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Structure of a Magnetohydrodynamic Shock Wave in a Piasma of In8tttte Conductivity

&m K. SEN'
National Bnrean of Standards, Bonlder, Colorado

(Received July 29, 1955)

The structure of a magnetohydrodynamic perpendicular shock wave (magnetic Geld perpendicular to
the direction of propagation) in a plasma of inGnite conductivity has been analyzed. For the nonmagnetic
case, the width of the shock front is found to be larger than in a non-ionized gas. Further, the width of the
shock (in terms of mean free path within the shock) as a function of the shock strength as determined
from the Stokes-Navier equations (which applies to weak shocks) is found to join smoothly at hf—1.3
with the same function as derived from the Mott-Smith analysis (which applies to strong shocks). The
magnetic 6eld tends to make the shock front narrower for shocks of moderate strength. It does not have
appreciable eGect for strong shocks.

Application of the above results to solar radio noise and current theories of the origin of cosmic rays is
indicated.

1. INTRODUCTION

ECENTI, Y de HoGmann and Teller' have ex-
tended the:Rankine-Hugoniot conditions of

~

~

classical hydrodynamics to shock waves in an infinitely
conducting fluid with superposed magnetic Geld. The
mathematical discontinuity in the physical variables
given by the Rankine-Hugoniot conditions at a shock
front is, however, not physically possible, and it is well
known that considerations of dissipation of energy by
viscosity and heat conductivity enable the physical
quantities to vary continuously and result in a finite
width of the shock front. It is the object of this paper
to apply similar considerations to find the structure of
a magnetohydrodynamic shock wave in an infinitely
conducting plasma (a macroscopically neutral, ionized
gas). For simplicity, a plane, longitudinal shock is
considered propagating in a direction perpendicular to
the applied magnetic Geld. The shock-structure without
the Geld is also considered as a standard of comparison.
The application of the results obtained to solar radio
noise and cosmic rays is briefly indicated.

2. BASIC EQUATIONS

We shall assume the shock propagating at nonrelativ-
istic velocities along the x-axis, and make the flow
time-independent by referring to a coordinate system
moving with the shock front. We shall use the su6ixes
0 and 1 to denote the physical variables (velocity I,
pressure p, density p, and temperature T) in front and
back of the shock, respectively. Then we have the
following equations describing the flow.

From the conservation of mass, we have

pg= polo=m, say. (1)
The equations of motion and energy are derived in
Appendix I. It is shown there that the pressure tensor
in our case reduces to a similar form as without a
magnetic Geld in the two extreme cases, viz. , cur&(1 or
W1, where po is the gyro and s the collisional frequency.

*Present address: Geophysics Research Directorate, Air Force
Cambridge Research Center, Bedford, Massachusetts.' F. de Hoffmann and E. Teller, Phys. Rev. 80, 692 (1950).

These refer to the ions which, on account of their
heavier mass, determine the shock.

The above restrictions on co7 for the validity of our
analysis are not so stringent as they might appear to be.
They hold in many physical cases of interest, e g., in
the cases considered in Sec. 7 below. With the values
of the parameters assumed therein, we have in the
H u region, cur 10' and in the corona at a height of
10' km above the photosphere, cur 10~. Ke shall
assume in what follows that coo-((1 or »1. It is true
that in the latter case the magnetic Geld mill aGect the
viscosity p and the conductivity k by a function' of cur.

As, in our analysis, we shall be using only the ratio ts/h,
we shall ignore this eGect.

For our hydromagnetic case, the following extension
of Stokes-Xavier equation hoMs:

dtt d ( H'i 4d (dli
l

p—+——l+- —
l t —l, (2)

dx dx ( Ssr) 3 dx ( dx)

where ts is the coefficient of viscosity (determined
primarily by the ions) and H is the transverse magnetic
field.

Integrating (2), we have
II2 4 dl

sttst —trtC = —p——+—ts—,
Sx 3 ch

where C is an integration constant. We assume uniform
conditions both in front of (x=+po) and behind
(x= —po) the shock. At shock entrance, (3) reduces to

Q '2

pp+ +1$ttp= ssC. (4)
Sm

The energy equation can be written as

4 ~digs d
f dTq dT dst

-t
I

—l+—
l

h
I
—~ p =o——

3 i dh) dh L dh i' dx dx

where k is the thermal conductivity and C, the speciGc
heat at constant volume.

s S. Chapman and T. G. Cowling, The hlathensats'oal Theory of
Nonnnsforns Gases (Cambridge University Press, Cambridge,
1953), second edition, p. 337.
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No relative motion is possible of an infinitely con- Applying (9) to the front and back of a shock, we
ducting material with respect to the magnetic lines of obtain the following relation:
force. Hence we have'

+I=+olo. (6)

Finally, we may write the equation of state for a
perfect gas:

p= If.pT,

where A=a/m;, a being Boltzmann's constant and m;
the (mean) particle mass.

