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Statistical Theory of Nuclear Fission: Asymmetric Fission*
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A statistical theory is developed, according to which the relative probability of a mode of 6ssion is deter-
mined by the total excitation energy of its two fragments calculated at the moment just before separation,
In order to calculate the excitation energy, the well known semiempirical atomic mass formula is corrected
for its deviations known to be attributed to the eRects of nuclear shells. The nuclear level density expression
is studied empirically with special attention to shell eRects. These results are used for a quantitative calcula-
tion of the relative probabilities of all possible modes of fission. The mass distribution curve of 6ssion prod-
ucts of U"' induced by thermal neutrons is derived and compared with experimental results. Applications of
the statistical theory to charge distribution, kinetic energy distribution, variations of mass, charge and
energy distributions with respect to target nucleus and incident energy, prompt neutron distribution,
spontaneous 6ssion yields, and ternary 6ssion will be discussed briefly.

I. INTRODUCTION

HE problem of asymmetric fission has been dis-
cussed by many authors. ' However, there is no

quantitative calculation leading to a derivation of the
double-humped mass distribution curve of the 6ssion
products. ' Also there is no unified interpretation of many
diversified fission characteristics. '

Calculations of atomic masses by Bohr and Wheeler4
and by Frankel and Metropolis, ' based on the liquid
drop model, (L.D.M.) give the result that the total

energy release is largest for symmetric fission. The
L.D.M. mass formula (by which we mean the formula
given by Fermi' and used by Metropolis and Reit-
wiesner to calculate their mass table' sometimes dis-

agrees markedly with experiment. Recent progress on

~ This paper is based on a Ph. D. thesis submitted to the De-
partment of Physics, University of Chicago, December, 1953.
Preliminary results have been published in a Letter to the Editor
LPeter Pong, Phys. Rev. 89, 332 (1953)7.

(Now at Department of Physics, Utica College of Syracuse
University, Utica, New' York.

' R. D. Present and J. K. Knipp, Phys. Rev. 57, /51 (1940);
J. Frenkel, J. Phys. (U.S.S.R.) 10, 533 (1946); A. J. Dempster,
Phys. Rev. 72, 431 (1947); S. Frankel and N. Metropolis, Phys.
Rev. 72, 914 (1947); P. F. Gast, Phys. Rev. 72, 1265 (1947);
E. Bagge, Z. Naturforsch. 2a, 565 (1947); M. G. Mayer, Phys.
Rev. 74, 235 (1948); K. H. Kingdom, Phys. Rev. 76, 136 (1949);
G. C. Wick, Phys. Rev. 76, 181 (1949); L. Meitner, Nature 165,
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Phys. Rev. 78, 330 (1950) and 79, 197 (1951); J. Jungerman,
Phys. Rev. 80, 285 (1950); J. A. Wheeler and D. L. Hill, Phys.
Rev. 83, 236(A) (1951);H. G. Thode, Trans. Roy. Soc. Canada
45, 1 (1951); W. J. Swiatecki, Phys. Rev. 83, 178 (1951);T. D.
Newton, Phys. Rev. S7, 187 (1952);D. L. Hill and J. A. Wheeler,
Phys. Rev. 89, 1102 (1953).
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determination of nuclear masses (Sec. II) enables us to
calculate the total energy release more accurately. This
calculation shows that the total energy release of some
asymmetric modes of fission may be larger than that
of symmetric fission by 2 Mev (Sec. II). As the total
energy release is of the order of 200 Mev, the difference
of 1% at first seems to be insignificant. However, most
of the energy released is derived from the Coulomb
potential between the two fragments. The internal
excitation energy, a small portion of the 200-Mev total,
is estimated by Brunton to be of the order of only 20
Mev. As the Coulomb energy is largest for symmetric
fission (Sec. IV), the difference in excitation energy
between asymmetric and symmetric modes will be
even larger. It will be shown (Sec. VI) that the energy
of internal excitation of the fission products with a
mass ratio of about 1.S is greater than that of sym-
metrical fission by about 5 Mev. Recent experiments
on neutron distribution also support this fact (Sec.
VI). The difference of 5 Mev out of about 20 Mev is
no longer insignificant. Frankel and Metropolis' calcu-
lated the shape of the fissioning nucleus at the saddle
point of the energy on the basis of the Bohr-Wheeler
formula. They found that this shape is symmetric, but
does not show a "neck" at which the deformed nucleus
might break. The calculation by HilP demonstrates
that the fission process is slow enough so that the
surface waves travel from one end to the other many
times before a definite neck develops and 6ssion occurs.
It can also be estimated that the process from saddle
point to separation is sufficiently slow for a nucleon to
cross the nucleus many times. Therefore, it is possible
that the fission modes wiH be determined at a rather
late stage, probably just before the separation of the
fragments. Furthermore, because of the slowness of the
fission process, we may assume that an instantaneous
statistical equilibrium will be established at any instant
of the process, from saddle point to separation. Accord-
ing to this assumption, any relative probability of

8 D. C. Brunton, Phys. Rev. 76, 1798 (1949).
9 D. L. Hill, Phys. Rev. 79, 197 (1950}.
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FIG. 1. Energy of isobars. (a) Mass number 107.
(b) Mass number 135.

occurrence is proportional to the corresponding density
of quantum states. The observed relative probabilities
of 6ssion modes are thus proportional to densities of
quantum states of the corresponding nuclear con6gura-
tions at the moment when statistical equilibrium is last
established, presumably the moment just before separa-
tion. For convenience of calculation we approximate
the configuration at this critical moment by that of two
deformed fragments in contact. The density of quantum
states of this configuration may be calculated; its value
obviously depends on the excitation energies of the two
fragments at this critical moment. Larger excitation
energy corresponds to larger density of quantum states
and thus to larger relative probability. The density of
excitation states of a nucleus, usually expressed by an
exponential function, c exp[2(aE)&j, is a rapidly in-
creasing function of the excitation energy (Sec. III).
A small change in excitation energy may thus result in
a large change of the relative probability. That asym-
metric fission has an excitation energy larger than sym-
metric fission by 5 Mev leads to a larger relative proba-
bility for asymmetric fission. In this paper the density
of quantum states at the critical moment will be calcu-
lated (Sec. V). This quantity turns out to be a function
of the mass numbers, charge numbers and Coulomb
energy of the two fragments, and depends para-
metrically on the target nucleus, incident particle, and
bombarding energy. This enables us to derive quanti-
tatively the mass distribution, charge distribution,
kinetic energy distribution and many other distribu-
tions of the fission products, as well as the parametric
dependence of these distributions on target nucleus,
incident particle and bombarding energy. The asym-

metry in mass splitting will be discussed in detail
(Sec. VI). Other applications will be discussed briefly
(Sec. VII) and their details will be published in the
future.

II. ATOMIC MASSES IN THE FISSION-PRODUCT
REGION

Since the primary 6ssion products are short-lived,
there are no direct measurements of their masses. The
mass determination has to rely on indirect methods.

