integral equation
to that of the wave equation are considered. Extensions to three-dimensional problems and to many nuclear
particles are discussed and some characteristic differences from the one-dimensional case are pointed out.
The presence of more than one tunnelling factor in the general case and the participation of tongues or
tentacles in configuration space which correspond to the temporary formation of nuclear aggregates such
as deuterons or alpha particles are considered.

I. INTRODUCTION
' 'N calculations of stripping reactions taking place in
~ ~ collisions of heavy nuclear aggregates it is useful to
be able to calculate the process by means of adiabatic
wave functions such as occur in the work of Wigner
and Pelzer. ' In the molecular problem considered by
them these are the wave functions of the electron system
for fixed positions of the nuclei. Modifications of this
method, employing a semiclassical discussion in which
the motion of the heavy particles is treated classically
while the motion of the transferred particles is calcu-
lated quantum mechanically, are also possible. ' In both
procedures it is essential to be able to calculate the
wave function of a nucleon for fixed positions of the
nuclear aggregates to the field of which it is subjected.
For well separated nuclear aggregates, the fields of

*This research was supported by the U. S. Atomic Energy
Commission and by the Once of Ordnance Research, U. S. Army,' H. Pelzer and E. Wigner, Z. physik. Chem. 15, 445 (1932).' This extension is readily made. Some considerations regarding
the role of accelerations in causing gravitational effects and their
relationship to the terms occurring in Pelzer and Wigner's paper
will be discussed in another publication. The reference to the
work of signer and Pelzer and of the use of wave functions for
fixed nuclei is not meant in the sense of considering the expansion
of the wave function in terms of such eigenfunctions as being the
best from the viewpoint of convergence. It has nevertheless some
deGnite advantages inasmuch as it provides a clear and definite
starting point. In cases of slow convergence caused by resonance,
linear combinations capable of improving convergence can never-
theless be introduced. This matter will be discussed in connection
with an application as part of a paper which is being prepared in
collaboration with Dr. M. E. Ebel.

which do not overlap, it is especially desirable to have
convenient approximations for such wave functions. If
the problem is treated by usual perturbation theory,
the expansion involves the wave functions of the con-
tinuum of the eigenfunction system of the nucleon in
the field of one of the nuclei and the rather small prob-
ability of transfer which may result on account of the
presence of a region of negative kinetic energy which
must be traversed by the nucleon becomes apparent as
the result of an interference between the effects of dif-
ferent regions of the continuum. It is desirable to have
a treatment which is free of this complication.

A possible treatment of this type consists of expan-
sions of the V/igner' type in which boundary conditions
for internal wave functions are used. An infinite number
of such eigenfunction systems can be introduced by
changing the nuclear radius or the boundary condition.
Such a procedure has many advantages but its Qexi-
bility regarding the introduction of the nuclear radius
makes the barrier tunnel sects entering in first approxi-
mation Qexible also. A complete calculation of all effects
which is free of the initially assumed radius is possible
but lengthy.

In the present note a treatment is described in which
the tunnel e6ect factors are present throughout in a
simple manner in the case of one-dimensional potential

' E. P. Wigner, Phys. Rev. 70, 606 (1946); E. P. Wigner and L.
Eisenbud, Phys. Rev. 72, 29 (1947); R. G. Thomas, Tlze Theory
of Ãzzolear Ezzohalge Collisions, Los Alamos informal report (un-
published).
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fields and in which qualitatively the same situation
applies in the many-body problem. This treatment has
some features in common with the signer' and the
Kapur —Peierls approach. The similarity consists in
an eigenfunction system which is not that corresponding
to the Schrodinger energy equation. The procedure will
be first described for transfer between two one-dimen-
sional potential wells.