Eliminating p between (3) and (5), we get

d lr dTi dT du—
~

k -
I

—mC„mC-
Ch ( dhi dh dh

d f'u'i H'du
+m—

i
—i+——=0. (8)

ch (2) Ssr ch

Ci= m—Ep mCup+smup Hp up/Ssr

m—Ei m—Cut+ smuP H—o uo /Ssruz . (10)

From (9) and (3), we have

where

d T 4ls Cpu+Eu+ Cup ,'—u'—+Ho'up'/Ssrm
(11)

du 3& u' Cu+R—T+H p'up/Ssrppu

C,=C,/m= Ep —Cuo+—suo' Ho'/—Ssrfso (12)

Introduce the folIowing dimensionless variables:

11= T/To, U= u/up, and hp= Hps/SsrP, . (13)

where C~ is another constant of integration.

We can express H as a function of u by (6), integrate I,et y be the ratio of the specific heats at constant
(8), and obtain pressure and volume (C„/C„), which in our case of the

d 1" mN' Ho'No' plasma we shall take as 5/3. Then (y —1)hp in (13) is
h mE mCu+— —— =Ci, (9) the ratio of the magnetic to the internal energy per

Ch 2 8~I unct mass
Equation (11) yields, on integration,

4 t
~ C„ULsr —y(1+pi (y —1)Mp')+ (1+yM p') (y —1) U —sy(y —1)MpPU'(+ho(y —1) (U—1)'

II=—~ p- d U+ IIi. (15)
3P~ U'I k II/yMo' —U(1 —U+1/pMo') ho(yMo') —'( U 1/U)—

Now,
Mo =MoH (1+2ho/y) 1 (16)

Ei/uo' C.Ti/uo'= II&/——y(y —1)Mp'. (17)

By (1), (13), and (17), (10) reduces to

(IIi—1)/y (y —1)Mp'+ Co Ut —-,'Uts+ ho/yMo'U i
=Co—os+ho/yMo' (18)

where, by (4), (13), and (1)

Cp= C/up ——1+(1+ho)/yMp'. (19)

Also, from (4), (1), (6), (7), and (13),

11,=7MooU, (co—Ui) —ho/Ui. (20)

Equations (18)—(20) determine IIi and Ui (temper-

e See reference 1, p. 695, Kq. (20).
4M. Morduchow and P. A. Libby, J. Aeronaut. Sci. 16, 674

(1949).
~ See reference 2, p. 235.
e P. A. Libby, J.Aeronaut. Sci. 1S, 286 (1951).
r R. Liist, Z. ¹turforsch. Sa, 282 (1953).

The Prandtl number, ' lsC„/h, in (15) is ~/f=2s,
where f~5/2 for inverse square law of interaction. '
We shall take it equal to 4, to compare with earlier
work. 4 Our conclusions would not be materially affected
by this change in the Pradtl number. Mp in (15) is the
Mach number (ratio of stream to sound velocity) in
front of the shock, without the magnetic 6eld, which is
related to Mo~, the corresponding Mach number in the
presence of the 6eld, by the following equation':

ature and velocity jump through the shock), as also

pt/pp = 1/U] and pi/po = IIi/Ui in terms of the pa-
rameters Mo )hence Meir by (16)j and ho in front of
the shock. Eliminating IIi between (18) and (20),
we have the following quadratic equation in U~.

-'(v+ 1)U '—L-'h —1)+(1+h )/M 'Ã
+ho(y —2)/yMp' ——0. (21)

In (21), we have omitted the factor Ui —1, which leads
to uniform conditions throughout.

It can be shown that Eq. (21) has a positive and a
negative root. The positive root passes over continu-
ously into the nonmagnetic case and is the one we shall
consider. The negative root is inadmissible, as it leads
to a negative density through the equation of con-
tinuity.

