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Potential Scattering of High-Energy Electrons in Second Born Approximation*

R. R. LEWIS, JR.t
University of Notre Dame, Notre Dame, Indiana

(Received Novenrher 21, 1955)

Formulas are derived for the scattering cross section of a high-energy electron in a static potential, correct
to second order in the potential, in terms of certain integrals. The potential is that due to a screened, spherical
charge distribution. The integrals are evaluated explicitly for Vukawa, exponential and Gaussian charge
distributions, and are expanded in power series in k and in j,. k for an arbitrary charge distribution.
Numerical results are presented.

I. INTRODUCTION

'HE elastic scattering of high-energy electrons in
nuclei is at present described as scattering from

a stationary potential, which is a problem amenable to
numerical computation. ' This has rendered the per-
turbation treatments of scattering in a potential rather
obsolete, especially since they are known to be badly
in error at large angles for heavy elements. ' Unfor-
tunately, however, we have not seen the last of per-
turbation calculations of scattering; the replacement of
a many-body system by a stationary potential is itself
an approximation, and any attempt to improve this
approximation leads to problems which are rot amen-
able to numerical computation, forcing us back to
perturbation methods. Inelastic scattering has also only
been computed using perturbation theory, or phe-
nomenological potentials. It is felt that the scattering
from a stationary potential provides a good testing
ground for approximation procedures, since some exact
results are known for comparison.

In the course of estimating effects due to second-
order virtual transitions of the nucleus during electron
scattering, ' some results have been obtained for the
second Born approximation to scattering from a sta-
tionary potential. These results consist of closed for-
mulas for the scattering from special models of the
charge distribution (Yukawa, Gaussian, exponential)
and expansion formulas for the high- and low-energy
limit of the scattering from an arbitrary regular charge
distribution, Numerical results will also be given.

II. GENERAL FORMULAS

We will derive here the formulas for the scattering
cross section of unpolarized electrons incident on a
stationary spin-independent potential, keeping only
terms of 6rst and second order in the potential. The
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Michigan in partial fu161lment of requirements for the degree of
Doctor of Philosophy.
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potential will be that of a shielded, spherical charge
distribution p (r):

p (yr) e
—& I

r r'I—
V (r) = —Ze' dr'

The shielding will prevent divergence difficulties due to
the long range of the Coulomb field; we will let X—+0
in any result which remains 6nite in that limit.

Using the Green s function for the Dirac Hamiltonian,

ik) r—r'(e1 tr1
G(y, r') = ——H~ —~„~+

~ty y'~—
we can write the explicit solution of the Dirac equation,
correct to second order, as

4(y) =Q(y)+ dr'G(r, r') V (r')Q(r')

+ dr'dr"G(r, r') V (r')J~
XG(y', y") V (y")4 (")+" . (3)

where T is

1
f= PI (Ier)+ e/T—tt-,

4m

dre —ikf rV'(y)e+ikr ~ r+ drdr e ikf r—.

J

X V (y)G(r, r') V (y') e+'"""+ (5)

Using the familiar rules for summing over spins, we
can write the cross section for the scattering of an
unpolarized electron into an unspecihed Anal spin state,
as

1
do. = —Tr(Ea(ut') y lerPr(u')+ e'er'&dfl (~)

8x' 4

Here H(y)=+n p+P, and e, )e are the energy and
momentum, respectively. We use relativistic units
A=m=c=1 throughout. The incident wave is repre-
sented by rtr(y) =Ne*k''. The scattering amplitude ob-
tained from the asymptotic form of (3) is
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The erst-order term in T is'

T"'= (k/I V Ik,) = —42rzs'F(E)/(E'+ x') (7)

where F(E)= J'dre'"'p(r) is called the "form factor"
of the charge distribution. Note that we have chosen
p(r) normalized to unity.