II. TWO ONE-DIMENSIONAL POTENTIAL WELLS

(3 1)

The density in the integral representation of I, for
finite I thus has a value only in the regions occupied
by Vl, V&. On multiplying Eq. (3) by Vl(p)+ Vs($), it
follows from (3.1) that

P(k) LV—4)+V (E)J E(k h' )P(e)dk'=0 (3 2)

The Particle coordinate is called $ and the energy This lnte ral e uation will be used ln la e f th
2 ~ ~

enters through the parameter s. A posltlve s corre- originalEq. (2). Themethoduseddoesnotleadexactly
sponds to a negative energy. In the absence of the to E (3 2) ln the fi~st st I t d th d'fi
potential wells, the wave equation is

with

The function 'U($) represents the effect of a general
field such as a Coulomb field which may be present in
addition to the potential wells. In an application P may
represent the distance of the particle from a fixed point
in which case the boundaries are at )=0 and $= m1; or
else it may stand for the distance along a line in space
corresponding to boundaries at $= & oo. In either case,
one can introduce two functions e and zv satisfying

Xv=0, Zw =0,

with e satisfying the boundary conditions on the right
boundary and I those on the left. In the well-known
manner, one forms

(1.2)
with

(1.3)

(1.4)

and employing the normalization

with A. nearly j., will be satisfied and a correction for
A,
—1 will be made later through a modification of the

energy parameter ~2. The reason for X/1 is that the
proximity of V2 modifies the energy of a stationary
state in V~.

If the two potential wells were at an infinite distance
from each other, the wave function in either could also
be treated by means of an integral eauation such as
Eq. (3.3). The energy parameter a' will be chosen to
correspond to the value of the energy which gives a
solution of the corresponding diGerential equation for
one of the potential wells, say V&. The potential well V2
will be supposed to be at an infinite distance in this
adjustment of a2. Two sets of eigenfunctions can be
introduced by means of

(4)

there results

where p is an arbitrary density function.
The two potential wells modify the wave equation so

that it becomes

(2—Vl —Vs) u= 0,

To these there correspond two density functions

Pln V1N1nq P2m V2N2mq

and the corresponding equations for these are

(4.1)

(4 2)

the potential well V~ being taken to be to the left of V2.
Conversion to an integral equation is accomplished by
the substitution which are similar to (3.2). The pl„has a value only in

(3) Vl, psm only in Vs. One of the Xl„ is 1. It follows from
the first Eq. (4.2) and its complex conjugate that the
normalization can be such that

Substitution of Eq. (3) in Eq. (2) gives, taking account

4 R. L. Kapnr and R. Peierls, Proc. Roy. Soc. (London) A166,
277 (1938).

f
J Ple Plmdt/Vl J»n Vl»md) ~nmy (43)
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provided all the )1 are distinct. The sign in —b„ is
taken such as to make Eq. (4.3) possible for an attrac-
tive potential well. Equations (4), (4.2) are such that
the diGerential equations satis6ed by 01„,01 are

(2 Xl Ul) Nl 0 (2 X2 V2) 02 0 (4 4)

The set of eigenfunctions corresponds therefore to
potential well depths adjusted to make ~2 correspond
to a possible energy, and in this respect the procedure
differs from that of Wigner' and of Wigner and
Eisenbud. ' The eigenfunctions N&, N1 satisfy the same
differential equation independently of e and m in the
space between the potential wells and each of them has a
barrier penetration type of decrease as one moves away
from the parent well. The expansions used in the present
note are not intended to furnish a representation in
terms of energy in the form of resonance terms. The
energy of the transformed particle enters through E,
and if one employs the bilinear expansion the energy
dependence can be seen in a manner similar to that of
dispersion theories of nuclear reactions.

In order to solve Eq. (3.3), the density function p
will be represented as a sum of two parts confined
respectively to regions occupied by V1 and V2. This
representation is consistent with Eq. (3.1). These
densities p1, p2 may be expanded respectively in terms
of the p1„and p2 so that

equivalent to pi ——[Vi/(Vi+V&)]p, p2
——[V2/(Vi+V2) jp,

which are consistent with the definitions of p1, p2 and
with Eq. (3.1). The applicability of the equations to
overlapping potentials is not especially useful in the
one-dimensional problem under discussion. It is con-
venient to use it in some many-dimensional problems.