We shall further consider only values of U&&i,
(MpH) 1), i.e., compression shocks. Rarefaction shocks
too, for which Ut)1, (Moss&1), are mathematically
possible solutions of Eq. (21), but, as shown in Ap-
pendix II, they are thermodynamically unstable, on
account of increase in entropy. '

It is found that for weak shocks the magnetic field,
so to say, softens the shock front, that is, decreases the
compression across the front. We see, however, from
Eqs. (20) and (21), that for Mp& (and hence Mp

'See H. W. Liepmann and A. E. Puckett, Introdgction to

Aerodynamics of o ComPressible Flmid (John Wiley and Sons, Inc. ,
New York, 1947), p. 41.
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also) —+go, 1It—+go and Ur—+(y—1)/(y+1), the same as
for the nonmagnetic case. Thus, we would expect the
magnetic field to lose its importance as the shock
strength increases. '

Differentiating (15), we can express dII/dU as a
function of II and U. The variation of II with U can
then be traced by the method of isoclines. We note that
at the front and back of a shock (U=1 and Ur), the
integrand in (15) is indeterminate and its value is found

by 1'Hospital's rule. The singularities at these points
lead directly to the Rankine-Hugoniot conditions in
the magnetic, as in the nonmagnetic, "case.

d U 3m II/yM p'+ U' CpU+hp/y—Mp'U

d$4pp II"U
(24)

A plot of dU/dx against U from (24) will give at its
maximum the value U= U;.

Equation (23) can be numerically integrated to give
U, and hence the other physical variables as well, as a
function of x. We shall define the shock width as"

t= (1—Ur) (dU/ch), „'.
4. MEAN FREE PATH

(25)

We shall express the shock width t given by (25)
both in terms of ) p, the mean free path in front of the
shock, and X, the mean free path within the shock.
For the latter we shall take the arithmetic mean of the
mean free paths (Xp and Xt) in front of and at the back
of the shock (x=& go), respectively.

The definition of the mean free path in our case
(inverse square law of interaction) is somewhat arbi-
trary. We shall define it through the expression for the
viscosity in gas-kinetic theory":

(26)
9 H. L. Heifer, Astrophys. J. 117, 180 (1953). R. Liist, manu-

script read at Eleventh General Assembly, URSI, Hague, 1954
(unpublished)."R. von Mises, J. Aeronaut. Sci. 17, 552 (1950).

"See reference 2, p. 218, Sec. 12.1 (ii).
"See reference 4, p. 680.
'I See reference 2, p. 218, formula (6).

3. WIDTH OF THE SHOCK FRONT

We shall consider a temperature-dependent viscosity
governed by the following relation:

p= pp(2'/Tp)", (22)

where n=2.5 in our case." Then, from (3), (1), (6),
(7), (13), and (19) we have

4pp P~ II"Ud U
(23)

3m~ rr, II/yMp'+ U' CpU+hp—/yMp'U

In (23), U, =shock velocity at the inflection point
(where d'U/Ch'=0), and we have chosen the origin of
x at this point.

We can write the difFerential form of (23) as

TABLE I. Width of shock in terms of mean free path. H0 is
defined by Eq. (13) and is a measure of the ratio of the magnetic
to the internal energy per unit mass; M» is the Mach number in
front of the shock; tg and t0 are the shock thicknesses in terms of
mean free path within and in front of the shock, respectively.

hp

0.00

0.10

2.00

4.00

Mom

1.100
1,500
2.000
2.500
3.000
4.000

1.039
1.417
1.890
2.362
2.835
3.780

1.085
1.356
1.627
2.169

1.038
1.246
1.661

30.4
9.5
8.5
9.7

11.2
14.7

65.1
9.8
7.9
8.9

10.6
14.2

13.7
4.7
4.7
7.9

16.5

4.3

29.7
8.3
5.9
5.0
4.1
2.6

64.4
8.8
5.7
4.8
4.1
2.7

13.4
4.2
3.3
2.8

16.4
4.0
2.5

where c= the mean molecular velocity = (SENT/res;) & and
8 is a numerical constant~ —, for smooth, rigid elastic
spheres. We shall take b=~. A different 8 will only
change the relative scale of shock thickness.

Let t~ and tp be the shock thickness in terms of mean
free path within and in front of the shock, respectively.
Then we have the following relation:

2tp/t), = 1+At/Xp. (27)

Now, from (1), (13), (22), and (26):

&t/&a= IItsUr

where we have put e=2.5. Hence

to/t = ', (1+II 'U ). -
Set

x=)tpP.