Calculation of atomic masses usually starts with a
semiempirical mass formula based on the liquid-drop
model of the nucleus. "This formula can be written as
follows:

M(A, Z) =M„+By(Z Zg)'+—0g. (1)
The erst term corresponds to the mass of the beta-
stable nucleus. The second term corresponds to the
beta-decay energy. The last term is the even-odd
energy. The constants in Eq. (1), determined by
Fermi, ' are as follows (all in amu):

M = 1.01464A+0.014A **—0.041905Zg,

B~——0.041905/ZA,

ZA ——A /(1.980670+0.0149624A t),

odd-odd
0.036

6g = - X& 0 odd-A

.—1 even-even.

(2)

This set of parameters has been used by Metropolis
and Reitwiesner~ in an elaborate tabulation of atomic
masses which is widely used.

This mass formula represents the atomic masses
fairly well for a wide range of mass numbers. However,
recent measurements of atomic masses show that local
deviations from this formula of the order of 10 Mev
exist. If an accuracy of a few Mev is important these
deviations have to be corrected. The 6rst term M~ of
Eq. (1) may be compared with the experimental masses
of stable nuclei. The second term may be compared with
the experimental beta-decay energies. Thus corrections
to Mz, Bz, and Zz may be obtained (8z is assumed to
be correct). It is a common practice to assume M~, B~,
and Z~ to be continuous functions of the mass number
2 and to determine them by extrapolating known ex-
perimental values.

We use the experimentally known beta-decay ener-
gies" to plot the empirical energy diGerences of isobaric
nuclides. These curves may be compared with those
determined from Eqs. (1) and (2). A comparison of
these isobaric curves for two mass numbers is shown in
Fig. 1 as an example. The Z& correction hZ& may be

' C. D. Coryell, Ann. Rev. Nuc. Sci. 2, 305 (1953).This paper
gives a comprehensive review of expressions of atomic masses.". Way, Pano, Scott, and Thew, Nuclear Data, National Bureau
of Standards Circular No. 499 {U.S. Government Printing OfFice,
Washington, D. C., 1950), and Supplements. These summarize
all experimental results of beta-decay energies.
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found directly by comparing the positions of the bot-
toms of the two curves. The Bz value may be checked
by comparing the curvatures of these two curves. This
procedure has been applied to isobaric nuclides of
nearly all odd mass numbers between 71 and 165
(fission-product region). The odd mass numbers are
used to avoid the even-odd complication. When no
magic number is involved, the parabolic approximation
is generally good, as can be seen in Fig. 1.No noticeable
deviation of curvature is found. Thus we assume the
J3& values given by Eq. (2) to be correct. On the other
hand, the Z~ values given by Eq. (2) deviate from the
actual values considerably. The deviation may be either
positive or negative, as can be seen in Fig. 1, with a
maximum of the order of one charge unit. The AZ~
values, defined as Z~(exp) —Z~(L.D.M.), for odd mass
numbers between 71 and 165, are plotted in Fig. 2
with their estimated errors. When the determination is
uncertain only limits are given. A smooth curve may be
drawn as the correction curve of Z~. To determine M~,
we compare the values obtained from Eqs. (1) and (2)
with the mass-spectroscopically determined masses of
stable isotopes. The data used are those of Duckworth
et al."and of Halsted. "Since a stable isotope is usually
not situated at the bottom of the isobaric parabola, a
small correction has to be applied to bring the experi-
mental mass value to that at the bottom of the parabola.
(For odd-A stable nuclides, Z differs from Zz by less
than 0.5 unit and this correction is usually less than
0.3 Mev. ) The correction AM~, defined as M~(exp)—M~(L.D.M.), is plotted in Fig. 3 for those isotopes
whose masses are known experimentally. A smooth
curve may be drawn as the M& correction curve. The
curve passes through most of the points except the
magic number nuclides. In the following we will dis-
cuss the magic number eGects.

The assumption of continuous values of Mg, B~, and
Z& has been used many times before. It is a good
approximation except for cases where magic-number
nuclides are involved. Therefore, it has to be modified
in order to include the magic nuclides. Experimental
evidence indicates that a discontinuity exists at the

'~Duckworth, Kegley, Olson, and Stanford, Phys. Rev. 83,
1114 (1951); H. E. Duckworth, (unpublished, 1952); H. E.
Duckworth and R. S. Preston, Phys. Rev. S2, 468 (1951);H. E.
Duckworth, Nature 170, 158 (1952).

'~ R. E. Halsted, Phys. Rev. 85, 726 (1952);SS, 666 (1952).
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FIG. 2. Correction curve for liquid-drop model values of the
most stable charge Zz. AZ&=Z& (experimental) —Zz (liquid-
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FIG. 3. Correction curve for liquid-drop-model values of the
mass oi stable isobar Mg. AiVg=iVz (experimental) —M~ (liquid
drop model). The symbols ~, X, and o represent the nonmagic-
number nuclides, magic-number nuclides and magic-number
nuclides after adding p, respectively.

"M. G. Mayer, Phys. Rev. 74, 235 (1948);J.A. Harvey, Phys.
Rev. 81, 353 (1951); H. E. Suess, Phys. Rev. 81 1071 (1951);
H. E. Suess and J. H. D. Jensen, Arkiv Fysik 3, 5 7 (1951).

magic numbers. For example, the points corresponding
to Sn"' and Sn"4 (50 protons) in Fig. 3 are lower than
the nonmagic ones of the same mass by about 1 Mev.
That magic number nuclides are more tightly bound
than others can be observed also from the abrupt
change in the neutron binding energies of the order of
2 Mev at the shell edges. '4 These suggest that a dis-
continuous term p, , analogous to the bg term, may be
introduced in Eq. (1) to account for the discontinuous
variation of nuclear binding energy at shell edges. p
will be between —1 and —2 Mev for magic nuclides
and zero for others. From Fig. 3 the value of p (50 pro-
tons) may be estimated to be about —1.1 Mev. From the
difference in neutron binding energies, " the values of

,Ii (50 neutrons) and Ii (82 neutrons) are estimated to
be both —2.0 Mev. As the discontinuities at magic num-
bers are attributed to the p, term, the mass values after
removing the p, term are expected to vary continuously.
In Fig. 3 the masses of magic nuclides, after removing
the p term, are also given. A continuous smooth curve
may now be drawn through these points and the non-
magic nuclides.

The isobaric curves involving a magic-number nu-
clide are usually not a smooth parabola, as can be seen
in Fig. 1(b). If the mass of the magic nuclide is cor-
rected for the p, term, it its the parabola better. Thus
the introduction of p seems to be able to account for
the irregularities associated with magic numbers. Our
correction curves AZ~ and AM~ are both obtained from
mass data after removing p. Thus they may be repre-
sented by continuous curves.

In summary we may express the corrected mass
formula (in the fission-product region) as follows:

M(A, Z) =M~+AMg
+By (Z Zg AZg)'+&~+—IJ, , (—3)
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TABLE I. Comparison of Zz values of the General Electric Company chart of nuclides and this paper.

Mass number
Zz (G.E.chart)
Zg (this paper)

75 85 95
33.15 36.89 41.88
33.06 36.91 41.58

105
45.82
45.82

115
49.73
49.40

125
52.24
52.54

135
55.61
55.67

145
60.41
60.16

155
63.71
63.80

165
67.29
67.34

where M&, 8&, Z&, and 3& are given by Eq. (2), AM&
and AZ& are given by Fig. 2 and Fig. 3, respectively
and p is given by

p (50 neutrons) = —2.0 Mev,

p (82 neutrons) = —2.0 Mev,

p (50 protons) = —1.1 Mev,

p, =0 for nonmagic-number nuclides.