The applicability of the equations to overlapping
potentials can be seen also by noting that in (5.1) the
limits of integration are automatically determined by
the presence of factors V1, V2 in p1, p2. The specification
of variables as $i, $2 is therefore only convenient but
not necessary and Eqs. (5.4) apply also if the ranges of
Pi and P2 overlap. Introducing the expansions of Eq.
(5), there result two sets of linear equations on the bi„
and b2 . From the first of the two Eqs. (5.1), a par-
ticular 61„can be isolated on the left by multiplication
with pi„* and integration over $i, making use of Eq.
(4.3). On the right side, there occur then quantities as
follows:

.*(5)v ($)&(k,k)v (5) .(k)«dp

'

mi„*(P)Vi(&)mi, (&)d&/Xi, Vi——,/P i„(5.2)

pl Pn ~1nplmy p2 Qtn f 2mp2m. (5)

In many-dimensional generalizations the expansions
will at least partly involve integrals rather than sums,
and even in the one-dimensional case the expansion may
involve the Gibbs' phenomenon. These circumstances
do not interfere, however, with the possibility of using
them, Writing the equation separately for the regions
occupied by Vi and V2, one has from Eq. (3.3)

itin ($) Vi(()»m($)~$/~2m Vinm/~2m) (5.3)

use having been made of Eq. (4.1).In Eq. (5.2) the Vi„,
may be replaced by —8„„in accordance with Eq. (4.3).
Performing the substitutions and going through similar
manipulations with the second equation in (5.1), one
611ds

~in/li ~1m/~1m Qm V inmfi2m/~2m'

f 2m/~= ~2m/li2m gn V2md in/~ln.
(5 4)

p2($2)/[~V2(b)$ It ($2&$1 )pl((1 )dpi

The Vi„m are defined as in Eq. (5.3) and the V2m„by
an equation obtained by interchanging 1 with 2 and m
with n in (5.3). One has

(Vi /X2 )*

+J +($2)$2 )p2(52 )d$2 ~

In most of the discussion the potential wells are sup-
posed to be isolated in such a way that there is no
overlap of the regions occupied by V1 and V2. The
equations hold, however, even if there is an overlap,
the total potential being then V= Vi+V2. The sepa-
ration of p into pi+ p2 is made by defining

»„*(gv, (g)z(p, ~') v, (p')~, „(g')d~dp'
aJ

».*(~)v(P) N,.(~)dg/~, .= V.../x, „. (5.5)

P1 V lgy P2 V20.

Equations (5.1), (5.2) combined with (3.3) are then

Here use is made of the Hermitean character of E and
of the first of the two lines in Eq. (4). According to
Eq. (5.5), the matrix of coefficients in (5.4) is Her-
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leading to

0; = (—Vi)'*2i;, (2=1, 2)

G(k, k') = ( V)'&—(E,E') ( V)',—
(5.51)

(5.52)

o;„($)+X;) G($,$')0;„($,$')d$'=0, (5.53)

mitean. The quantity V& „vanishes unless the function
N~„has an appreciable value in the potential well V2.
For sufficiently large separations of the two potential
wells, the system of Eqs. (5.4) can be satisfied by
X=X&„ for a particular e and only b&„/0; similarly
P =)2~ for a particular m, and for this X only b2 &0.
These solutions correspond to uncoupled p~, p2 and
to eigenfunctions Ni„, N2 satisfying Eq. (4). Only the
solution with Xi„——1 satisfies the original Eq. (3.2) for
an inlnite interwell distance, all other solutions cor-
responding to modified potentials as is seen from (4.4).
It is supposed that the potential wells are not identical
and that there are no accidental degeneracies in the
systems X&„, A, 2 .

