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Analytic Approach for the Pion-Proton Scattering Phase Shifts*
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A simple method of solving for the phase shifts of the pion-proton scattering is presented. The rapid
solution afforded can be utilized, as the Ashkin diagrams have been employed, to give starting values to an
electronic computer or alternatively to analyze with more ease the variation of the phase shifts as a function
of the input data in terms of the coefficients of the angular distributions. A new plot of a function of the total
cross section versus the pion energy is introduced. The nearly straight line resulting should help to evaluate
the experimental data.

INTRODUCTION

~HE first analyses of pion-proton scattering were
performed by Fermi et aL' with an electronic

computer. A thorough statistical investigation is neces-
sary to extract the greatest accuracy and maximum
consistency from the experimental information, but the
essence of the physics is thereby obscured. Extensive
calculations have shown that the phase shifts' 511 and 813

are small and erratic. A good assumption is then to take
these phase shifts equal to zero. ' 4 We shall see that the
remaining four phase shifts can be easily evaluated
analytically. Increased insight into the nature of the
solutions results as a consequence. Of course our con-
clusions do not dier essentially from those reached by
others using fast digital calculations or Ashkin dia-
grams, ' but we offer our method in the hope that its
simplicity will help us understand the behavior of the
pion-proton scattering.

POSITIVE PION-PROTON SCATTERING

We first develop our formulas for the case of the 7r+—p
scattering. Here our method is basically the transforma-
tion of the graphical or geometrical procedure of Ashkin
to an algebraic guise.

Given the experimental data in terms of the coefFi-
cients' ' A+, 8~, C+ of the angular distribution'

'do/dQ, =A++Bi cos—8+C+ cos'8,

we get for the S phase shift 83.

( 1
sin2bs —— ts(D 2')'*+(Z —2)

~

———tt' —~,
&L )'

where D= 4(A++B++C+), Z = 2 (A++C+/3), L=D
—42+4, and tt = (Z —2 2B+)/L. Again we may p—refer

* Supported in part by U. S. Atomic Energy Commission.
f On sabbatical leave from Brooklyn College.
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2%e use the notation of H. A. Bethe and F. de Hoffmann,
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8 R. Martin, Phys. Rev. 95, 1606 (1954).
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1586 (1954).

6 W. Rarita, Phys. Rev. 99, 630(A) {1955).

to use the equivalent formulas:

cos(p —2bs) = (Z—2—2B+)/Ll,

cosP = (Z —2)/L*'.

(»)
(2b)

where

b+3= (—2+4—cos2bs)+iL(D —Z') l —sin28s)
=

~

b+3
~
(cos8+ i sin8) —=X+i I'.

For the 120-Mev data, we have

X=1.9981, F—1.9425, tb+3i'= 7.7657,

Ib+3I = 2.7867, cos8=0.7170, 8=44.19',

~

b~'= (X—3)'+I"=4 777, cos(28» —8) =0.9658,

2bss —8= &15.03', ass ——29.61' (Fermi), and ass= 14.58'
(Yang).

Thus our method gives both the Fermi and Yang
solutions at. the same time. It is interesting to note that
the Fermi solution (bs, ass, bsr) and the Yang solution
(n&,n», n») are related to each other by the following
equations;

n3=83,

n31—O. 33——b33—b, 1,

tan(nss —bsr) = 3 tan(ass —her).

(4a)

(4b)

(4c)

The multiplicity of the allowable solutions comes
from the ambiguity of the signs of the square roots in
Eq. (1) or alternatively the choice of the branches of the
cosine functions in Eqs. (2a) and (2b). We illustrate our
procedure with the data' at 120 Mev, where

3+——0.200, 8+———0.360, and C+——1.040.

We get
D= 3.520, 2= 1.093, L=3.147,

(D—Z') -*= 1.525, tt = —0.0593,

(1/L —tc') l =0.5606, Z —2= —0.9067,

sin26~ ———0.4178, 63———12.35'.

If we use Eqs. (2), we have cos(P —253) =—0.1052 and
cosP= —0.5111; P—2bs ———96.04', P= —120.74', and
83= —12.35' as before.

To calculate 833, we can use

f
b+.3

J
s+.9+.4C

cos(2bss —8) = (3)
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siil bi= (30 —tr+)/(Tp (7)

In principle, we can compute ~bi~ from just the
measurements of the total cross sections alone. The
error in this method is, however, large because there

TABLE I. Positive angular distribution coefficients. (a) Original
coeRcients of Anderson et cl. (reference 7}.(b) A more precise set
of coe%cients computed from their 6nal phase shifts. (c) Coeiir-
cients obtained from our least-squares Gt.