Keeping terms through second order leads to a simple
form for the matrix dependence of T: it is a linear com-
bination of the matrices e, P, and 1. It is appropriate
to de6ne the coefFicients of these matrices in the fol-
lowing way:

42rZe2 An P 28(e+P)
F(E)+ +-

E2+) 2 k

Ce K Dr2. (PXE)
+ (g)

D will be complicated integrals, proportional to
Zes. We can now perform the trace in (6); discarding
the terms proportional to A', AB, ~ ~, D' as of higher
order, we find for the cross section

ZeskE2 r P k'
A =- dk'

F (k' —kt) F(k' —k,)
(12a)

[Ik' —kt I'+)~21[
I

k' —k I'+)~'g

Ze'kE' p 1
8= - — ~ dk'-

4& ~ k'2 —k2 —ib

F(k' —kt) F(k' —k,)X--- (12b)
[Il ' —l, I +) j[Ik'—I,

I
+},]

These are the integrals which we must discuss for
various charge distributions. They have bein per-
formed explicitly for only a few special models: the
Gaussian potential, ' Coulomb potential, ' and the
Yukawa potential. '

The most systematic method of performing such
integrals is to reduce them to integrals over denomi-
nator factors alone; in the present case, this can be
accomplished by using the following representation of
F(E):

Zcs q
2 4e F2 A+8

&E2+)i2) k F2+4 F
1

F(E)=— ds'F (s)s[E' s'i ', —
At 4g

(13)

4q 4 28 where the contour C is the real axis, avoiding the sin-+, d(I~ (9) gularities at s=&E by passing above them. This will
2 4 ~

7

reduce the integrals (12) to the desired form

where by A, 8 we understand the "real parts only" of
the corresponding integrals. These integrals will be
slowly varying functions of the angle, and so, for very
high energies, the first term will always dominate the
second, except for angles very near 8=180', where
E'=0. Thus, as long as P'))4, we can write simply

Zes ) ' (A+8) q

I (F+4)F2I 1+4 Id@
iE2+}2) )

=do.i{1+A), (10)

where do~ is the cross section in fi.rst order:

( Zc2 ) 2

(lo i-——
I I

(P'+4)F'
&E2+) 2)

III. REDUCTION OF THE INTEGRAI, S

Introducing the momentum representation of G(r, r')

t' 1 q
'

t II(k')+e
G(r)r')=

I

—
I

lim ~' dk' e's"' "& (11)
(22r) ~' " k2+ib —k"

and comparing terms in (5) and (g), we find for A, 8,
'We will use the notation K=k;—kf P=k'+kf throughout.

dssF (s) dttF (t)I(s,t), (14)
4P'm' ~ g C

F2+2k' P
I(s,t) = k dk' [(Eis+X2) (Eis—s2)

u'~ —u~ —is

X (E '+)~') (E '—t') j ' (15)

Here we use the notation Ki ——k,—k', K2 ——k' —kf.
If we introduce the further symbols

a= E 2+) 2 b= E 2+) 2 c= $~2—)r2 25,

d=k '—s' e=E '—P
(16)

) 2 )

then 2k' P=4k2+2c a b, and —I(s—,t) reduces to

I(s, t) = k(P'+4')
~

"dk'[abcde] '+2k I dk'[abde j—

—It dk'[bede] ' It dk'[acde5— —

Use of partial fractions expansions further reduces this

T Y Wuy Ph&s Rev. 73, 934 (1948).' R. H. Dalits, Proc. Roy. Soc. (London) A206, 509 (1951).' R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).
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to the 6nal form'

k t

I(s t)—,I (P2+4k2 s2 t2) dkl[cdcf —1.pl

—(P'+4k' —s') t dk'[bcdj '

—(P'+4k' P) —dk'[ace ] "+2 dk'[dc] '

t.
dk'[«1-' —2

As X—4, the first terms in each vanish and the other
integrals are easily shown to be

fl

dk'[gb)=s'/E, ~ dk'[gcj '= ' dk'[bc] '=~'/2k,

so that (9) becomes

do = [Ze'/ (K'+9)]'((P'+4)
+4Zc'ek sin(0/2) [1—sin(8/2) j}dQ, (20)

which is a well-known result. ~' Note that this gives
for E.,

R =4A =wZe2 sin(8/2)/[1+sin(0/2) j (21)

+2j d" [trbj
I~

(1~) which is a monotonic positive function of the angle,
never exceeding Ze'rr/2, and independent of the energy.

which are all integrals with denominator factors.
Defining

M2(y, v) =k I dk'[(EP+y, ') (E22+v'))—'

r
M, (p, v) =k'j dk'[(k" k' —ib)(—EP+p')(K22+ )v$

(18b)
we can write

~P2+4k' s'—
I(s,t) = Mg( is, —it)!—

s't' k& i
~P'+4k2 s'p-

—Ma(0, —is)!—
)

iP'+4k' Pi——M, (0, ~c( ~+2M (—~s, —il)
k~

—2M2(0) —ts) —2M/(0, —xt)+2M2(0, 0) . (19)

These integrals are performed in Appendix I.