In the case of attractive potential wells the presen-
tation can be conveniently put in a symmetric form
through the introduction of quantities

depths of V~ and V2 having been changed in the same
ratio. It will be seen presently that the change of depth
can be compensated by a change in K'. This is natural
because the K' used so far corresponds to uncoupled
potential wells and the coupling produces a change in
the energy of a stationary state. The potential wells
adjust themselves in the solution obtained so far in
such a way as to accommodate the originally chosen K'.

It will be necessary therefore to change K' in such a way
as to make ) return to its original value, X= 1.A change
in K' gives a change in E which makes it possible to
satisfy

p(k) —3V1(t)+V2(t)1 (&+a&) (Gt') p(E')dk'=0 (& 1)

In order to see how this happens it is desirable to know
how E depends on K'. This question is considered in the
next section. It should be noted however that for an
approximate correction it suSces to apply the ordinary
first-order perturbation formula.

III. CHANGE IN ENERGY; ENERGY
REFERENCE SYSTEM

Oin &ivd$=anvv (5.54)
The useful property of the kernel is Eq. (1.5), which

can be written as

and to Eq. (5.4) as before.
The proximity of the potential wells couples the b&„

to the fi2 as in Eq. (5.4). For large interwell distances
the b2 are of order t/'2 „which contain the wave
function barrier penetration factor once. The b~, for
u&e occur as a result of coupling of the b~„ to the b2

and expressions for them contain the barrier penetration
factor twice. For small barrier penetration factors the
largest effects are therefore on the b2 From (3..1) and
(3.3), it follows that

Employing the definition of 2 as in Eq. (1.1), one
obtains

—E ($,$')+ ZaE($, $')/a ( ') =0. (8.1)

Here and below, E without explicit specification of
value of K' is meant to be evaluated for the value K'

rather than «2+8«2. One has therefore, making use of
(8.1) and of partial integration,

(6) =a&(t' 5")/a(«') (8 2)

a modification of (3) required by the introduction of X.
Substitution of

P =Pi+P21

making use of Eq. (5) gives

(6 1)

p/X= p„ iii„/Xi +p ii2„/4 (6.2)

for the space eigenfunction. Equations (5.4) can be
satis6ed only for certain X. Among these, only the par-
ticular A, which becomes 1 for large interwell distances
is of interest. Since this P is also not exactly 1, it is Eq.
(3.3) rather than (3.2) that is satisfied. From (6), (1.5),
and (3.1) it follows that

(2—XVi—X V2) 2i= 0. (7)

The problem solved so far is thus not quite the intended
one, the potential well depths being slightly wrong, the

In matrix notation, the above relation may be written as

a&(k', k")/a(") = (&') (Y,k"), (9)

the right side of the equation being meant to be the

(f,$") matrix element of E2. From (9) it follows, on
successive differentiation, that

a Q(fn(«) /a( 2«)
n „[(Qn+1)($1 $«) (9 1)

Expansion in Taylor series gives, on applying (9.1),

+((I ]«. «2+a«2) Q(a«2) (+ +1)n(Pl nP« ~ «2) (9 2)
0

so that the kernel for «2+a«2 can be expressed in terms
of powers of E, the multiplications being meant in a
matrix sense. The expansion can be verified by noting
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that

«""(~,Y) =~ ~(~,Y')(~")(8' ~')d~"

= (&")(k, k') (10)

as a consequence of (8). Applying 2 to the right side
of Eq. (9.2) and remembering (8) and (10), it is seen
that

(Z —S.2)P(b")"E"+'(PP' ")=&(P—P'),
0

which means that the right side of Eq. (9.2) is E for
the changed ~'.

