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Scattering of Electrons from Nuclear Charge Fluctuations~
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An attempt is made to discuss the influence of non-potential-scattering effects in the elastic scattering of
electrons from nuclei. It is shown that in the second order of perturbation theory, if we assume the major
contributions to come from low-lying nuclear states, the scattering is completely determined by specifying
the average charge density of the ground state, and the density of the Ructuations about this charge distribu-
tion. Numerical computations are presented for one simplified model of these distributions.

I. INTRODUCTION

HE elastic scattering of electrons from nuclei is
generally treated' as the scattering from a static

potential, while it actually involves the scattering from
a many-body system. Although the experiments per-
formed to date are consistent with analyses in terms of
static potential, ' there are in principle corrections to this
analysis, which can not be ascribed to a static potential.
It is of some interest to estimate these corrections,
particularly since electron scattering from light nuclei
represents a suKciently simplified limit of the general
many-body problem to admit a comparison of the two
points of view. This limit, which is called the static, or
adiabatic, limit, pertains to the scattering of a light, fast
particle from a system of heavy, slowly moving bodies.
There is little energy transfer from the particle to the
system, and so the scattering is mainly elastic. Ke can
take advantage of this simplicity by expanding the
scattering amplitude in powers of the velocity ratio, and,
at the same time, in powers of the interaction potential;
that is, we will compute the plural scattering of a
particle, in the static limit. It will be shown that this
limit is then suKciently tractable to allow detailed
calculation of the deviations from potential scattering.

Speci6cally, we will calculate terms of 6rst and second
order in the potential, neglecting terms of the order of
the velocity ratio. The static approximation, as we shall
see, involves the neglect of terms proportional both to
the ssrspertlrbed velocity of the proton, and to its recoil
velocity during the collision, which restricts the electron
energy to a range from, say, 1 Mev to 300 Mev. At
higher energies than this, there will be considerable
excitation of the nucleus, and the static approximation
will break down. The accuracy of the expansion in

powers of the potential is discussed elsewhere, ' and
limits the application of these calculations to light or
medium weight nuclei, say Z &40.

The only previous calculation of such eGects for the
nuclear scattering of electrons was carried out under
different conditions of validity. ' For atomic scattering
of electrons, these approximations have long been in
use. ' A discussion of both of these predecessors of this
work wiB be given in Sec. VI.

The principal result of the present treatment is a
proof that, within the above restrictions, the deviations
from potential scattering can be related to a single
further property of the ground state; namely, the pair
correlation function. Thus, so long as only low-lying
states of the nucleus are excited, and we can neglect
third- and higher order terms, the scattering can be
represented as potential scattering from the charge
distribution, and Quctuation scattering from the pair
correlations. By making rather crude assumptions re-
garding these two properties of the ground state, we can
calculate the scattering in complete detail. A further
result, already well known, ' is that the total inelastic
cross section also depends on these same two functions,
suggesting that future experiments should attempt to
measure both the elastic and total inelastic cross sections,
in order to determine simultaneously both of these
features of nuclear ground states.

II. DERIVATION OF THE SCATTERING AMPLITUDE

Two alternative, equivalent derivations of the rele-
vant formulas are available. The erst starts from the
"stationary states" formulation of scattering theory,
and the second from the "time-dependent" formulation.
We shall present the first here, as somewhat more
familiar.

%e want to consider the scattering of a Dirac particle
from a system of many bodies, with which it interacts
via a central, spin independent potential (the Coulomb
potential). The time-independent equations of motion
for the wave function describing the entire system are
thus
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If we expand the wave function 4 in terms of the (com-
plete) set of nuclear states y„($~ ~ $i»), with energies Z„,

+(r,b (~")=E-4-(r)o.(k "5 ),

we 6nd the following equations for the various energy
electrons present:

(e KD(r))P„(r)=g U„(r)f (r)

In the above equations X~ is the Dirac Hamiltonian,
Ko is the entire nuclear Hamiltonian with neutron
coordinates suppressed, V(r) is the Coulomb potential.
Also, E„+e„=Eand U„„(r)= (op„lg; V(r $;)—I q„).