(4)

"Coryell, Brightsen, and Pappas, Phys. Rev. 85, 732 (1952).
A. H. Wapstra, Physica 18, 83 (1952)."Collins, Nier, and Johnson, Phys. Rev. 86, 408 (1952)."A. E. S. Green and N. A. Engler, Phys. Rev. 91, 40 (1953);

A. E. S. Green and D. F. Edwards, Phys. Rev. 91, 46 (1953).' K. Way, Atomic Energy Commission Report CP—2497, 1944
(unpublished) .

20 I. Joliot-Curie, J. phys. radium (8), 6, 209 (1945)."E.Feenberg, Revs. Modern Phys. 19, 329 (1947)."T.P. Kohman, Phys. Rev. 73, 16 (1948).
2'W. H. Sullivan, Trilirlear Chart of nuclear Species (John

Wiley and Sons, Inc. , ¹w York, 1949)."J.R. Stehn, Phys. Rev. 93, 932 (1954).

This formula differs from Eq. (1) by the inclusion of
dM~, AZ~, and p. The p term is directly related to the
magic numbers. The AM~ and AZ~ terms are also
influenced by the nuclear shells. The dips of the AM&
curve in Fig. 3 are found at the regions of 50 and 82
neutrons. (These indicate that nuclear masses are
generally lower by a few Mev in the broad neighborhood
of shell edges and reach minimum at magic numbers. )
hZ~ remains nearly constant in the shell-free regions
but increases when a neutron shell is filling and de-
creases when a proton shell is filling. As the correction
terms reAect the shell e6ects, this formula may be
regarded as the liquid-drop model formula corrected
for the shell effects.

During the progress of this work many papers have
been published discussing the shell effects on nuclear
masses. Coryell et u/. ""introduced discontinuous Z&
values to account for the shell effects. Wapstra" dis-
cussed the changes of the beta-stability line near closed
nuclear shells. Nier et al."" used Wigner's mass
formula and determined its parameters empirically for
different regions between the shells. Green et al."also
gave empirical corrections of the liquid-drop model
mass formula. The general attitude is to introduce
some new term or some discontinuous parameters to
account for the abrupt changes at shell edges.

Empirical determination of the beta-stability line Z&
has been made by Bohr and Wheeler, ' Way, " Joliot-
Curie" Feenberg, " Kohman" Sullivan" and Stehn"
Many of them assumed that the beta-stability line
passes within 0.5 charge unit through the charge
numbers of stable nuclei. The Z& values given by the

General Electric Company Chart of Nuclides'4 are
compared with the present values in Table I.

The corrected mass formula, Eq. (3), may now be
used to calculate the masses of primary fission products
from which we may compare the total energy release in
di6erent modes of splitting. For example, the total
mass of 4sZr"'+ssTe"' is calculated to be 235.91051
amu and that of 4sPd"s+4sPd"s to be 235.91288 amu.
The former is smaller than the latter by about 2 Mev.
Thus the total energy release in the asymmetric mode
4sZr"'+ssTe"s is about 2 Mev larger than that in the
symmetric mode 4sPd"'+4sPd"'. None of these nu-
clides are magic-number ones. It will be interesting to
note that if the uncorrected mass formula, Eq. (1), is
used for calculation, the total energy release in 46Pd"'
+4sPd"' splitting would be calculated to be higher
than that of 4sZr" +ssTe"' by 4.2 Mev.

Ws(E) =c expL2(aE)**j. (5)

The parameters u and c, as functions of the mass
number A, have been determined empirically"" by
using experimental data of slow-neutron resonance
level spacings. However, the results were considered
as a rough approximation and good only for odd
nuclides. As for the even nuclides, there are indications
that they have smaller densities. "Recent studies show
that the magic-number nuclides have abnormal level
spacings. " In this section we shall use experimental
data of fast-neutron capture cross sections" to deter-
mine the parameters a and c as functions of A.

~~ Feld, Feshbach, Goldberger, Goldstein, and Weisskopf, U. S.
Atomic Energy Commission NYO —636, 1951 (unpublished),
pp. 176, 185.

2' J. M. Blatt and V. F. Weisskopf, OfFice of Naval Research
Report ONR —42, 1950 (unpublished), p. 60.

"H. W. Newson and R. H. Rohrer, Phys. Rev. 87, 177 (1952).
This paper gives the slow-neutron data. For fast-neutron data,
see reference 28 below. For level spacing near ground states, see
F. Asaro and I. Perlman, Phys. Rev. 87, 393 (1952); P. Staehelin
and P. Preiswerk, Helv. Phys. Acta 24, 623 (1952); P. J. Grant,
Proc. Phys. Soc. (London) A65, 150 (1952); B. B. Kinsey,
quoted in reference 31.

'Hughes, Spatz, and Goldstein, Phys. Rev. 75, 1781 (1949).
This paper gives references to earlier work. D. J. Hughes and
D. Sherman, Phys. Rev. 78, 632 (1950); Hughes, Garth, and
Eggler, Phys. Rev. 83, 234 (1951) and "Fast-Neutron Cross
Sections and Nuclear Level Density" (unpublished); Garth,
Hughes, and Palevsky, Brookhaven National Laboratory Report
BNL—103, 1950 (unpublished), p. 24; Garth, Hughes, and Levin,
Phys. Rev. 87, 222 (1952).Hughes, Garth, and Levin, Phys. Rev.
91, 1423 (1953).

III. NUCLEAR LEVEL DENSITY

The energy level density of a nucleus is usually ex-
pressed by a formula derived from the statistical model
of nucleus,
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The fast-neutron capture cross section is related to
the level density by the following formula derived from
the statistical theory of nuclear reactions":

(6)

where k is the neutron wave number, I', is the radiation
width, and 8"0 is the density of levels due to neutrons
of zero angular momentum. Since the capture cross
sections used below are due mainly to the contributions
of neutrons of zero angular momentum, "Eq. (6) may
be used to determine S'0. For o.

„

the capture cross-
section data of 1-Mev neutrons by Hughes et al."are
used. The values of I'7 are taken from the straight-line
extrapolation of the values of Heidmann and Bethe."
The value of k corresponds to the wave number of I-
Mev neutrons. From these values we calculated the
values of 8'0 for 42 compound nuclei formed by cap-
turing a 1-Mev neutron.

In order to determine the quantities a and c occurring
in Eq. (5), the energies 8 of the compound nuclei must
be determined. The ground-state level position varies
discontinuously from one isotope to the other due to the
bz and p terms in Eq. (3); Hurwitz and Bethe" have
pointed out that these fluctuations may not eixst in
high excited states. In order to correlate the neutron
capture cross sections to the neutron binding energies,
they found it necessary to propose that the energy E of
the compound nucleus in Eq. (5) is not to be measured
from the ground state of the excited nucleus but from
a "characteristic level" of the same which is free from
the even-odd and magic-number eRects and so varies
smoothly from one isotope to the other. The fluctuation
of the ground-state level is then attributed to some
factors which have a strong influence on the ground and
low-lying states but have little influence on the high
excited states. " According to this hypothesis the E
values so measured are not determined by the binding
energy of the last neutron of the compound nucleus but
instead by the total energy content of the initial system
of the target nucleus plus a free neutron. Hurwitz and
Bethe pointed out that the neutron capture cross sec-
tion, which is proportional to the level density, actually
varies according to this pattern. The experiments of
Harris et al." show that the level densities of odd-even
and even-odd target nuclei, which correspond to odd-odd
and even-even compound nuclei, are nearly equal. This
is in agreement with the prediction of the Hurwitz-
Bethe hypothesis. Evidence from the magic-number
nuclei also provides a test in favor of this hypothesis.
On the basis of these considerations, the Hurwitz-
Bethe hypothesis will be assumed for the present work.