Symbolically the expansion of E($',P"; z'+82) can
be obtained by writing

Comparing this expression with Eq. (11.1), one obtains

(&"")(&',~";")=Z 0 (~')C.'(~")/(~.'-")"" (».4)

a relation which is readily verined by means of Eq.
(11.3) if one makes use of the orthogonality of the f„.
In this derivation of the expansion, there is a di6iculty
regarding convergence of series whenever
(b(~'). Since the convergence of Eq. (11.1) rather than
of parts of the series is of interest, it does not follow
that (11.1) will be inapplicable under the same condi-
tions. On the other hand, the convergence of the series
for E has not been studied by the writer and may pos-
sibly be a diKculty in some applications. By means of
the representation (11.3), one can formally relate the
X&„, Ni„system to that of the ~„', P„.For simplicity the
subscript 1e will be written as e in this connection.
Expanding

g—1++(b~2)ng —n, —Q (8K2)n(lion+1) ($& ]&&. ~2) (11 1)
1 0

N. (5)=E.o.A"(5),

and substituting in Eq. (4), one finds

(1/X„)c„„—P,v„.c„.=0,
where

(11.5)

(11.6)

This result enables one to calculate the change b~'

needed to compensate for ) —1 to any order. The first
order calculation is especially simple. In this case, (3.3)
and (7.1) give, on subtraction,

and
c „=(a„' «')~a„„, — (11.7)

w = (n
' ~') '(~ '—~') '* Q„*V/„d) (11.8).

(~-1) &(u'). (~')d~'

[~E(k,k')/~("))o(k')dt' &(")

Upon multiplying by p(P)dP, integrating, and making
use of (8.2), this condition becomes

0-1) .(~)lf (u'). (&')«de

and making use of (3.3) and (6) as well as of X=1, one
has

[5(~')) e'd$= (X—1) I'Vd(

which is the Rayleigh-Schrodinger Grst-order formula.
The expansion of E in powers of b~' can be related to
the representation

&(r,~';")=Z.C.(~)e,*(~')/(.'-"), (».3)

where the f„, ~„' are the eigenfunction and eigenvalue
system of . According to this expansion and disre-
garding questions of convergence,

It (p pl ~ &2+/&2) p p 1t (g)f 8(g&) (/&2)n/(& 2 &2)n+1
+=0

The matrix jjv„„jj is Hermitean, and according to Eq.
(11.6) the c„„can be made to form a unitary matrix.
According to (11.8), a diagonal element of Q„,Vf)„
changes sign on transformation to v„„ if ~„'(x' and
retains its sign if ~„'&~', in agreement with the radical
diGerence in the eigenvalue spectra of the f~„' and that
of the 1/X . It should be noted that if jjc„„jj is made
unitary, the normalization of Eq. (4.3) is not repro-
duced for orthonormal P„. The fact that the transition
from the ~„' to the 1/X can be represented by a unitary
matrix puts the change to the P on the same footing
as that of other changes of reference systems in quantum
mechanics.

Correctiol for egect of P,—1.—On replacing ~' by
~'+8m' in 2, an equation like (3.3) is obtained but with
E(P,P'; z') replaced by E(P,('; z'+8~'). The h~' can
now be adjusted so as to make A=i. The desired
equation is then satis6ed exactly for an adjusted energy
parameter which corresponds to the energy modi6ed
by coupling of the potential wells. The correction will
be carried out here only to the first order in X—1. If
one denotes by e the particular e for which ) —1, it
follows from Eq. (5.4) that

bg =$2„/(1—X2 ))V2 „bi„, (12)

and substituting this value into the first line of Eq.
(5.4), one has

X—1—P„jVin„j'/[X2„(1—),2„)5, (12.1)

a second-order eGect in the matrix elements. The change
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Q, = —(1«—1), (12.2)

in agreement with (22.1). When this change is made
in Eq. (7), the value of «2 changes by

in X which must be produced to change its value back to
I ls

It is assumed here that the boundary condition at
g=$l gives a 6xed value of y. The correctness of the
statement just made is verified by noting that it is
obvious for g=$l and that differentiation of (14.3)
with respect to P gives a correct equation. With the
known b(lnl) the other necessary quantities can be
obtained as follows. One has

lb«'= —(Q.) (Vi+ V2)e2dg,

with the normalization

t u2d$=1.