Then, from (7), (24), and (26),

dU 3Mg (pry) & II/yMp'+U' CpU+hp/yMp'U—

d$ 85 (2) IInP

From (25), (30), and (31), we have

svZ B(1—Ur)

3(s.y)& Mpf, (II,U)

(29)

(30)

(31)

(32)

where f,„(II,U) is the maximum value of the third
factor on the right-hand side of (31).

The quantity tz is obtained from (29) and (32).

5. NONMAGNETIC CASE

We shall erst consider the case of the ionized plasma
without the magnetic field, i.e., when hp=0. Table I
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where
-2 /( —1). (36)

30~ Y
e Q
~~5
taJ g

Z

u) ~
Q 4J
Z 0
H 4.
Q

wX IO

0

~&~ h, -,sohO~Q, I

ho&40
I

2 3
MOH (STRENGTH OF SHOCK)

CURVE I MOTT -SMITH ANALYSIS
CURVE D NAVIER- STOKES. EQUATION

Again, from Chapman and Cowling, "
orris& (g) =4Z'~;—sg A s(2).

Thus, we have

H(Gs, u. p)= 4—Z'e'a 'A-, (2)(u p)-'(1 —r')(T +T )
—'

r&i;
=0, r) 1. (38)

Hence,

I p+Ip = —8Z'e'As(2)N up

X [2'/roars, s(T.+Tp) O'A (u.p), (39)
where

A(u p)= ',u p-'[3u-p exp( up—')
+(2u p' —3) erfu pj, (40)

FIG. 1. Width of shock for an ionized gas in terms of
mean free path within shock. erfg tI

—— exp( —u') du. (41)

gives the values of to and t~ for values of Mo from 2 to 4.
We see that for M~~4, the shock width is two or three
times the mean free path for an ionized gas. The shock
width turns out to be greater than in the corresponding
case for the nonionized gas, on account of the larger
value of the exponent u in the relation (22) for the
temperature dependence of the viscosity. "

The Stokes-Navier equations, however, do not hold

for strong shocks. "To continue our table to high Mach
numbers we use the Mott-Smith interpolation formula. "

We assume, as before, that the shock is determined

by interionic collisions. We shall use the Mott-Smith
notation as far as possible. Using the Chapman-Cowling
expression for the viscosity, ' re. ,

u =-', [A s(2)1-'(~m T/s. )&(2aT/Z'es)',

we get the following expression for X from (26):

de 4x d+P
ua(u» +3c~ ) +up(up +3eps)

dS dS

2m
+8Z'e4A s(2) — N.NpA (u.,) =() (42).

rrl, ,ss(T +Tp)

From (35) and (42), we have

where

dv /Ch+Bv (1 v)/X=P,— (43)

[s (a-2)/a)&
8=10

(a—1)(a—3)

Mott-Smith's differential equation (29) reduces in
our case to

[aM'+ 2a (a 2)Ms a+2) i— — —

X [(a—1)s3Is
Ms (Ms —1) (M +as—2) ( Ma+sa —2)

+(~'+a—2)'(aM' —1)'JA (u p). (44)

X= 5a' T'/2v2n Z' e'As(2), (34)

where n is the particle (ion) density [not to be confused

with the I in (22)j and Ze is the charge on the ion

assumed to be only of one kind. Thus, the average
mean free path within the shock is Thar. E II. Width of shock in terms of mean free path within

shock (Mott-Smith analysis). M'0= Mach number in front of the
shock (without the magnetic field). e p, A (u„p), and 8 are defined
by Eqs. (45), (40), and (44) respectively.Ms+a —2

e 4+ (»)
4VZZ4e4usA s(2) (a 1)IrP—)i +Xp

A {u~)
0.0009
0.0080
0.0233
0.0442
0.0818
0.1113
0.1752
0.2711

4/8u~p

0.3612
0.5853
0.7377
0.8452
0.9800
1.0563
1.1781
1,2247

0.4418
0.4781
0.4788
0.4781
0.4419
0.4282
0.4252
0.4280

9.053
8.366
8.354
8.366
9.052
9.341
9.407
9.346

'4 See reference 4, p. 680, Fig. 5. The physical reason for the
increase in shock width with increasing e is that the increased
viscosity extends the region of inRuence of the shock wave. See
L. Meyerhoif, J. Aeronaut. Sci. 17, 785 (1950).