The next problem is to determine the position of the

"I'eshbach, Peaslee, and Weisskopf, Phys. Rev. 71, 145
(1947).

'0 J. Heidmann and H. A. Bethe, Phys. Rev. $4, 274 (1951).
"H. Hurwitz and H. A. 33ethe, Phys. Rev. 81, 898 (1951).
"Harris, Muehlhause, and Thomas, Phys. Rev. 79, 11 (1950),

and Bollinger, Harris, Hibdon, and Muehlhause, Phys. Rev. 92,
1527 (1953).

characteristic level, which should be smooth and free
from the even-odd and magic-number eRects. Hurwitz
and Bethe" suggested that the characteristic level
probably may be represented by a level calculated from
the liquid-drop model mass formula excluding the even-
odd energy b& term, In using our modified mass for-
mula, Eq. (3), the discontinuous p term should be
excluded also. Without the 8~ and p terms Eq. (3) is a
continuous, smoothly varying function of A and Z,
free from Quctuations due to even-odd and magic-
number eRects and so may be used as the characteristic
energy level of any nucleus. However, the absolute
position of the characteristic levels is not determined
in the previous considerations. This leaves free a
constant (or nearly constant) term in the expression for
the characteristic level which has to be fixed by other
considerations. It has been assumed in the following
calculations that the characteristic level of all nuclei
coincides with the ground state of the odd-odd nuclei,
1.e.)

M'(A, Z) =Mg+hMg
+&~(Z—Z~ —AZg)'+0. 036/Al amu, (7)

where d M& and AZ& are given by Fig. 3 and Fig. 2.
The excitation energy E of a compound nucleus

measured from its characteristic level may now be
calculated as follows: First calculate the energy content
of the initial system of a target nucleus [by Eq. (3)]
plus a free neutron. Then subtract from it the mass of
the compound nucleus at its characteristic level given
by Eq. (7). The values of excitation energies Z so ob-
tained and level densities Wo previously determined
may be put into Eq. (5) to determine the parameters u

and c. However, for each nucleus we have only one
equation to determine two parameters a and c. In order
to determine d' and c separately, we make the assump-
tion that two neighboring nuclides A~ and A2 have
essentially the same parameters a, c, and I"~. The
logarithm of the ratio of their neutron capture cross
sections will then, according to Eqs. (5) and (6), be
given by

Since Ej and E~ are known, a can be determined. Un-
fortunately, this is applicable only when the excitation
energies of the two neighboring nuclides diRer appreci-
ably. Otherwise, a large error will be introduced. From
a few pairs of nuclides satisfying this condition the
parameter u is determined for the corresponding masses.
A plot of a eersls A is made and a straight line may be
drawn passing through the points. This line may be
represented by the formula

a=0,050A,

which may be considered as a first approximation.
Using the values of a given by Eq. (8) we can determine
the values of the other parameter c for the 42 nuclides
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previously mentioned. A straight line is drawn on a
logarithmic plot of c ~ersls A. The mass dependence of
c may be expressed as follows:

0 38~—0.006A (9)

This is also a first approximation. Since the parameter
c, as will be seen later, is less important than the other
parameter a in this work, we shall assume the c values
of Eq. (9) to be correct. Using these values, we can
calculate the values of the parameter u for the 42
nuclides. The results are plotted against the mass
number A in Fig, 4. The straight line represents Eq.
(8). It is seen that Eq. (8) represents the variation of
a with respect to mass number fairly well. Therefore,
we shall use Eqs. (8) and (9) for the level density
parameters a and c. They hold for all types of nuclides,
even, odd or magic. The discontinuous changes due to
even-odd and magic-number eRects are attributed to
the change of excitation energy instead of change df
level density parameters. The linearity of the parameter
a with respect to mass number also agrees with the
result of the statistical model of nucleus.

Equation (5) with its parameters given by Eqs. (8)
and (9) represents only the density of levels resulting
from the capture of neutrons of zero angular momen-
tum. For convenience, it is identified with the density
of levels of zero angular momentum. To obtain the
density of levels with diRerent angular momenta we
use the formula given by Bethe, "

W, (E)= (2j+1) exp( —(j+st)'/2gTjWs(E), (10)

where g and T are given by

g = -,'(3M'/is') A 'ls,

I'= (E/g) I

where M and R are the mass and radius of the nucleus
of mass number A, and T is the nuclear temperature.
For a nucleus of mass number 120 excited to 10 Mev,
this formula gives a most probable value of j to be
about 10. This formula does not include the multi-
plicity due to the orientation of the angular momentum
vector; it will be seen later that the j dependence is
rather unimportant for our purpose.

IV. INTERNAL ENERGY AVAILABLE AT THE
INSTANT OF SEPARATION

Knowing the masses of primary fission fragments and
the mass of the initial system, we can calculate the
energy F released in the fission process by the following
formula:

F=M~ (A,Z) M(A t,Zi) M(A s—,Zs), (12—)

where M*(A,Z) is the mass of the excited compound
nucleus undergoing fission, and M (A i,Zi) and M (A s,Zi)
are the masses of primary fission fragments in their
ground states. The sum of A~ and A2 is A and the sum

IH. A. Bethe, Revs. Modern Phys. 9, 79 (1937).
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Fro. 4. Mass dependence of the level density parameter e.

In Sec. V it will be shown that a given G may be di-
vided in many ways into Ji and k but in general E))k.

~ Stanford, Duckworth, Hogg, and Geiger, Phys. Rev. 85,
1039 (1952).