IV. SPECIAL MODELS

(a) Pure Coulomb Potential

As a first application, and a check on our formulas,
let us consider the pure Coulomb potential. This is
obtained by setting p(r) =b(r) and', F(E)=1.Then

A = ) 4k' dk'[abcj-'+2 dk'[abj '
4rr'P' l J

—I dk'[ac]-' — t dk'[bcj

Ze'kE'
dl '[abc)-t—e.

9 ~e have dropped a term proportiona1 to J'dk'Labe) ' which
vanishes as X—&0. This is just the term which gives the non-
relativistic limit of the pure Coulomb potential, which is well
known to vanish in second order.

Using the results of the appendix, we find, with some
rearrangement

4(A+8) (2Ze'E'(E'+a') )R=
F ( c'P' )
k P'+4k'+2a'

X
E [k'E'+4k'a'+ a4]&

garctan
2[k'K'+4k'a'+a. ')»

2k
+—arctan

K E(E'+3a')
P'+4k'+a'

E'+u'
arctan —. (23)

2k

(c) Exponential Charge Distribution

The exponential charge distribution p(r) = pee ~" leads
to similar results. Now F(E)= [b'/(K'+b')$' and the

"H. Feshbach Phys. Rev. SS 295 (1952).

(b) Yukawa Charge Distribution

The charge distribution leading to the least com-
plicated integrals is the Vukawa charge distribution
p (&) =poe "/r. Now F(E)=a'/(E'+ a') and the integral
in (14) can be performed by contour integration, giving

A+8 = (Ze'K'a4/4w'P') l(ia ia)

(Zc'K'y ! (P'+4k'+2u'i
! M3(a,a)!«rp2)!

(P'+4k'+a'q—2M, (o,a)! !+2Mr(a,u))
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integral (14) can again be performed by contour inte- result for (A+8) is
gration, giving

(Zc'kE) r" xdx
A+8=

~
~e

" exp( —nx')(Ze'E'bs) c)'
A+8=

~
~ I(ia,iv)

&16 s'P' ) BpBv
(x+1' ' 8 x'+2qx+ I

X log( (
—sin —log

Ex—I ) 2 x' —2qxy1
(Zc2K2bs ) c)2

&16m'P' ) Bpc)v ,p'v'
(2Ze'q p" xdx 1

+
f

— fc-- P.V."s x'+1 x'—1
X{~s(p,v) (P'+4k +a'+ v'/k')

—2', (0 1 )(P'+4k'+ p,'/k')+m, (p, v)
x'+2qx+1 (~Ze'y

X exp( —nx') log
f
e
—", (27)

x' —2qx+I E 2
—4M s(0,li)+23IIs(0,0)}„=,=b. (24)

This is actually a very cumbersome function after the
differentiation is carried out, but is not too difficult to

The discussion of formulas (23), (24), and (27) is
given in Sec. VI.

where

with

J(s) = -', I dk'(P'+ 2k' P)/abcf

f= [k' —-,'P/' —s'.

It is important to note that J(s) can be reduced to
three-denominator integrals alone. This follows from
the fact that the numerator can be expressed as a linear
combination of the four denominator factors:

(d) Gaussian Charge Distribution

This is the first of the models treated which has a
form factor which is not algebraic; in this case the
integrals cannot be done explicitly, but only reduced to
a single integral. The reduction proceeds as follows:

If p(r) =ps exp( —P'r'), then F(E)=exp( —E'/4P')
and

P (Ki)P (Es) =exp L
—(Eis+Kss)/4P')

= exp( —Es/8P') exp[ —(k' ——,
' P)'/ P2').

Thus we get from (12) and (13),

(Ze'kE'y
A+8=

(
—

~
exp( —E'/8P') dssJ(s)

(2i 'Ps' ) C'

V. EXPANSION OF THE INTEGRAL FOR AN
ARBITRARY MODEL

The integral in Eq. (14) provides a fairly explicit
form for the integral arising from an arbitrary charge
distribution. For example, we can derive from it the
expansion of the integral in powers of k or in inverse
powers of k, for an arbitrary "regular" charge distribu-
tion. The derivation of these expansion formulas is
tedious but straightforward, requiring the expansion of
the function I(s,I) and the subsequent termwise inte-
gration of (14). We will only present here the leading
terms. "

At low energies, if we keep only terms through those
quadratic in k, we find

R [2mZe'kK(1 —K/2k)/P){1——E(E+4k)(r )A„/6},

(28)

where (r')A„—J'drr'p(r). —The first term is the pure
Coulomb result, and, to this order, there are deviations
depending on the mean square radius of the charge dis-
tribution. This is explicit verification, in second Born
approximation, of Feshbach's" theorem on the model
independence of the low-energy electron scattering.