We can rewrite (2) as integral equations by intro-
ducing the Green's functions satisfying

(p —Xz)(»)}G(p„,r, r') =b(r —r')

and appropriate boundary conditions. Using the bound-
ary condition that there be an incident wave p(r) only
for the ground state of the nucleus (e=0), and outgoing
scattered waves in every state, we find

4-( ) =~-.o4( )+2 'G( -, ')U-( ')4'-( ') (4)

The scattering amplitudes, correct to second order 111 V
can be obtained by iterating (4) in the familiar way.
Using

~ikror

G(o„,r, r') ~ ——(Kg)(kr)+o„} e '"&',
4x- r

we find for the elastic scattering amplitude

1 r
fp= (&n(kr)—+—«) ~' &re '"&'"Upp(r)g(r)

4n-

+P drdr'e '"I "Up„(r—)
m g J

XG( -r,r')U- (")4(r')+. " (6)

To simplify the notation, let us write

and then call

(6) becomes

fp= —(&r (kr)+«) (k» I V
I k~) (kr

Igloo'"

I
k.)

4x
o

+I —
I

d&'(krl Vlk')(k'I Vlk~)

(ky I
po~"' l

k') (k'
I p o"

I
k ~)xg — + . . )I, (8)

p +ib —3'.g) (k')

We have set p(r) =e'""N.

III. THE STATIC APPROXIMATION

2- uo-"'(r)~-o'"(r') =2-(&pl 2'~(» —t~)14-)

Had we assumed the nucleus to remain in its ground
state during the scattering, only the no= 0 term would be
present in (8); this single term is the only second-order
term included in a calculation with a static potential.
The other terms, in which the nucleus is (virtually)
excited during scattering, are our primary concern.
Their contribution to the scattering has been called the
dispersion contribution, ' in analogy with calculations of
the light scattering. Since the sum includes all excited
states of the nucleus, the scattering depends on more
detailed features of the nucleus. Rather than relate the
scattering to details of the excited. -state wave functions,
we can, by very general relationships of quantum
theory, carry out the sums and relate the scattering to
matrix elements involving only the ground-state wave
functions, and details of the nuclear Hamiltonian. It is
the purpose of this section to show that, in the static
approximation, these sums can be easily carried out, and
lead to particularly simple results.

This simplification results whenever the major contri-
butions to the sum in (8) come for energies o = op, i.e.,
whenever the excitation of highly excited states is
negligible. In this case we can expand G(o ) about
G(pp), and carry out the sums over m term-wise. The
expansion is in powers of the ratio of the virtual
excitation energy to the initial electron energy, and will
converge rapidly if the electron is not too energetic. It
breaks down at high energies due to the excitation of
continuum states, such as (e,ep) reactions, which carry
off a large fraction of the electron energy. When the
electron wavelength becomes much shorter than the
nuclear radius, these reactions will predominate over
elastic scattering. At 300 Mev, an electron can give up
about 40% of its energy in a collision with a free proton,
and the static approximation will no longer be valid.

If we replace p by pp in (8), the sum can be carried
out as foBows:

These are the (transition) densities of single particles,
and of pairs of particles. Zn terms of these quantities,
and in the momentum representation of the integrals,
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Thus, in the static limit the scattering depends on the
nuclear state only through these two features of the
ground-state wave function; i.e., its single-particle
distribution function (charge distribution) and its pair
distribution function.

The succeeding terms in the expansion about this
static limit will involve the same sum with higher
powers of the energy transfer ~0—e . For example, the
next term will be, after taking its momentum matrix
elements,

(kjl po-"'(r)
I
k')(eo —e-) (k'I p-o'"(r')

I k')

=Z~(AIR'exp(zKQ'5*') l4' )(~ &o)

X(P Ig; exp(+iKtg;) Ipo), (10)

where Kt ——k;—k' and Kz=k' —kr are the momentum
transfers in the two collisions. This sum can be per-
formed, using

If we treat the protons nonrelativistically, and neglect
exchange forces, it follows that the sum (10) is

p (yolexp(iEt. g,+iEQ p,)
43f '~~

XL2p; K,—2p,"Ks+Z,'—Zs'Jld Q)

+ P(cf&olexp(iK Q
4M ~

X12p; (Kt—Ks)+2&z' —&'j
I Po), (11)

where K Kt+Kz is the total momentum transfer, M
the proton mass, and y; the momentum operator for the
ith proton.