(13)

(13.1)

f
b t62d$=2 u2b(lnu)dg,

and hence, from Eq. (14.2),

KV= —A' I u2b(luau)dg.
In applications one needs also the change in the wave
function e associated with b~2 especially because Bu/Bp
and B2e/BP are responsible for transitions between
potential energy curves calculated for fixed nuclei. The
calculation of the required change 8N can be made by
introducing the logarithmic derivative

y= (Be/eB)), (14)

which experiences a 6rst-order change

by = (By/B1i) Q,+[By/B («2) 7b«2

as a result of the combined action of changes in X and
in ~'. One obtains in the well-known manner

B[u'By/W, 7/Bg= (V +V )u',

B[u'By/B(«2)7/B&= e',
and hence

Upon employing these relations, it follows that

t e2d( e'(b 1nu)dg+eb 1n5, (15)J

the result being written in a form homogeneous in I so
that in the result the normalization of Eq. (13.1) may
be dropped. The change just calculated has been
obtained on the supposition that 8y is caused by com-
bined action of Q, and b(«2) as in (14.1) and continuing
u from the left boundary to the right. If b(ll2) is taken
from Eq. (13), the boundary condition at the right
boundary is satisfied automatically to within the first
order in Q.. The correction to u caused by Q, is of
second order in the V~ „, V~ and may be neglected
in the order of accuracy used for Eq. (12).

2 ' [(Ul+V2)b1%+b(«2)7u2dp (14.1) IV. EXTENSIONS

If the left boundary is $= —~, an auxiliary function
8 can be introduced, differing from I only in its nor-
malization so that

u=EN, , (14.2)

and defined so that

One has then

lnd =«$+ (M/4B] g)d], —

(14.3)

b (ink) =g~+ ~ (by bg)d]—

In (14.3), by is available from (14.1). If the left
boundary is not g= —~, a function 0 with arbitrary
but convenient normalization at the left boundary can
be introduced and an equation like (14.2) can be derived.
The second term is the same as in (14.3) provided the
lower limit —~ is replaced by the value of g at the left
boundary. The first term pb~ becomes replaced by
($—g&)b«, where f& is the value of $ at the left boundary.

The procedure used can be extended to somewhat
more general situations. The extension to three-dimen-
sional potential wells is immediate regarding the dis-
cussion down to Eq. (5.4). The potential wells need not
be spherically symmetric. The auxiliary field '0 may
be supposed to be present. The construction of E has
to be modi6ed, but in many cases E can be constructed
and in case of 'U=o the construction is standard. The
correction to ~' arising from X—1 also can be made in
the same way as in the one-dimensional case. The cor-
rection to I arising from b~' can probably not be made
by a formula as compact as Eq. (15) but the Rayleigh-
Schrodinger perturbation method is available. At this
point the energy continuum enters, partly defeating the
aim of avoiding anything but pure tunnelling terms.
On the other hand, the correction to u for b(«2) need
not be made in the first-order calculation for u and
b(«2) contains the square of the barrier penetration
factor.

If the potential well V& is spherically symmetric, the
eigenfunctions ul„can be exPressed as Yz~z(r), where
the I'g are spherical harmonics of polar angles. The
eigenfunctions are thus somewhat similar to the
Schrodinger eigenfunction for a fixed potential. The
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Since this strip represents the binding potential of 1 to
0 it corresponds to a potential V~ (x~) and is independent
of x2. The associated wave equation is

P2/gx 2+g2/gx 2 x2 V (x )]I 0

Representing u as

m„(xg) exp(i(ux2)do) (16)

X)
one has

Ld'/dx&' —&'—~'—V& (xg) fg„(xg) =0. (16.1)

Fro. 1.Illustration of a simple many-body process. Two particles
1 and 2 move along a straight line on which they have coordinates
x1, x&. Particle 1 is acted on by a potential in strip A when x1—0,
in strip 8 when x1—I and also in strip C when x1—x2. Particle 2
is free outside of strips C and D. Nuclear tentacle formation takes
place in C.

g~(r) contain effects of the centrifugal barriers which
depend on L. In the three-dimensional case, there are
thus diferent tunnelling factors for diferent eigen-
functions.