At high energies, if we restrict ourselves to charge
distributions having a derivative at the origin, "we 6nd
for the leading term,

(4P'+K' 4s'q—
P'+2k' P=2c+(a+b)i

K'+4s'
R 8Ze'(1/k) (1/—r)A„ (»)

and so

4P'+E' 4s')—
J(s)=,~dk'[ahf) '+

~

—
~

dk'facf]
E'+4s' ) J "For further details see R. R. I.evris, Jr., Ph. D. thesis, Univer-

sity of Michigan, 1954 ( unpublished)."H. Feshbach, Phys. Rev. 84, 1206 (1951).
"Except for a multiplicative factor, the same result applies to

the Yukawa charge distribution.

(26)

These integrals are evaluated in Appendix II. The final

Note that this is the result of expanding in powers of
(2ps+Ks~ 1/k, and 1/k sino/2; i.e., we must hold the angle fixed

4f~ ~,
—and let the energy increase. The limit (29) is un-

~E'+4~' ~ doubtedly reached more slowly at small angles than at
large.

This result is somewhat surprising, in view of the
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fact that the phase shifts do not approach the first Born
approximation phase shifts in the high-energy limit. '4

Of course, we have only proved that the second Born
approximation is small compared to the 6rst in the
high-energy limit, yet one mould guess intuitively that
the same result was correct to all orders of the Born
approximation. This is not inconsistent with Parzen's
result for the phase shifts, due to the nonuniform
approach to this high-energy limit at different angles.
This nonuniformity means that the usual relations
between phase shifts and scattering amplitudes do not
hold for the leading terms in the high-energy limit.
Thus, the correct scattering amplitude could approach,
at any angle, the first Born approximation scattering
amplitude, even though the phase shifts do not approach
the first Born approximation phase shifts.

We should point out that the imaginary part of the
second Born approximation scattering amplitude,
which we have always dropped, is in fact independent
of the energy in the high-energy limit, for any 6nite
shielding constant X. Thus, the high-energy limit of the
scattering amplitude in second order, differs from the

TAsx, K I. The ratio E. of the second-order term to the erst-order
term(des/do&), dividedby Ze', for the Yukawa chargedistribution.

Energy

k/a= 0.1
k/a= 0.5
k/a= 1.0
k/a= 1.5
k/a= 10

e =30

0.636
0.450
0.197—0.005—0.326

e =60'

1.01
0.411—0.250—0.626—0.380

e =90

1.24
0.168—0.805—1.15—0.390

e =120

1.37—0.116
—1.24—1.46—0.394

1.39—0.323—1.45—1.62—0.396

6rst Born approximation only by a phase factor, which
diverges as X~O.

VI. RESULTS

Numerical calculations of formulas (23), (24), and

(27) have been carried out. The values of R/Ze' for
the Vukawa charge distribution for various energies
and angles are given in Table I. In general, they are
positive for small momentum transfers, and negative
for large momentum transfers, and never exceed about
1.6. Thus for a light nucleus like copper (Z=29), the
corrections would be at most 35%, while for a heavy
nucleus like gold (Z=79) the corrections would be at
most 90'%%uq. Since the large-angle corrections are nega-
tive, this represents an almost complete cancellation for
heavy nuclei. For long wavelengths, R approaches the
pure Coulomb result (21), and for short wavelengths it
approaches a value decreasing like 1/E and independent
of the angle.

The values of R/Zes for the exponential charge dis-
tribution have been computed at a single energy, such
that k/b=1. 10; these results are given in Table II.
They are also positive at su%.ciently sma11 angles, and
negative at large angles, which is in agreement with

"G. Parzen, Phys. Rev. 80, 261 {1950).

TAmE II. The ratio R of the second-order term to the hrst-
order term (dos/do'), divided by Ze', for the exponential charge
distribution.