"M. O. Stern, quoted from R. B. Leachman, Phys. Rev. 87,
444 (1952).

of Zi and Z~ is Z. F is the total energy release excluding
the subsequent energy release through beta trans-
formations of the primary hssion products. The mass
of U"' is taken to be 235.11794&100 amu, which is
derived from the experimental mass of Pb"' "and the
mass diRerence between Pb"' and U"'."The value of
3f* for fission of U"' with thermal neutrons is

M(235,92)+X, which is 236.12692 amu. The masses of
fission products may be calculated from Eq. (3). Thus
the energy Ii released in asymmetric 6ssion 40Zr"
+s&Te"s is 0.21641 amu or 201.48 AzIev. That of sym-
metric fission 4sPdits+4sPd"s is 0.21404 amu or 199.27

Mev, about 2 Mev less than that of asymmetric 6ssion.
%e are interested in the excitation energy of the

fission fragments at the critical moment, approximated
by two deformed nuclei in contact. Between the two
fragments there exists a mutual Coulomb energy, C.
In addition, each of the fragments possesses an amount
of deformation energy. (According to the L.D.M. , a
deformed nucleus has a larger surface energy and a
smaller Coulomb energy than the spherical nucleus.
The net change is a positive quantity, which is the
deformation energy. ) We denote the deformation en-

ergies by Di (light fragment) and D& (heavy fragment).
The sum of Dj and D2 is denoted by D. The sum of C
and D is the total potential energy, I', of this nuclear
configuration,

P=C+D. (13)

The difference F—I', denoted by G, is then the energy
available for internal excitation and center-of-gravity
motion of the fragments at the critical moment. The
total internal excitation energy of both fragments is
denoted by E and the total translational motion energy
is denoted by k. The above relations may be expressed
as follows:

(14)
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FiG. 5. Most
probable defor-
mation shape of
symmetric 6ssion
of compound nu-
cleus U" just
before the frag-
ments separate,
calculated on the
basis of P3(cosH)
deformation only.

from an expression by Present and Knipp. "Neglecting
cubic terms in n3, the deformation energy of the ith
fragment due to the P3 deformation is

D, (no;) =0.7143no;sE, ,o—0.2041ns,sE,,o, i = 1, 2, (17)

where E„'and E.,' are the undeformed surface and
electrostatic energies for the ith fragment. The values
of E„-'and E„.are calculated from E,'=0.0143: amu
and E$=0.000627Z'/A& amu according to Fermi's

The maximum value of E is G for the special case of
4=0. Thus, G may be called the maximgnz excitatioe
energy. The potential energies may be calculated by
using the liquid drop model. From the potential energies
the maximum excitation energy G may be calculated.
From G, as will be shown in Sec. V the relative fission
probability may be calculated. In the following we
present a calculation of the potential energy.

We assume the nuclear matter to be an incompres-
sible liquid drop with uniform mass and charge density.
In order to calculate the mutual Coulomb energy and
deformation energies we have to know the deformation
shape of each fragment and their relative positions.
While we assume the fission fragments to be deformed,
there is no reason to assume a unique deformation
shape for all fragments. Many deformation shapes may
be possible and so many sets of values of C, D&, and D&.
According to the statistical assumption, each deforma-
tion conlguration will occur with a probability pro-
portional to its density of quantum states. Thus, we
have probability distributions of C, D&, and D2. The
most general deformation shape of a liquid drop may
be represented by a series expansion of the radius
vector in Legendre Polynomials,

r(8) =roL1+nsPs(cose)+noPo(cos8)+ ]. (15)

liquid-drop model mass formula. '
Thus we have expressed P in terms of n3~ and +32.

There will be one such potential function P(aot, ass) for
each mass and charge division. It will be shown in
Sec. V that the deformation shape which gives mini-
mum potential energy, and therefore maximum in-
ternal excitation energy, is the most probable one to
occur. Consequently for fission leading to given mass
and charge division the most probable values of Cou-
lomb and deformation energy are obtained by mini-
mizing P(n», n»). The minimum may be found nu-
merically. Such a calculation is carried out for the
fission of U"' with slow neutrons. The calculation is
made at a number of mass splittings each having its
charge split at the most probable charges (see Sec. V
for most probable charges). The most probable de-
formation coefficients nai and o.3~ thus obtained are
nearly equal and slowly varying with respect to mass
number. Thus the most probable deformation shapes

. of the two fragments, disregarding the size proportion,
are roughly the same and change only little from one
mass splitting to the other. The most probable o.3~ and
o;» of symmetric fission are both 0.1975. The corre-

For simplicity we assume that the deformation of each
fragment is due to the P3 term only and that, at the
moment just before separation, the two deformed nuclei
are in contact at their tips and oriented such that their
axes coincide. This is graphically represented in Fig. 5.
The P3 term is chdsen because the corresponding de-
formed shape roughly approximates the egg-shaped
fragment resulting from scission of a dumbbell-shaped
parent nucleus. The shape of one fragment is thus
specified by a single coefFicient 0.3 and its undeformed
radius ro. We shall use a second index i to specify the
light fragment (i=1) or heavy fragment (i=2).

An approximate formula for the mutual Coulomb
energy between the two fragments in the foregoing
specified configuration is

ZiZ2$
&(~st,ass) = (16)

roi(1+0.9314no~)+ros(1+0.9314noo)
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The derivation of this formula is given in the appendix.
For numerical calculation ~0 is taken as 1.5X10 "A'.

The deformation energies Dj and D2 may be obtained

FIG. 6. Most probable Coulomb energy C of a pair of fission
fragments from the compound nucleus U"' as a function of mass
ratio of splitting.

"R.D. Present and J. K. Knipp, Phys. Rev. 57, 751 (1940).
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sponding deformation shape is given in Fig. 5. The
most probable Coulomb energy C for different mass
splittings is calculated and plotted as a function of mass
ratio of splitting in Fig. 6. It is a monotonically de-
creasing function and its value for symmetric fission is
175.2 Mev. The most probable deformation energies
D~ and D2 are also calculated and plotted as functions
of mass number in Fig. 7. They are nearly constant
with respect to the mass numbers A~ and A~. Their
value for symmetric fission is 6.73 Mev.

The mutual Coulomb energy has a maximum for
symmetric fission. Therefore, the term C favors asym-
metric fission. On the other hand, the total deformation
energy is nearly constant. Therefore, the term D does
not essentially affect the asymmetry of mass splitting.
Although these are results of an approximate calcula-
tion of the potential energies, other approximate calcu-
lations also lead to the same conclusions. They will be
discussed in the appendix.

We have calculated the potential energies at the
critical moment. After the two fragments separate from
each other the mutual Coulomb energy becomes the
kinetic energy of the fragments and the deformation
energies become internal excitation energies of the
fragments. Therefore, when the two fragments are
separated by an infinite distance, the total kinetic
energy of the fragments will be E=C+k and the total
internal excitation energies of the fragments will be
H=D+E. The distributions of C and D will result in
distributions of E and II. The latter may be compared
with experimental information on K and H (Sec. VII).

V. RELATIVE PROBABILITIES OF FISSION MODES

The relative probability of a fission mode is assumed
to be proportional to the density of quantum states.
It will be seen that the density of quantum states de-
pends on the mass numbers, charge numbers, and
deformation shapes of the fission fragments. By integra-
tion over the deformation shapes we obtain the relative
probability of the fission mode specified by given mass

and charge numbers. By integrating this over the
charge numbers we have the relative probability of a
given mass ratio. This is the mass distribution which
must be compared with the experimental results.

The nuclear configuration at the moment just before
separation consists of two deformed nuclei in contact.
The excitation energy E gives rise to a number of ex-
citation states and the translational energy k gives rise
to a number of momentum states. The density of
quantum states is a product of these two. As the system
is isolated, its energy, linear momentum and angular
momentum must be conserved; we proceed to calculate
the density of quantum states subject to these
conditions.

f
X pl(El)p2(6 El)d61 (18)

Equation (18) may be interpreted as meaning that the
density of quantum states of a compound system is
the sum of all partial densities, p~(e~)p2(e —e~)de~, each
corresponding to a partition of energy e into e& and e&

between the two components. The statistical assump-
tion asserts that the partial densities will represent the
partial probabilities of occurrence of the corresponding
partition of energy e&.. e2.