'~ C. S. Wang Chang, University of Michigan, Department of 40
Engineering, Report UMH-3-F APL/JHU CM-503 (unpub-
lished). 10.0

"H. M. Mott-Smith, Phys. Rev. 82, 885 (1951).
'~ See reference 2, pp. 171 and 172.
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We note that I p is a function of M given by

I s ——(jP 1)—La(a—2)/2)&L3P(a —1)'
+(7'+ a 2—) (a3P 1—)j-&. (45)

The shock-wave thickness as given by 4/8 is tabu-
lated in Table II. The complete plot of the shock
thickness as a function of M is given in Fig. 1, the two
curves being smoothly joined at M~1.3. Note that the
shock thickness tends to the following finite value as
M—+~:

)4q
limsr~ ( g3)

.I.O

0.9

O.S

IMpH sI

"0 .0
hu 2.0

0 Ol „ho=a

= as(a —1)(a—3)[w(a —2)) '& 'L(a —2)'/~2j, (46) Q 5 lO l5
DISTANCE, (, FROM INFLECTlON POlNT

20

6. HYDROMAGNETIC SHOCK

In Table III and Fig. 2, we have shown the variation
of U within the shock front for Mp0=2. The density
and magnetic field variations can be derived easily
therefrom. Table I and Fig. 1 give the shock width in
terms of hydromagnetic shock strength Mp& for three
values of hp=0. 1, 2, and 4. For weak shocks, the
magnetic field narrows the shock width, but for strong
shocks the width tends to the nonmagnetic case. This
is in conformity with the result obtained in Sec. 2.

It is true that for strong shocks our analysis based on
the Stokes-Navier equation would not apply. " As a
superposed magnetic field does not aGect a steady state
Maxwellian distribution, " it would not change the
Mott-Smith first-order interpolation formula. Higher
orders of approximation would seem to be required in
this case.

'F. CONCLUDING REMARKS

In the foregoing pages we have analyzed the structure
of a shock front in an infinitely conducting plasma

TABLE III. Variation of veIocity U within shock as a function
of distance h from inflection point. (Mcrr =2.0.) Mcv is the Mach
number in front of the shock. ho is de6ned in Kq. (13).

hI =0 ho =0.&

U
hI 4

where the function A is defined by (40). The Stokes-
Navier equation, on the other hand, gives an infinite
limit in our case" (n) s). The Mott-Smith analysis is
to be preferred, as we have said, for strong shocks.

FIG. 2. Variation of veIocity within the shock.

~'= 15nT-&. (47)

For inter-ionic collisions we may take the mean free
path to be of the same order as that for electrori-ion
collisions and given by

when the magnetic field is perpendicular to the direction
of propagation. For a parallel field, it is well known
that the field has no eGect. It would be interesting,
though considerably more complicated, to find the
shock structure and trace the refraction of the lines of
force inside the front when the magnetic field is inclined
to the direction of propagation.

It is believed that the physical theory as developed
above will have applications in solar, ionospheric, and
cosmic problems. VVe shall herein indicate brieAy two
such.

First, the gradient of the magnetic field in a shock
front may modify the conditions of escape of gyro-
frequency radiation in the solar atmosphere. Denisse~
first noted that a sufficiently rapid time variation of
the sunspot magnetic field may cut down the reabsorp-
tion and facilitate the escape of gyromagnetic radiation,
thus accounting for the noise storms in meter wave-
lengths. A space variation of the field inside a shock
front may well achieve the same purpose. We shall see
if this is so.

In the following we shall use Denisse's notation and
results.

Under solar conditions, the electronic collision
frequency '

—3.09 0.97—2.00 0.93—1.26 0.89—0.61 0.85
0 081
1.23 0.73
2.61 0.65
4.33 0.57
7.18 0.49

—2.66 0.96—1.81 0.92—1.16 0.88—0,57 0.84
0 0.80
1.18 0.72
2.55 0.64
4.39 0.56
7.83 0.48

—1.94 0.99-1.00 0.95—0.47 0.91
0 0.87
1.22 0.77
2.68 0.6/
4.68 0.57

12.53 0.4/

—1.01—0.59—0.29
0
j..02
2.31
4.18
8.81

'8 See reference 4, p. 681."H K. Sen, Phys. . Rev. SS, S20 (1952), Appendix I.