Examination of (11) shows that the terms, when

divided by e(}, are all proportional to a proton velocity
divided by c, with terms involving the unperturbed
velocity p/M and the recoil velocity E/M both ap-
pearing. Actually, the unperturbed terms would drop
out to this order, due to their approximately isotropic
orientation with respect to the electron direction; that
is, matrix elements of y; should be zero, or very small for
most nuclei. Thus, in neglecting (11), we are dropping
terms of order E/Mc, and of order (p/Mc)'.

IV. INTRODUCTION OF THE CORRELATION
FUNCTION

It is convenient for several reasons to rewrite Eq. (9)
by adding and subtracting the m=0 term to the expres-
sion. This enables us to separately discuss the potential
scattering terms, and also clarifies the physical interpre-
tation of the additional "dispersion contribution. '

Writing Pooi" (r,r') as

Poo'"(r, r') =P o"'(r)P '"(r')

-5 '"()Poo'"(')-P "'( ')3 (12)

corresponds to the expansion of the pair distribution
function in terms of its "cluster functions, "a procedure
commonly employed in classical statistical mechanics.
The first term in (12) represents the random (asym-
ptotic) portion of the pair distribution function, and the
second term the Quctuations, due to correlations, about
this random value. Presumably for r)&r', the erst term
will predominate'; that is, the second term has a shorter
"range" than the 6rst.

As a final further simplihcation, again made in analogy
with statistical mechanics, we will assume that the
fluctuation density has the form

Poo (r)Pool' (r') Poo
' (r r')

We will refer to g(r) as the correlation function. Notice
that (13) implies that j'drg(r) = 1. It should be pointed
out that (13) is appropriate for distributions of classical
bodies (i.e., obeying classical statistics) in an homo-
geneous, isotropic medium, and may be far from the
truth for an actual nucleus. Our point of view is frankly
phenomenological at this point, since we have little
knowledge on which to base more accurate assumptions.

Combining these assumptions and de6nitions, Eq. (8)
becomes, in the static approximation

fo=——(~a(kf)+eo} (kyl Ulk') (kf I poo
' Ikz)

4m

(k, l
Ulk')(k'I Ulk, )

+I —
I

dk'
E2&) & e,+i&—X~(k')

1
X (4IPQQ'" Ik') (k'IPQQ'" Ik )+ I

—
I (blPQQ'" Ik )

&2m

(kg I UI k') (O'I U
I k,)

X 'dk'
eo+zS —Xn(k )

,(4I Ulk') (k'I Ulk')
+I —

I
dk' g(k') zz, , (14)

l, 2~j ~ e,+Q—X (k')
where

(P) Jr&zfrs&sK& rl+iKQ rzf t'

X(Poo'"(rt')PQQ (rz) PQQ 'l(rt, rs) }

= —-', (kf IPQQ&'&
I k;) t dre'K&'g(r)

+)fzj7rSZKQ rg(r)

These statements are true only if we neglect terms of order
1/E. Notice for example, that a properly defined density of
Quctuations would give a total fluctuation of zero, when averaged
over the entire nucleus, while actually (1/N') JJ'dr~dr2(p'(r~) p'(r2)
—p'(r|rz)) =1/K. Thus our correlation function and fiuctuation
density are defined slightly differently than is customary in
statistical mechanics, diifering by terms of order 1/X. It is
deemed appropriate to define the functions as in (12), however,
since they appear that way in the total inelastic cross section.
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These terms are readily interpreted physically; they all
describe single or double scattering events, depending on
whether one or two proton coordinates appeared. Thus
the 6rst and third terms are the 6rst- and second-order
contributions to single scattering. The second and
fourth terms are the double scattering, which we have,
in (12), divided into double scattering from the average
density, and from the fluctuations in density, re-
spectively.