The formula for the density of levels of an excited
nucleus is discussed in Sec. III. It depends on the vol-

ume of the nucleus, but not on its shape. Since it was
assumed that the deformed fission fragments have

normal nuclear density, Eq. (5) is applicable. Let the

total available excitation energy measured from the
characteristic levels be K Consider, at first, only ex-

citation states of zero angular momentum. The density
of excitation states of the two-nucleus system is,
according to Eq. (18),

a. Density of Excitation States

Consider a system consisting of two thermally inter-
acting components, each of which has a number of
quantum states represented by a level density expres-
sion p&(e&) and p2(c2) respectively. Let the total energy
of the system be e and the density of quantum states
of the whole system be S.We have

C9
IL 3le
K
LU 2

Qo(E) = c~ exp/2(a~E~)'fc2

+exp{2(a2(E—E~))'*}dEi. (19)
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FIG. 7. Most probable deformation energies D I of light
fragment and D2 of heavy fragment from compound nucleus
U" as functions of mass numbers A& and A&, respectively.

Conservation of angular momentum is satisfied if the
fissioning nucleus has zero angular momentum.

Equation (19) cannot be integrated exactly. As the
integrand is a rapidly varying function, the integral is
determined essentially by the integration in the neigh-
borhood of the maximum of the integrand. The inte-
grand in this region behaves like a Gaussian; the
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approximating Gaussian is integrated, and the result is two-fragment system is

(aga2)'
00(E)= 2m &c~c~ — Et exp{2[(a&+a2)E]~}. (20)

(ai+a2)"'

4m V
(a(k) = (2m'k) &,

h'
where m is given by

(23)

Et will be noted that the maximum of the integrand
corresponds to a partition of E into Ej and E2 such
that the two fragments have equal nuclear temperature.
This is expected from the condition of equilibrium.

Next we consider the excitation states of higher
angular momentum, the density of which is given by
Eq. (10). We consider the case in which the initial
angular momentum of the compound nucleus under-
going fission is zero, and there exists no orbital angular
momentum between the two fission fragments, Con-
servation of angular momentum requires that the
resultant of the angular momenta of the two fragments
must be zero. 'thus we have the total density of ex-
citation states:

mlm2

mg+m2 A g+A g

(24)

c. Total Density of Quantum States
The total density of quantum states of the two-

nucleus system is a product of densities of excitation
states and momentum states. When statistical equi-
librium is established we may consider the excitation
and the translational motion as two thermally inter-
acting components between which the energy may be
exchanged. The total energy available to the whole
system is G. Equation (18) gives the total density of
quantum states of the system

1 1

&2g,2', 2g, Z', P Q(G) = I Q(G—k)co(k)dk= Q(E)a&(G—E)dE. (25)

=s '(g T) '*00(E)

A 5I3A 5I3 qk(E+E q

&Ap"+A2"') E ag+a2 )

( AP'A2'~' ) & (agag)&
~c&c2I

EA P~'+A g"') (ay+ a2)'

Xexp{2[(aq+a2)E]l}, (21)

where (1/g)—= (1/g~)+(1/g2). It is assumed that T~
= T2= T and the summation is approximated by an
integration.

For the more general case where the angular mo-
mentum of the compound nucleus is not zero and
orbital angular momentum exists between the two
fragments, it can be shown" that the results diGer from
Eq. (21) by a slowly varying factor only. The dominant
exponential factor remains unchanged.

b. Density of Momentum States

At the moment just before separation, the momenta
of the two fragments due to the motion of their centers
of gravity must be equal and opposite. Let their abso-
lute values be p. The energy of translational motion k is

k = (1/2m') p'+ (1/2m, )p', (22)

'VP. Pong, Ph.D. dissertation, University of Chicago, 1953
(unpublished).

where m~ and m2 are the masses of the two fragments.
Since the momenta of the two fragments are equal and
opposite, the number of momentum states of the two-
fragment system is equal to that of one fragment.
Therefore the density of momentum states of the

In Eq. (21), Q(E) is expressed in terms of E, measured
from the characteristic level. G in Eq. (25), being the
maximum possible value of E, is also to be measured
from the characteristic level. Thus we have

( Ap"A2"' ) ' (aga2)'*
Q(G') -, cgc2i

i

E*
"() E A P'+A 25") (ay+ ay)'

Xexp{2[(a~+a~)E]'}[2nP(G' —E)]~dE, (26)

where G' is the value of G measured from the char-
acteristic level,

G'= M'*(A,Z) —M'(A g Zg)
—M'(A2Z2) —P(n3~)nsg). (27)

While the integral of Eq. (25) gives the total density
of quantum states, the integrand of Eq. (25) gives the
partial density of quantum states corresponding to a
given partition of G into E and k. According to the
statistical assumption, the integrand gives the dis-
tribution function of E or of k. The most probable
partition of G can be determined by maximizing the
integrand. The maximum condition is an equation of
the fourth order, an approximate solution of which is

1) G' p-'*p 7 1ko=-]- + I (28)
2 (a~+a~) L. 4 [(a~+u2)G']l )

kp is thus the most probable translational energy of the
centers of gravity of the two fragments at the moment
just before separation. Equation (28) shows that only
a small fraction of G, of the order of 0.5 Mev, is given to
k. This is due to the fact that the partition of energy is
determined by the number of degrees of freedom. The
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translational motion has only three degrees of freedom
while the excitation motion has many more, As ko is
small compared to Coulomb energy C, we shaB neglect
the distribution in translational energy and assume
that the value of k is given by a single value ko ex-
pressed in Eq. (28).

Returning to Eq. (26), we find the integration is

largely determined by the integrand in the neighbor-
hood of its maximum and so can be simplified by re-
placing the slowly varying factors of the integrand by
their values at the maximum. The remaining exponen-
tial factor is then integrated. The result is, neglecting;
small quantities,

Q(G')-~ ~!
EApls+A2'"j EAi+Ami

(aia2) l ( 19 1
X (G')'~'I 1——

(a,+a,)"" I 8 [(a +a~)G']'*)

Xexp{2[(ai+a~)G']:). (29)

Equation (29) gives the total density of quantum states
of a two-nucleus system in terms of mass numbers„
level density parameters and the maximum excitatioi).
energy G'. This equation will be used to calculate the
relative probabilities of fission modes.

The maximum excitation energy G' depends, accord-
ing to Eq. (27), on the mass and charge numbers and
the deformation shapes of the two fission fragments,
Therefore the relative fission probability depends on
these quantities and there will be mass, charge, and.

deformation shape distributions.