(a)
{b)
(c)

0.960&0.101
0.917&0.073
0.960+0.101

0.411+0.172
0.345&0.145
0.273&0.141

3.395&0.345
3.340+0.181
3.365+0.305

occurs the difference of two large numbers with sizable

errors.
In order to make a self-consistent calculation, 4 we

have to examine the relations that the coeKcients A+,
&+, C+, Ap, &p, Cp and A, 8, C must obey under our

condition of 6»——b»=0. By making use of the equations
of reference 5, we can show that

3(B +Bp)=B+,

3(C +Cp) =C+,

9Cp=18C =2C+.

(8b)

(8c)

If our data satisfy Eqs. (8) within the experimental

error, we can be assured that 811 and 513 are small and

can therefore be set equal to zero.
We now explore two additional methods of computing

bi. They are based on Eqs. (9):

where

2A —Ap ——s(~ s~'+sa*+s*a),

2B —Bp ———', (sb*+s*b),

s= exp(2ibi) —1, u= exp(2ibs) —1,

b= 2 exp(2ibss)+exp(2ibsi) —3.

(9a)

(9b)

The special case when b»=0 was derived by de
Hoffmann et al. '

To obtain 531, we use

cos2531= X—2 cos2633.

At 120 Mev we have for the Fermi solution:

cos28~1= 0.9746, 831=6.47'.

Our values check those quoted by de Hoffmann eI al. '

POSITIVE AND NEGATIVE PION-PROTON
SCATTERING

We 6rst observe that in general

sin'bi+2 sin'Sip+sin'bit ——(3o —o+)/8m)('. (6)

Thus sin'8i((3o. —o+)/ap, where op =—Ss.k'. If we now

make the explicit assumption that 611=513=0, we get

ThsLE II. 189-Mev phase shifts.

~31

~13
~11

Anderson et al.

—11.3'&3.2'
98.8'&3.6'

—11.6 &5.1'
—2.8'&4.5'
—2.1'&3.8'
—2.6'&7.5'

Orear

—10.3'
89'
0

15'
0
0

Our values

—11.1'~1.8'
93.1'&9.4'

—13.0'a5.5'
17.1'+8.0'

0
0

TanLz III. Comparison of the (a) Brookhaven and
(b) Bethe assumptions.

R—=—

St. line Cubic

~sj~
St. line Cubic

181 189 181 189
Mev Mev Mev Mev

(a} Brookhaven 0.738 0.699
(b) Bethe 0.478 0.462
(c) Russian o.+ 0.353 0.336
(d) Russian 0 0.661

73 41
2.2 3.2

6.4 3 2—1.7 —2.8

'Anderson, Davidson, Glickman, and Kruse, Phys. Rev. 100,
2'l9 (1955).

Another equation which may be useful is

sin'bi ——-', L3(A +Ap) —A+]. (10)

We will illustrate our procedure with the recent
accurate data obtained at Chicago" at 189 Mev.

Using a least-squares fit, we first choose the best
values of B+, C+ which satisfy Eqs. (8). In Table I, we
enter our results as (c).For comparison, we also give (a)
the original coefficients of Anderson ef al. ,r and (b) a
more precise set computed from their 6nal phase shifts.

We use Eq. (2) and find cos(P —25s) =0.6751, cosP
=0.9030, P—28s ——47.54' and P= 25.44', bs ———11.05'.
At 189Mev, we note that the signs of both angles P—28s
and P have changed from their assignment at 120 Mev.
Of course we have to determine as a function of the
meson energy Ez, when cos(P —2bs) and cosP go through
1 in order to get a continuous (or here an analytical)
change in 63 ~s EI, By tracking or following the cosine
function, we find the critical region when cos(P —25s)
and cosP go through 1 is for both of them about 169
Mev. This behavior accounts for the large number of
solutions found by de Hoffmann et al. ' at this energy.
The multiplicity of solutions arises from the various
choices of the sign for P and P—25s.

The value of b3 ———11.1' is the Fermi solution, i.e.,
the continuous extension of the solution at low energies.
Anderson et al. ' give 53———11.3'~3.2'. With our choice
of 83, we proceed to 83~. We have 8=210.92' and
2b» —g= +24.77',

ass ——93.08' (Fermi); ass ——117.85' (Yang).

The function (D—Z') ' has changed sign, as it becomes
zero when Im(a+b) =0 and this happens at about
177 Mev.

The behavior of Eq. (2) as a function of energy is
smooth and no new branching of solutions occurs. Of
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TABLE IV. Resonance parameters.

(a) Brookhaven
(b) Bethe
(c) Russian a+
(d) Russian a

B& (Mev)

188
194
198
196

(ty+ —Oo)» (mb)

7.5
7.5

16.1
32.9

course these conclusions can be obtained equally well,
and were so arrived at, with the use of Ashkin diagrams. '

The use of Eq. (5) gives 5»———13.01'.
To complete our phase-shift analysis, we have to

determine br Equ. ation (7) gives ~5&~
= 10.8'&9.5'.