The extension of the method to many-body problems
is possible but lacks uniqueness regarding the choice of
the eigenfunction systems. It nevertheless has possi-
bilities which may merit a brief discussion. A system
consisting of two particles 1, 2 moving along the same
straight line and having coordinates x~, x2, respectively,
will be considered as an illustration. In Fig. 1 the two
vertical strips A, 8 represent locations of particle 1
with coordinate x& in the vicinity of x&=0 for A and of
x~=X for B. Particle 2 is supposed to interact with 1
so that there is a region C in the vicinity of x&= x2 within
which there is a potential. Particle 2 is also supposed
to be exposed to an attractive potential in strip D in the
vicinity of x2 ——X. For large X the potential energy
region around 0 consisting of strips A, C, D and their
common portions can produce binding of 1 and 2 -in

the vicinity of 0 giving a kind of a compound nucleus.
As X decreases the wave function can leak into 8 so
that particle 1 becomes transferred to the vicinity of X.
The leakage can take place through channel D, particle
2 remaining permanently bound to 0. If there is enough
energy and if the binding of 1 to 2 is large enough, these
particles can escape together via C and afterwards
attach themselves to X. Such attachment corresponds
to there being an appreciable value of the wave function
I in the vicinity of the intersection of channels 8 and C.
Finally some leakage can occur without special use of
D and C, corresponding to escapes of 1 and 2 followed
by attachment of the particles to 0 and X or else to
attachment of 1 to X and the escape of 2.

The calculation of these processes involves the
knowledge of the eigenfunction system. This system is
more complicated than in the one dimensional case as
map be seen even by considering an isolated strip A.

The eigenfunction system thus contains one-dimen-
sional functions N„(x&) with effectively different energy
parameters x'+re'. Large co give large kinetic energies
to 2 and decrease the energy available to 1. The
decrease of I with x& becomes accordingly steeper and
there is less large distance leakage. One expects therefore
the general situation to correspond to diGerent tun-
nelling factors for 1 depending on the kinetic energy
acquired by 2.

On the other hand, if there is no interaction between
1 and 2, transfer of 1 must occur as in the one-particle
problem for 1 alone. In this case there is no channel C
and the potential may be represented as

V= V~+ VD+Va

The part V&+ V& depends on x& only, V& on x2 only,
the wave equation is separable and I consists therefore
of two factors depending on x& and x2, respectively,
verifying the expectation regarding reduction to a one-
particle problem. From the point of view of the integral
equation, this means that a density function pD(x2)
remains unaffected by the coupling of p~(x~) to p~(x~).
The coupling of A to 8 does not involve the modi-
6cations in the tunnel factors which have been con-
sidered in connection with the eigenfunction system of
channel A. The introduction of the interaction between
particles 1 and 2 brings in the whole set of functions u„
of Eqs. (16), (16.1) and in the general case the tran-
scription of Eq. (5.4) contains barrier penetration
factors with x'+aP in place of z'. There are several
possible choices of the eigenfunction system. One pos-
sibility is to introduce the systems belonging to V&,
V&, V&, VD separately. The coupled equations con-
necting A, C, D then include among their solutions the
stable state in which particles 1 and 2 are bound to 0.
Another possible choice is to treat V~+ Vc+ VD in one
step and to have the stable state included in the eigen-
function system. Kith this choice it is convenient to
have f~.