For any deformation shape (n»,n»), Eq. (16) deter-
mines the Coulomb energy and Eq. (30) gives its
corresponding probability of occurrence. However the
correspondence between deformation shape and the
Coulomb energy is not one-to-one. There exist many
combinations of 0.3~ and 0.32 which will give the same
Coulomb energy C(n», n»). We shall consider only the
most probable combination of o.3~ and o.32 for a given
Coulomb energy value (the inclusion of other combina-
tions will not essentially change the final results).
This combination may be obtained by maximizing G'

with respect to o.3& and o.» subject to the condition that
C(n3i,n3~) is constant. The relation between n» and n3~

for this combination is obtained to be

a'si roi (1.42868,2' —0.4082E,2')

n» r02 (1.4286R, i' —0.40828, i')
(31)

~V(C; A „A„Z„Z,)-exp[ —(SC/a)'],
where

(32)

This relation reduces the number of independent de-
formation coefficients to one. Consequently, Coulomb
energy and deformation shape may be correlated in a
one-to-one manner. The Coulomb energy distribution
may be derived as follows: We express the value of G'

of Eq. (27) in the neighborhood of its maximum with
respect to o.3~ as a parabolic function of bn3~, the devia-
tion of o.3~ from the maximum. Substituting G into
Eq. (30) we get a distribution function in terms of ansi,
which is roughly a Gaussian function. The latter may
be translated into a distribution function in terms of
8C, the deviation of C from the most probable C,
which again is roughly a Gaussian,

(dc/dasi) t
2

d. Coulomb Energy Distribution

Consider a given mass and charge division (Ai,Zi):
(A&,Z2). Equation (29), which depends on the Coulomb
energy and deformation energy through G', gives a
probability distribution of the deformation shapes and.
so probability distributions of C and D. We shall dis-
cuss the distribution of C, which, after adding the,

negligibly small ko (less than 1% of C), will give the
distribution of fina/ kinetic energy of fission fragments
and may be compared with the experimental results.

When the mass and charge ratios of splitting are.

fixed Eq. (29) may be simplified to give the probability
distribution of deformation shapes,

&+ (~31)&32j A lyA 2)Zi)Z2)

&(exp{2[(ui+a2)G']~). (30)

There will be one such equation for each mass and
charge division (Ai,Zi): (&2,Z2).

1 d'(c+Di+D2)- & 9
+[(ai+a2)G']& ~

2

Mev,

(33)

A~const (ZiZ2) ~

G' p&] 9 1
xl ! Mev. (34)

4ai+agi ( 8 [(ui+am)G']&3

e. Charge Distribution

Integrating over the Coulomb energy distribution
curve, we have the total number of quantum states of
the fission mode specified by a given mass and charge
division. The area under the Coulomb energy distribu-
tion curve is proportional to the product of the Gaussian
width 4 and the maximum ordinate of the Gaussian

where the subscript m indicates that the values are to
be taken at the most probable configuration. Equation
(32) will be the Coulomb energy distribution function.
The first factor in 6 depends on the mass and charge
ratios of division and is nearly proportional to (Z,Z,) &.

Thus we have
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curve. We obtain

X(A1,A2, Z1,Z2)

(ala2)& /' A15/8A25/8 ) l
/r A1A2 ) l

~cic2
(al+a2)"" &Ai"8+A25/') EA1+ A2)

7 i
X(Z1Z2)'(G ')"" 1 ——

2 [(ul+a2)G„']l

X«p{2[(a +u )G-']'} (35)

where 6 ' is the value of 6' calculated for the most
probable mode in the Coulomb energy distribution,

G„'=M*(A,Z) —M'(A, )Z,)—M'(A 2,Z2)
—C„(Z1)Z2)—Dl„—D2~, (36)

where C, D~, and D2 are the most probable values
of C, D~, and D2 with respect to +3~ and n32 for given
Ag, A2, Zg, and Z2.

The relative probabilities of various charge divisions
for a given mass division A&. ~2 may be simplified as

X(Z,,Z„A,,A,)
7 1

(Z1Z2)' 1——
, , (G-')""

2 [(u +a )G„']-:
Xexp {2[(ui+ a2) G '] '*}. (37)

There will be a pair of such equations (36) and (3/)
for each given mass division A~'. A2.

Equation (37) implies that the most probable charge
division Zpl'. Zp2 (nonintegral) is the one having maxi-
mum G '."Thus the most probable charges may be
obtained by maximizing Eq. (36) with respect to Zl
and Z2 under the condition. Zl+Z2 ——Z. The variation
of the total deformation energy with respect to charge
division Z~.'Z2 for fixed mass division can be shown to
be very small. Thus Dl„+D2m may be regarded as
constant. C (Zl,Z2) is given by

C~(Z1,Z2) =Z1Z2e'/{rol[1+0. 9314n81~]

+ro2[1+0.9314n82 ]}, (38)

where e3~ and o.32 are the most probable values of
o.3~ and +3~. As n~~ and n~2, determined in Sec. IV,
are nearly constant, we have roughly

C (Zl,Z2)—c12Z1Z2, (39)

where c~~ is a constant with respect to charge division.
The value of c~~ varies from 0.0889 mMU to 0.0910
mMU when the mass ratio varies from 1.00 to 2.33.
Using the mass formula Eq. ('7) we have the most
probable charges, by maximizing Eq. (36),

BA1(ZA1+AZA1) —BA2(ZA2+DZA2)+Z(BA2 2C12)

BA1+BA2 C12

ZP2 ——Z—Zul. (40)
' The factor (Z&Z2)& is slowly varying and may be regarded as

constant as far as the determination of the maximum is concerned.

N (Zl,Z2, A 1,A 2) exp[ —(DZ//8)'],

where the width 8 is

(43)

1 fG '(Zpi, Zp2) ) '

[B41+BA2 C12]-( al+—g2

5 1
X

4 [(al+u2)G (Zpl Zp2)]
charge units. (44)

f. Mass Distribution

Integrating the number of quantum states over all
possible charge distributions, we finally obtain the
total number of quantum states at the moment of
fission for any mass ratio A &. A 2. This quantity we wish
to identify with the relative probability of this mode of
fission. Using the same method of integration as in the
Coulomb energy distribution, we have

(ala2)' ( A 1 A2
/V(A 1,A2) clc2-

(gl+g )18/4 gA 5/8+A 5/8)

( A1A2 ) * (ZplZp2)l
x!

(A 1+A 2 J (BA1+BA2 C12) *

19 1
X(G ')»/4! 1——

4 [(al+u2)G

Xexp{2[(ul+a2)G „']'},(45)

where G ' is the value of G ' calculated for the most
probable charge distribution,

G„~'=M*(A)Z)—M'(A 1)Zpl) —M'(A2) Zip2)

C„(Zp„Zp2) D, —D2„. (—46)—
C (Zpl, Zp2) is given in Fig. 6. Dl„and D2„aregiven
in Fig. 7. Equation (45) gives the mass distribution of
the prir/8ury fission products. The dominant factor in
Eq. (45) is the exponential one which does not change

With the most probable charges known, the excita-
tion energies of all other modes of charge division may
be related to that of the most probable mode as follows:

G '(Zl, Z2) =G~'(Zpi, Zp2)
(BA1+BA2 C12) (AZ) ~ (41)

where DZ is given by

&Z= IZi —ZPll =!Z2 Zp2!. (42)

We call AZ the charge displacement, the magnitude of
which indicates how far the charge division Z~. Z&
deviates from the most probable division Zyj ..Z~2.

The charge distribution function, giving relative
probability as a function of charge displacement, may
be derived by substituting Eq. (41) into Eq. (37). For
AZ small, Eq. (37), neglecting small terms, gives
roughly a Gaussian curve in AZ,
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from Eq. (20) on. This term varies by a factor of 10'.
The (G ')"i4 factor varies by a factor of 10 while all
other factors together vary by a factor of 2. As the
value of ai+a2 in the exponent is constant, the mass
distribution is essentially determined by the maximum
excitation energy G . That the fission probability is
determined mainly by the excitation energy, a rather
small portion of the energy released in fission, is due to
the fact that most of the degrees of freedom of the
system are associated with this part of the fission energy.