V. CROSS-SECTION FORMULAS

P00"'(r) =P0e ",
g(r) =goe

(20)

The integration of R~ for this model has been carried out
elsewhere'; the evaluation of.R2 and R3 is readily
carried out by the same methods;

We propose to compute these integrals with the
choice of exponential models for both the charge density
p00"'(r) and the correlation function g(r):

do (8) =do 1(8)L1+Rt+R2+Rs), (15)

The 6nal formulas for the diGerential cross section for
the scattering of unpolarized electrons can now be
deduced from (14) in the usual manner. We will simply
collect the results, using a terminology very similar to
that used in the preceding paper' for ease of comparison.

Writing the cross section in the form,

R2 ——sre' sin(8/2)/t 1+sin(8/2) $,

(K2+a2) 2

2k tap——arctan] —
f

t.
K &K) l

2e'K' 4k'K'+8k'a'+a' ( a )R3= —arctan
)
—

~I &2k) (21)

with

we 6nd, for the three second-order correction terms, '

(P2+2k' P)F(K1)F(K2)
(17a) Rs= —sre' sin(8/2)/t 1+sin(8/2) J

+-' 2re2K(r2)2A„+O((kr)'), (22)
e2kE2 (F2+2k' P)dl', (17b)

2P2 g (k&2 k2 28) (K 2+)I 2) (K 2+)t2)
R2 ——

(r'&A. = ~ «'g(r)«
~o

r'g (r)dr.(F2+2k' P)

(k" k' i8—) (K—12+X') (K22+X2)'
e2kE2

R2 ——— dk'
&2+2

Under this assumption we find
X-2, $G(K1)+G(K2)J. (17c)

do (8)~do1(8)$1+Rt+sre'K'(r')As/6j, (23)

The numerical results for these models are presented in
ge2 ~2

~1+k2 o 2 8 2~~F2 K&dQ 16
the next sect1on.

'g2k2s, n2(8/2 ~j
' ' ' As an alternative to introducing a special assumption

regarding the form of g(r), it may be appropriate to
simply use the "model-independent" value of R3,
derived on the basis of "short-range" correlations.

Ze2kE2 Thus, one readily proves that for correlation lengthsR1= dk'
short compared to the wavelength 1/k, the value of Rs
approaches

x{P00"'(r1)P00" (r2) —P00"'(rlr2)), (18)

and using (13), this becomes

1
dtrinetastic= —do 1(8)f1—G(K)j.

Z
(19)

9 The notation is as follows: k; =initial wave number; kf = final
wave number; Ki=k; —k', K2=k' —kf, K=K&+Kg, P=k&+kf,'
F (K) = (1/Z) Jdre' 'ass&'&(r)', G(K) =fdre'K 'g(r). In com-
puting the integrals, we are to let 8, ) approach zero, and keep only
the real parts.

A simple derivation gives for the total inelastic
differential cross section, correct to order (Zes)2,

1 1
dtrine]astic(8) = do'1(8) 1———dr1dr2e'*'

Z Z~

1
do~ 1 tl do1(8)K—(r—)A/6'

Z

VI. DISCUSSION

A. Numerical Results: Application to Light Nuclei

We have carried out computations based on the
models (20), for several different values of k/a, keeping
k/b=1. 10; that is, for several different values of the
ratio of nuclear radius to correlation length. The results
are summarized in Table I.

The principal features of the fluctuation scattering
contribution are that it is always of order t,2, in contrast
to the second-order potential scattering which is of
order Ze2, and that it is most important near k((r')A„) '= 1.
This follows from the fact that at low energies R2 and R3
nearly cancel, and potential scattering predominates,
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TAnLa L Values of the correction factors Ri/Zss, and R3/ss

for exponential models of the charge distribution and correlation
function.

Energy 8 =30 8 =60 8 =90 fJ =120 8 =150'

Rq/Ze' k/b=1. 10
k/a=0 1
k/a =0.25

Rg/e'c k/o= 0.50
k/a= 1.0
k/o= 1.5

—0.19
—0.65—0.57—0.43—0.19—0.066

—1.5
—1.0—0.78—0.39—0.043

0.012

—2.6
1.3—0.80—0.26
0.011
0.018

—3.9
—1.5—0.76—0.17

0.025
0.014

—3.6
—1.6—0.72—0.11

0.031
0.011

and at energies such that k((r')A„)'»1, the fluctuation
term falls off with the energy. It is clear that there is
only one circumstance for which the Quctuation term
can become important; namely, when there is strong
cancellation between the first- and second-order po-
tential scattering. This is known to happen however, at
large momentum transfers. It is unfortunate that it is
just such a cancellation that a second-order calculation
cannot adequately describe. There is perhaps a region
of atomic weights, say from 8= 20 to 40, for which the
second-order calculation achieves fair accuracy, and for
which there is considerable interference between single
and double potential scattering. The fact that R2 and R3
usually have opposite signs, and are both of order
et= 1/137 forces us to conclude, however, that only for
unusually strong cancellation, reducing the potential
scattering by at least a factor of ten, will the "disper-
sion" terms become appreciable.