)~= c/v = (8x2/~r~s. )'(v')-' 4X 10 T /n, (48)

gs c(Ace)s/v'fls, (49)
~J. F. Denisse, Ann. astrophys. 1I, 1 (194$)."T.G. Cowling in Thc SNe, edited by G. P. Kuiper (University

of Chicago Press, Chicago, 1952), p. 33S.

0.98
0.95

from (47).
0.79 The mean free path for gyromagnetic radiation o

electrons is given by0.59
0.49
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where the electronic plasma angular frequency is

II = (4rrte'/rtt. )&, (5o)

Since for shocks of moderate strength, IdH|~H
across the shock front, and the shock width is a few
mean free paths, condition (58) is equivalent to

d, v= srtvzp/10sT' (53)

and (taco)/2s. is the Doppler width due to the thermal

velocity of the electrons.
From (47), (49), and (50), we have

zp est—,—cT'(Zco)'/60srn'e' (51)

For a shock of moderate strength, we may take the
compression to be ~2. Hence,

Av/v= (Hi —Hp)/Hp~1. (s2)

The change trav in (52) takes place in a distance of the
order of the shock width, which we may take to be
a,bout sli=2X10'T /N. Hence in a distance zp the
change in the frequency will be

~H—(0'11H) = 10 Cm,

where eH=concentration of H atoms=1 cm ' and
0-H= cross section for H atoms= 10 "cm'
In the Hu regions, e;=e,=10 cm ', o-;,=10 "'cm.
Hence

1i,—li, = ( I ) '~10" cm.

For" H = 10—"gauss and N~~= 10"ev,

(62)

(60)

where A. is the mean free path in the front.
In the H r region in interstellar space, the neutral H

atoms preponderate over the protons and electrons.
The shock is determined by the H atoms, and

p=10" cm. (63)The Doppler width due to the thermal velocity of
the electrons is

(ato)/2pr = (tI v) d
——v V/&3c,

V= (3mT/rtt, )&.

where
(55)

ACKNOVf LEDGMENTS

From (61)—(63) we see that condition (60) would not

(54) be fulfilled in the Hii region and would not also hold

in H I for proton energies of 10'4 ev and higher.

From (51) and (53)—(55):

6

v/(trav)

a v'/I X10'. (56)

remains constant, 8"~ being the energy corresponding

to the transverse velocity.
A condition" necessary for close spiralling and

assumed for the constancy of the magnetic moment is

that

At a height k~10"cm above the photosphere, v~10',
H~~50 gauss, Hi= 2H~~100 gauss, and v =300 Mc/sec.
Hence, from (56), hv~(Av)a. Thus the gradient of the

magnetic 6eld in the shock front will shift the frequency
of the gyromagnetic radiation beyond its Doppler
width before it is reabsorbed. The gyromagnetic emis-

sion will therefore be considerably more than what

would ordinarily be obtained from including the full

eGects of reabsorption.
We shall next consider the application of our results

to current theories of the origin of cosmic rays. The
basis of these'theories~ is that the cosmic-ray particles
spiral closely around the magnetic lines of force, so

that the magnetic moment,

(57)

APPENDIX I. THE EQUATIONS OF MOTION AND
ENERGY FOR A HYDROMAGNETIC SHOCK

Chapman and Cowling have given expressions for
the stress tensor in a magnetic field. 26 We shall use
their notation in what follows. They take the magnetic
field H in the x direction. Then for unidimensional
variation and longitudinal shock propagation in the y-
direction:

e'=—

' —-', Bwp/By,

0,
0,

0,
s»p/By~

0,

0
0 . (A-1)

——',Bvp/By. :

In the equation of motion, we have to consider

BPew Bpww Bp&w

+ +
&Br i „Bx By Bz

In our case we need consider only Bpww/By. Now,

P„„=P —2tt (9+16co'r') 'L9eow v+ 8 (esww+ eP,.)Posr'

The author's best thanks are due to Mr. William
Iverson for computing the tables and drawing the
figures.

f
pdH/Ch /«fH J,

where p is the radius of gyration given by

p= (2mW~) &c/eH,

(58)
36+16tosr' Bw

=p- p )
27+48cosr' By

+12eow.cur]

(A-2)

and dH/dg is the gradient of the magnetic field.