Equation (10) has a resulting value of ~5&~ =13.8'
~12.4'.

We rewrite Eq. (9a) in the form

2A —A p
——s Lcos2(5r —5s) —2 cos25r —cos25s+ 2j. (11)

Clementel et uI. ' have developed a similar point of view.
For 2A —A() = —0.044&0.080, we get 8~= 10'&15'.
Our most reliable determination of b~ comes from

Eq. (9b), which we rewrite as

28 —Bp——-'s[2 cos2(ass —5r)+cos2(5sr —hr)
—3 cos28r —2 cos28pp —cos28»+3j. (12)

the subscript r refers to the resonance energy co,. The
advantage of this representation is that we can test our
data for smoothness without the intermediary of
knowledge of the angular distribution. Incidentally,
since y varies chiefly as (op —o..)& we can use this equa-
tion as a convenient interpolation formula. Also we can
see from this expression that y is more sensitive to
errors in co and 0-+ near resonance than away from
resonance.

The recent Brookhaven" data have been analyzed
according to the above prescription. A least-squares fit,
first to a linear and then to a cubic function of co, was
made. Moreover, the 181- and 189-Mev data were
considered (a) to be above resonance as preferred by
Lindenbaum and Yuan" and (b) to be below resonance
as advocated by Bethe et al. 5 We enter our results in
Table III. In Table III, hy—=deviation of y from the
least-squares 6t. e=—experimental error in y due to 60+.
Ke ignored the error due to 6+. A slightly greater
weight is thus given to the data around resonance. The
quantity 8 is taken as a measure of the least-squares fit.

TABLE V. 81 from the Russian data. '

L'I, (Mev)

Then 6~=17.1' from 28 —80=0.113. In Table II we
summarize our results and compare them to those of
Anderson et al. ~ and Orear. '

140
184
197
216
226

1.354
1.376
1.650
1.742
1.789

0'
4.3'

17.9'
13.0'
21.3'

0
0

11.7'
00

12.6'

11.9'
13.4'
22.7'
19.5'
26.0'

ENERGY DEPENDENCE OF THE CROSS SECTION

.A new plot of a function of the total cross section
versus the energy will be introduced, in which the
resulting nearly straight line should aid in evaluating
the experimental data. We first derive the relation for
cr+ vs co, the center-of-mass energy of the pion. We avail
ourselves of the relation given by Chew and Low" that
(k'/co*) cot5ps vs cp is almost a straight line. k is the
momentum of the meson and co* is co plus the kinetic
energy of the proton. Serber and Lee" and Dyson,
Castillejo, and Dalitz" have shown that in general
(k'/&u*) cot5» —(1/pa*) is an analytic function of co*. As
a+=op(sin'ass+ —,'(sin 5s+sin'8sr)) and sin'5s+sin'Bsr is
small and believed to vary slowly with energy, we can
surmise that err+ (oy —o p)

—„j/o'p= sin'ass+ e(cp), where

e(s&) is small arid slowly varying. Further, as k=K '
00

—
&, we can transform the Chew-Low relation into the

following one: y=—(1/ceo p) L (a p
—o,)/o, a p7& vs a& should be

nearly a straight line. Here o,=o+—(o+—o p) „where

Clementel, Poiani, and Villi, Nuovo cimento 2, 552 (1955);2,
389 (1955).

P J. Orear, Phys. Rev. 100, 288 (1955).
'0 G. F. Chew and F. E. Low, Fifth Annual Rochester Confer-

ence (Interscience Publishers, Inc. , New York, 1955)."R.Serber and T. D. Lee, quoted in reference 12.
n Dyson, Castillejo, and Dalitz (to be published).

a See reference 14.

A similar analysis was performed on the Russian
data" for energies from 140 to 229 Mev. We summarize
our results in Table IV. E„—= laboratory resonance
energy. The pr+ —p Russian data" from 140 to 335
Mev (we excluded the data at 363 and 393 Mev)
were studied only for the straight-line case. 0-,=30
—(3o —o'p), or we have o+~3o in our formulas. For
comparison, we recall that Bethe et al. ~ give 195 Mev
for E„.

Assuming that y= (o.p —o,)& is linear in co, and
interpolating, we obtained Table V from Eq. (7).Here ri

is the pion momentum in units of m c. If we assume that
8& ri, then 5&/r)=6. 7'. Drear' gives 9.2' for this quan-
tity. In Table V, 6&' is the lower limit and 5&" the upper
limit of 5~.
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