B. High-Energy Limit

Schi6' has presented a discussion of the static ap-
proximation to the 6rst- and second-order scattering,
valid in the limit of wavelengths shorter than the nuclear
radius. We have repeated this calculation, with diGerent
results. For example, let us compare his results for the
second order scattering from a stutic potentia/, with our
results. As stated in the discussion following his Eq.
(31), Schiff's method gives, for the ratio of second-order
to first-order contributions in a static potential, "

momentum transfer is shared equally by the two colli-
sions; i.e., the double scattering proceeds mainly
through two scatterings of 8/2 degrees. The detailed
calculations lead to a diferent conclusion, that the
momentum is transferred predominantly in a single
large-angle scattering, followed (or preceded) by a
small-angle scattering. One easily sees that the former
assumption leads to a much smaller estimate of the
scattering than the latter, as is shown by comparing (25)
and (26).

One can attempt to repeat Schi6's discussion on the
basis of this revised estimate (26). If we assume for the
moment that (26) and the static approximation are
simultaneously valid, then we would be led to conclude
that the "dispersion contribution" was small, ( 1%)
since there is no appreciable cancellation between first-
and second-order potential scattering. This conclusion
would presumably apply even for heavy nuclei, if we
assume, as is probably true, that higher order terms
vanish as rapidly as second-order terms in this limit
(kR»1). It is probably not appropriate to assume that
the wavelength is also short compared to the correlation
length, and so the value of Rs need not be small (i.e., one
might still assume Rs=e'=1/137). There is, however,
considerable doubt that (26) and the static approxima-
tion have any common range of validity. For example,
(26) is certainly not yet valid for gold at 125 Mev
(kR 4); for a gold nucleus, kR 10 at 300 Mev, and
the static approximation is of doubtful validity.

Thus it should be emphasized that the region of most
interest, i.e., heavy elements, large angles, energies
around 100—200 Mev, is completely inaccessible for
either of these methods of estimating the fluctuation
scattering. There seems to be no a priori reason for it to
be negligible in this region; on the contrary, the large
cancellation between the various orders of potential
scattering, evidenced by the complete failure of the
Born approximation, make it likely that the Quctuation
scattering is considerably enhanced, and may contribute
an amount greater than the experimental errors.

Rl 48Ze'/—(kR)' sin'(t)/2), (25) C. Dispersion Contribution to Atomic Scattering

We have set
Rt 8Ze'/kR— (26)

00

p
DO

1/R= ' rp(r) dr r'p(r) dr.J,
Examination of SchiQ's technique indicates that it is
equivalent to assuming that, in momentum space, the
major contributions come in such a way that the total

' We have corrected a trivial error in the over-all sign of the
second-order contributions."R. R. Lewis, Jr., preceding paper LPhys. Rev. 102, 537
(1956)g, Eq. (29).

while more detailed calculations, " for most potentials,
lead to a considerably larger result:

The dispersion contribution to atomic scattering of
electrons, or "polarization correction" as it is there
called, has been estimated by the same techniques, '
keeping second-order terms and making the static
approximation. The result, however, is quite diferent:
the dispersion contribution now makes up the major
portion of the small-angle scattering, diverging loga-
rithmically at 0 degree, while the potential scattering
remains 6nite. The origin of this difference is readily
discovered: the interaction energy now consists of a
static nuclear potential, plus the interaction with the
atomic electrons, giving a potential which falls off
rapidly at large distances for a neutral atom (expo-
nentially for a spherical electronic charge distribution).
The potential scattering at small angles is therefore
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finite, characteristic of a short range potential. The
dispersion contribution however comes from the inter-
action with the atomic electrons clove, since the atom
cannot be excited via the static nuclear potential. Thus
the dispersion contribution is characteristic of scattering
in a toztg ra-lge potential (as in the nuclear case), and
contributes very strongly to the small-angle scattering.