Energy

k/a= 1.10

e =30

—1.85

60

—1.50

90o

—2.62

120o 150

—3.93 —3.57

the sign of the deviations of the first Born approxima-
tion from the correct result. '5 The root occurs at about
25', while the correct value of the root is near 65' for
Z= 79. The deviations are now much larger, leading to
ridiculous results for heavy nuclei; since R is large and
negative, the "correction" term becomes larger than
the 6rst Born approximation, giving a eegative result
for the cross section. This indicates the seriousness of
the errors involved in discarding higher order terms,
which complete the square and prevent negative values
of the cross section. Thus, one can only apply the ex-
ponential model results to fairly light nuclei, where
they still represent sizeable corrections ( 75/o for
copper at 150'). For high energies, the ratio R decreases
like 1/E.

Similar results have been obtained for the Gaussian
charge distribution; here the energy was chosen so
that k/P=3. 1. The root now occurs at about 30', and
the ratio R/e'Z reaches even larger values at large
angles, due mostly to the very rapid decrease of the
first Born approximation. These results are given in
Table III. In this case, not even the sign of the second-
order terms seems correct; exact calculations show that
for heavy nuclei, the first Born approximation always
gives too smaH a cross section, and the second Born
approximation decreases it further at large angles. For
the Gaussian charge distribution, R increases exponen-
tially with the energy, at high energies. This increase in
R probably results for any charge distribution whose
form factor falls o8 faster than any power of the energy
at high energies (i.e., exponentially, etc.).

TAzr. K III. The ratio 8 of the second-order term to the first:-
order term (da2/d&r'), divided by Ze', for the Gaussian charge
distribution.

Energy

k/a= 3.10

e =30 60' 90o

0.005 —3.10 —10.9

120

—35..8

1SO

—73.4

"D. R. Yennie et al., Phys. Rev. 95, 506 (1954), Fig. 2.

VII. CONCLUSIONS

Several conclusions can be reached from these
results:

(a) The second Born approximation provides a good
criterion for the validity of the first Born approximation.
Thus whenever the 6rst Born approximation is seriously
in error, as at large angles for heavy nuclei, or at high
energies for "special" models like uniform and Gaussian,
the second Born approximation provides very /urge
corrections (not however in the correct direction
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always). When the corrections are small, they are of
the correct sign, and probably provide a considerable
improvement in the Born approximation. It would be
of interest to check this with exact computations for
medium weight nuclei.

(b) The Born expansion must converge very slowly
for heavy nuclei, large angles, and kr=1, if at all. The
behavior at higher energies will depend very much on
the character of the charge distribution: in particular,
on the behavior of the charge distribution at very small
radii. The second Born approximation indicates that,
for charge distributions with a derivative at the origin,
such as the exponential model, the hrst Born approxi-
mation becomes valid again at very high energies.
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where
0=xqg+ (1—x) q2,

&'= (q&
—q2)'x(1 —x) yxpP+ (1—x)p,',

8

„I
"dqL(q'+a') (I q —0 j'+a'))-'

2~, aaa~
1 8 v'i (X+6—iQ)

dx— —log (

~ a~ g &z+~+;g)

dxs--'t X'+x(q'+t, ')+ (1—x) (g, +I„)
+2XA) ' (3)

which is a rational function of x and A. Note that the
symmetry (b) is obvious, by simply substituting m=1
—x in the integral.

The last integral can be performed by reducing the
integrand to rational form, using linear fractional trans-
formations. First put s= (y~/p~)Lx/(1 —x)): then

APPENDIX I. GENERAL THREE DENOMINATOR
INTEGRAL

The integrals required in this work are all specia].
cases of the three denominator integral, or simpler two
denominator integrals.

I(X; q&,p&, qp, pp) and so

&x=pu 2 «(t 2s+IJi)—2

0 aj 0

&=t +2LS(&))'/(a2&+pa)

S(&)=s'+k(e —q2)'+»'+t P)s/t u 2+1,

=~ dql (v'+~')(Iq —q~l'+»')(Iq —q2I'+t ~'))-"

The following properties of this function follow from
examination of the integrand:

(a) The function is even in X, p&, and p2.

(b) The function is symmetric under the simul-

taneous interchange of q~ and p, ~, with q2 and p2.

(c) The function is analytic in X, y~, and», except for
points on the'imaginary axes, where the value of the
integral depends on whether the axis is approached
through positive or negative values of the real part.
Using property (1), we can restrict ourselves to evalu-

ating the function for values of the parameters with

positive real parts only; the function can be evaluated
at other points by symmetry.