22 L. Biermann, Aa.n. Rev. Nuc. Sci. 2, 335 (1953).
se H. A1fvhn, Cosraecal Electrodyrsarag'cs (Clarendon Press,

Oxford, 1950), pp. 19-23.

'4 A. Schluter, Z. Naturforsch. Sa, 76 (1950)."See reference 22, p. 352.
~ See reference 2, pp. 338 and 15. We have used the symbol e'

for the nondivergent tensor derived from e, as the printer did
not have the corresponding symbol used by Chapman and
Cowling.
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from (A-1). From (A-2), we have

4 Be
P» =P—-li—,when o~r&&1;

3 Bg
(A-3)

1 B'v
=p ——li—,when oir&)1.

3 By'
(A-4)

Equation (A-3) is the same as without the magnetic
field. Equation (A-4) differs from the nonmagnetic case
only in the scale factor 4 for the viscosity. This would

involve a change in the Prandtl number (liC~/h) which

should not materially affect our conclusions. '
Chapman and Cowling have given the formulas for

the pressure tensor of a simple gas. As the shock is

determined mainly by the ions, we shall use formulas
(A-3) and (A-4), with ~, r, and fi referring to the ions.

To derive the equation of motion we note that the
magnetic field introduces a body force jXH per unit
volume. " With Maxwell's equation (neglecting dis-

placement current in the highly conducting plasma),
VXH=4irj/c, the body force can be written
(c/4s.)$(VXH)XH). Hence we have the following

equation of motion for the particular form of the
pressure tensor discussed above:

DN C Bp 48 ( c)N)
p =—f(vxH) xHj. + ~

y,—~. (A-5)
Df, 4x ax 3axE ax)

Equation (A-5) can be shown to be equivalent to
Eq. (2) of Sec. 2.

For the energy equation, we note that the magnetic
field does no work and that the energy dissipated in
Joule heat (g/o) vanishes, on account of our assump-
tion of infinite conductivity. Hence the equation of
energy remains the same as in the nonmagnetic case.~'

Kith neglect of viscosity and conductivity our
equations reduce to those considered by Lust."

sr Dr. J. Feinstein has drawn the author's attention to the fact
that a relativistic treatment is needed when the magnetic field is
strong. However, for this to be so, the magnetic field must be
very strong, i.e., magnetic energy»rest energy LF. de Hoffmann
and E. Teller, reference 1, p. 697, Eq. (60)g. The present treat-
ment would therefore apply to most physical problems of interest.

's See reference 7, p. 278, Eqs. (1) and (3a).

where
Ss—Si=C. in(Fr) —r),

p2/pl 'g p2/p1 (3-2)

Ke shall consider the case of a weak shock for which

V=1+y, r)=1+e,

where y and e((1. Then we have

ho(y —1)e'+f2&+ (y —1)yje—2y=0. (8-4)

Eliminating y between (8-1) and (8-4), we have

(Ss—Si)/C. =»(1+s (V—1)[he+ sr(V+1)le' ) '

i.e.,
(Ss—Si)/R= -,'t he+-'ey(y+1) je' . (3-5)

For a compression wave e)0, and Ss)St, from (8-5).
52(S~ for a rarefaction shock, which is, therefore,
thermodynamically unstable.

Our use of Eq. (8-1) seems at first sight to be at
variance with de HoGmann and Teller's inclusion of
magnetic terms both in the expressions for pressure
and energy, ' vis. ,

p*=p+H'/8rr,

E"=E+H'/8s p.

(8-6)

(8-7)

The two procedures are, however, equivalent; this can
be seen as follows. For a unit mass of gas, we have the
following relation from Eqs. (1) and (6) of Sec. 2:

He = constant.

Now, according to de HoGmann and Teller:

dQ =dE*+p*ds =dE+d (H's/8rr)+ pds+ (II/87r) ds

=dE+ pds, (8-9)

from (8-8).
The relation (8-9) shows that there is, in fact, no

need to include the magnetic terms in the thermo-
dynamic equations, as was stated in the beginning.

~ H. L. Heifer, Astrophys. J. 117, 180 (1953), Eq. (19).
~ See reference 1, pp. 698—700,

APPENDIX II. THERMODYNAMICAL STABILITY OF A
HYDROMAGNETIC SHOCK

Ke first note that on account of the reasons stated
in Appendix I, the magnetic field does not affect the
equation of energy. Ke may therefore use the thermo-
dynamic equation for the change of entropy, vis. , ',