The present analyses in atomic scattering, however,

always neglect the fluctuation scattering portion of the
dispersion contribution; it would be of some interest to
search for visible effects of these terms.
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The calculation of the wave function of a particle subjected to the field of two isolated potential wells is
arranged in such a way as to bring into evidence the penetration factors for passage through regions of
negative kinetic energy between the wells. The Schrodinger equation is replaced by an equivalent integral
equation and the eigenfunction system of the latter is used for the expansion of the wave function. The
dependence of the kernel on energy and the transformation from the reference system of the integral equation
to that of the wave equation are considered. Extensions to three-dimensional problems and to many nuclear
particles are discussed and some characteristic differences from the one-dimensional case are pointed out.
The presence of more than one tunnelling factor in the general case and the participation of tongues or
tentacles in configuration space which correspond to the temporary formation of nuclear aggregates such
as deuterons or alpha particles are considered.

I. INTRODUCTION
' 'N calculations of stripping reactions taking place in
~ ~ collisions of heavy nuclear aggregates it is useful to
be able to calculate the process by means of adiabatic
wave functions such as occur in the work of Wigner
and Pelzer. ' In the molecular problem considered by
them these are the wave functions of the electron system
for fixed positions of the nuclei. Modifications of this
method, employing a semiclassical discussion in which
the motion of the heavy particles is treated classically
while the motion of the transferred particles is calcu-
lated quantum mechanically, are also possible. ' In both
procedures it is essential to be able to calculate the
wave function of a nucleon for fixed positions of the
nuclear aggregates to the field of which it is subjected.
For well separated nuclear aggregates, the fields of

*This research was supported by the U. S. Atomic Energy
Commission and by the Once of Ordnance Research, U. S. Army,' H. Pelzer and E. Wigner, Z. physik. Chem. 15, 445 (1932).' This extension is readily made. Some considerations regarding
the role of accelerations in causing gravitational effects and their
relationship to the terms occurring in Pelzer and Wigner's paper
will be discussed in another publication. The reference to the
work of signer and Pelzer and of the use of wave functions for
fixed nuclei is not meant in the sense of considering the expansion
of the wave function in terms of such eigenfunctions as being the
best from the viewpoint of convergence. It has nevertheless some
deGnite advantages inasmuch as it provides a clear and definite
starting point. In cases of slow convergence caused by resonance,
linear combinations capable of improving convergence can never-
theless be introduced. This matter will be discussed in connection
with an application as part of a paper which is being prepared in
collaboration with Dr. M. E. Ebel.

which do not overlap, it is especially desirable to have
convenient approximations for such wave functions. If
the problem is treated by usual perturbation theory,
the expansion involves the wave functions of the con-
tinuum of the eigenfunction system of the nucleon in
the field of one of the nuclei and the rather small prob-
ability of transfer which may result on account of the
presence of a region of negative kinetic energy which
must be traversed by the nucleon becomes apparent as
the result of an interference between the effects of dif-
ferent regions of the continuum. It is desirable to have
a treatment which is free of this complication.

A possible treatment of this type consists of expan-
sions of the V/igner' type in which boundary conditions
for internal wave functions are used. An infinite number
of such eigenfunction systems can be introduced by
changing the nuclear radius or the boundary condition.
Such a procedure has many advantages but its Qexi-
bility regarding the introduction of the nuclear radius
makes the barrier tunnel sects entering in first approxi-
mation Qexible also. A complete calculation of all effects
which is free of the initially assumed radius is possible
but lengthy.

In the present note a treatment is described in which
the tunnel e6ect factors are present throughout in a
simple manner in the case of one-dimensional potential

' E. P. Wigner, Phys. Rev. 70, 606 (1946); E. P. Wigner and L.
Eisenbud, Phys. Rev. 72, 29 (1947); R. G. Thomas, Tlze Theory
of Ãzzolear Ezzohalge Collisions, Los Alamos informal report (un-
published).