Using the integral representation

I=vr' «S 'Lp;sP, '+gP+p 2)2

+pl(~ +$2 +@2)+2hpyp2+S), (4)

which has the advantage that the roots of S(s) are
nag~tive definite for real positive A, , p&, p2. This integral
can now be put in rational form by introducing a trans-
formation based on the roots of S(s). Let

where

&~, ~=L(e—q2)'+t P+t 2'

~{L(e—e)'+»'+u')' —4»'~2')) '/2» 2

Then, introducing

u= spat (s+sg)/(s+sg))'*,

I=v' dlfaN'+2bu+e) ',
1

dxC ax+b(1-x)) ',
a& ~0

we can write (1) in the form

(2) with
J v'Z1

Pls2 (~ +$2 +92 ) p2sl (~ +$1 +/ll )
b= Xp,p2(z2 s,), —

P2s2 (~ +pl +Pl ) Plsl (~ +$2 +92 ) ~

This has the disadvantage that a, b, and c are not posi-
tive-definite for real positive ), p, ~, and p2, and so we
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perform one.further linear fractional transformation:

f2' —2 &)

& 22&—22)

which gives

I=22r2 t dn/nv2+2Pv+y] '
)

where

~=P2(sl~+&2~) [ql'+ (~+Pl)'7
P=pl h( 2+ sl+ s)2+p2(~'+ q'l+ p'l)

+Pl(~'+q2'+P2'), (g)

pl(sl +s2 )[q2 + (~+p2) ].
Now the integral is a simple function of the roots of
the quadratic: introduce v&, and v2 by

»2= [P, ~(0' ~7)']/~,

and then, by a simple integration,

-~+(~'—~)'
I(&; fall, pl, q2, p2) =2r'(p2 —ny)-& log, (9)~-Ã —~)'-
with

~V= [(e—e)'+ (Pl+P2)'j[ql'+(Pl+~)'j
X[q2'+ (Z+P2)'],

P ~[('Ql Q2) +(Pl+P2) j+P2(~ +ql +Pl )+Pl�(&'+q2'+P2')

This function is clearly single valued, even when we
cross a branch cut of (p2 —cly) &; i.e., we can choose either
square root Th.us the function is obviously analytic
even for complex values of ), p, &, and p&. The only
remaining problem is the speei6cation of the branch of
the logarithm; examination shows that one must take
the arguments of numerator and denominator from —x
to +2r.

The integral M2(p, v) defined in (19b) is a special
case:

M2(p, v) =k'I( ik; k—,p,' kfv). (11)

The integral M2(p, v) can be done directly by introducing
polar coordinates:

2r2ik (p+ v iK—)
M2(p, v) logE(p+'v+iE9

or by using

M2(p, v) =k lim X2I(X; k;,p; kf, v).

Let us list the various special cases used in the text:

-k[E2+(p+v)2]+[k2(E2+p2+v2)2 P2p2v2])-

pv(p+v)

-k (E2+(p+ v) 2) [k2(E2+p2+ v2) 2 P2p2v2) & .
—arctan

pv(p+ v)

Re M (p p) =22r2k'{[k2E2+4k2p2+p'] &/K}

&& arctan(-,'Ep[k'E'+4k'p'+ p') &},
dk P~bf] '= 7r2 z(s —K/2)2-

log
iK (s'+K'/4) i (s+E/2—) '

Re M2(0,p) =
I 2r'k'/(K'+ p2) j arctan(p/2k),

Re M2(p, v) = (22r2k/E) arctan[K/(p+ v)],

Re M2(0,p) = (22l2k/K) arctan(E/p),

Re M, (0,0) = k2/rK.

APPENDIX II. GAUSSIAN CHARGE DISTRIBUTION
INTEGRALS

The two integrals which appear for the Gaussian
charge distribution are special cases of the integral in
the previous Appendix. Substitution into the formulas
derived there show that, as )—+0, the integrals approach

-&[I'2/4 —(syk)2]-
dk'[acf)-'= log

k (s' —E'/4) 2ik (s' K'/4)—
In each case, the argument of the numerator and
denominator factors is to be chosen between —x and m.

The 6nal answer can be expressed in terms of real
integrals by substituting the above functions into (25)
and (26) and deforming the contour onto the real axis.
Considerable simpli6cation then results due to the fact
that the odd portions of the above integrals give no
contribution, and only the real parts need be kept. The
only care that need be taken is in properly treating the
contribution near the poles at s= &E/2, in the second
integral.