" correspond to the energy of the stable state.
The tunnelling factors then include among them the
penetrabilities from parts of C to 8 and can be appre-
ciably greater than those from A to B. This circum-
stance will be especially pronounced if 1 and 2 attract
each other and if the binding of the compound 1+2 to
0 is not excessive. The wave function I decreases then
only mildly as one proceeds in C away from 0, and the
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penetration to channel 8 is seriously aRected. This
situation is encountered for example if the absolute
value of the binding energy of a deuteron to the re-
mainder of the nucleus is not too great. The deuteron
has then an appreciable probability of being found
away from the nucleus and the proton or neutron can
then find itself sufFiciently close to a bombarding nuclear
projectile to leave its original nucleonic partners and
to join those in the projectile. Unless 8 is very close to
A the most probable leakage is to a part of 8 between
D and the intersection with C. For the larger distances
the shortest path is closer to D indicating a qualitative
preference for a transfer of particle 1 alone. An attrac-
tive force insufhcient to produce binding such as between
two protons also gives a concentration in a channel like
C but with a more rapid decay.

These considerations indicate that "resonating group
structure" in nuclei' is likely to have special importance
in relation to questions of nuclear radii. The nucleus
when considered in many-dimensional space is only
partly similar to a compactly 6lled volume associated
with a spherical or spheroidal three-dimensional nuclear
model. This picture appears to be more properly sup-
plemented by the addition of a set of tentacles corre-
sponding to regions of configuration space in which
there are deuterons, tritons, or alpha particles in states
corresponding to negative kinetic energies of relative
motion of these particles with respect to the residual
nucleus. One may expect therefore that in some nuclear
reactions the apparent nuclear radius calculated from
reaction yield data on the assumption of spherical
nuclear shape will be somewhat larger than the radius
of the main region of configuration space occupied by
the nucleons. One would expect these phenomena to
depend on the particular reaction but in most cases a
change in the eRective radius is to be expected. The
eRect of con6guration space tentacles exists not only
for reactions depending on particle transfer but also for
reactions depending on the approach of a projectile to
a distance within the range of force of the nucleons in
the target. Thus if in Fig. 1 the exponentially decaying
wave-function branch in C comes close to the intersec-

tion with 8, then the direct action of X on the deuteron
becomes possible any place within the width of 8 which
corresponds to the range of force.

In transfer reactions it is not too likely that a
tentacle caused by a deuteron, triton, or alpha-particle
formation will be more eRective in causing transfer than
the direct transfer of a single particle. The reason is
the increase in the mass of the particle which decreases
its penetration along a channel such as C. It is therefore
more probable in a transfer reaction for a nucleon to
escape the nuclear surface directly than to be carried
part of the way inside a deuteron or a heavier particle
although the latter process exists in addition. Thus the
binding of a proton in N" is 8.2 mMU, that of a neutron
11.4 mMU, while H', He', and He4 are bound in it by
11.0, 22.2, and 12.5 mMU, respectively. Since the
barrier penetration exponents contain products of
binding energies and masses, the latter three bindings
are equivalent on the single-nucleon basis to 22.0, 66.6,
and 49.0 mMU, respectively. In this case it is probable
therefore that there will be more direct neutron transfers
to another nucleus than through the negative-energy
regions of heavier combinations just mentioned. On the
other hand, it is conceivable that some of these particles
give wave functions of an especially favorable sym-
metry for neutron transfer. It is therefore premature
to exclude the possibility of an eRectively larger nuclear
radius in some cases in a transfer reaction taking place
by tunnelling, and one expects the tunnelling of a single
particle to be partly replaced by contact with the
tentacles at shorter distances.

The two three-dimensional potential wells, the
character of the eigenfunction system of a single strip,
such as A, and the formation of tentacles have the
common feature of spoiling the purity of the approxi-
mately exponentially varying barrier penetration
factors expected for single-nucleon transfer on the
simplest view. For sufi. ciently large distances between
the projectile and target, however, the most slowly
varying factor becomes the most important one and
is then likely to be determined by single-nucleon
transfer.

s J. A. Wheeler, Phys. Rev. 52, 1083, 1107 (1937). 6 Breit, Hull, snd Gluckstern, Phys. Rev. 87, 74 (1952).