VI. ASYMMETRIC FISSION
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The experimental mass distribution curve has two
pronounced peaks indicating the asymmetric splitting
in fission. We shall derive, using Eq. (45) and Eq. (46),
the mass distribution curve of V"' undergoing fission
with slow neutrons and compare it with the experi-
mental results.

The curve for the maximum excitation energy G
versls mass ratio A~. A2 is calculated according to Eq.
(46) and is plotted in Fig. 8. The value of G ' at sym-
metric fission is 6.86 Mev and that at the peak (asym-
metric fission) is 11.97 Mev. With the G ' values

known, Eq. (45) gives the mass distribution of primary
fission products. However, the emission of prompt
neutrons changes the mass numbers slightly. The aver-
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FIG. 8. Curve u: Maximum excitation energy G ' as a function
of mass ratio of splitting of compound nucleus U"'. Curve b: Maxi-
mum excitation energy calculated according to the original liquid
drop model mass formula without corrections BMOC and dZg.
Curves c and d: The contribution to G ', due to the correction
term AM&, from the light and heavy fragments, respectively'.
Curve e. The contribution to G~~' due to the correction term AZg.
Curve u is the sum of curves- 6, c, d, and e.

age number of prompt neutrons emitted by a given
fragment (of the order of 1) may be calculated from the
values of the final excitation energy H. Changing the
mass numbers accordingly, we obtain the mass dis-
tribution of the final fission products. The result is
plotted in Fig. 9 and is compared with the observed
yields of final fission products. The experimental data
are taken from the summary of radiochemical data by
Coryell and Sugarman' and the summary of mass-
spectroscopic data by Glendenin et ul." The double-
humped shape is reproduced and the agreement is
generally satisfactory.

As the relative probability, given by Eq. (45), is a
monotonically increasing function of the maximum ex-
citation energy G ', the pronounced peaks of the mass
distribution curve are essentially due to the peak of
the G ' curve in the asymmetric fission region. It is
important to note that, if the mass corrections 5~~
and AZ& were not included in the liquid-drop model
mass formula, the peak of the G ' curve would be
found at symmetric fission and symmetric fission would
be the most probable. Thus the "cause" of asymmetric
fission must be related to AM~ and ~Z~. We may divide
the excitation energy into parts, separating the con-
tributions due to AM& and ~Z& from the energy
calculated by using the original liquid-drop model mass
formula. The G ' curve in Fig. 8 is thus resolved into

~ Glendenin, Steinberg, Inghram, and Bess, Phys. Rev. 84,
860 (1951).
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four components: curve b represents the value of 6
calculated according to the original liquid-drop model
mass formula without corrections, curves c and d

represent the contribution to 6 ' of the correction
AM& applied to light fragments and heavy fragments
respectively, and curve e represents that of the cor-
rection hZ~. When we add up all four curves we have
the curve u which is calculated according to the cor-
rected mass formula. The peak of curve a in the asym-
metric fission region is due to the superposition of peaks
of curves c, d, and e in the asymmetric region. The
peaks in curves c and d are due to the extra stability of
nuclear masses in the broad neighborhood of 50-neutron
and 82-neutron shell edges. The peaks in curve d are
due to the change of the beta-stability line as a result
of the 50-neutron, 50-proton, and 82-neutron shells. In
this sense nuclear shell structure is the "cause" of
asymmetric fission. ~4'

Many other factors contribute to the determination
of mass distribution through Eq. (45) and Eq. (46).
They do not essentially aQ'ect the asymmetry of split-
ting. Equation (46) contains the following:

(1) The mass of the fissioning nucleus. M~(A, Z) is

a constant. A diferent value merely pushes the maxi-
mum excitation energy curve up or down while the

peak in the asymmetric region remains unshifted.

(2) Masses of fission fragments. As mentioned above,
these are mainly responsible for asymmetric fission. In
our calculation, the excitation energy obtained is based
on the masses of fragments at characteristic levels. If
based on mass values at the ground-state levels, the
excitation energies of fission fragments with 82 and 50
neutrons (in the peak yield region) will be eveii higher

by 2 Mev, and those of fragments with 50 protons (in
the symmetric fission region) will be also higher by 1

Mev. The net result is a small perturbation of the
shape of the maximum excitation energy curve. The
pronounced peak in the asymmetric region remains the
same. Thus the use of characteristic levels is not
critically related to the prediction of asymmetric fission.

(3) Coulomb energy. The Coulomb energy expres-
sion used here is calculated with some simplifying
assumptions of nuclear deformation. Its main feature is
that it is a monotonically decreasing function of the
mass ratio because of the Z~ Z2 dependence. Therefore
the Coulomb energy term in Eq. (46) favors asymmetric
fission. However, unlike the DMg and DZg terms, which

favor the asymmetric fission rather abruptly in a par-
ticular mass ratio region, this term favors asymmetric
fission rather uniformly over the whole mass ratio
scale. Thus, it is not essentially responsible for the

occurrence of a pronounced peak in a limited mass

40 The relation between shell structure and asymmetric fission
has been suggested and discussed by Mayer, "Meitner, ~ and later
many others from different points of view.

' M. G. Mayer, Phys. Rev. 74, 235 (1948).
~ L. Meitner, Nature 165, 561 {1950),and Arkiv Fysik 4, 383

(1952).

ratio region. As mentioned in the appendix, other
assumptions of deformation lead to Coulomb energy
curves nearly parallel to each other. Therefore, the
main feature remains the same and we may conclude
that the deformation assumption is not critically re-
lated to the prediction of asymmetric fission.

(4) Deformation energy. The total deformation
energy used here is nearly constant with respect to the
mass ratio of splitting. Thus, it plays no essential part
in the determination of asymmetric fission. Its intro-
duction merely causes the maximum excitation energy
curve to shift downward without essentially changing
its shape.

The main factor involved in the calculation of rela-
tive probabilities by Eq. (45) is the level-density
expression and the formula for the total density of
quantum states. As the density of quantum states is a
monotonically increasing function of the excitation
energy, a calculation using a diferent expression for
the density will give merely a difIerent scale of the
ordinate of the mass distribution curve. The asymmetry
will remain.

In conclusion, we may say: Because the nuclear
masses are smaller by a few Mev in the broad neigh-
borhood of shell edges4' (due to the correction terms
AM~ and hZ~), fission fragments in these regions
(which happen to be in the asymmetric fission region)
will have larger excitation energies. As the density of
quantum states is a rapidly increasing function of the
excitation energy, a small increase in excitation energy
may cause a large increase in relative probability.
Thus, we have a pronounced asymmetric splitting in
fissio.

As the explanation of asymmetric fission hinges on
the result that asymmetric modes have larger excitation
energies than symmetric modes, it is helpful to find
direct experimental evidence supporting this result.
The recent work of Fraser and Milton44 shows that
fission modes in the peak yield region have larger
prompt neutron emission probabilities than symmetric
fission. From the difference of prompt neutrons, it can
be estimated that the excitation energy in the peak
yield region is larger than that of symmetric fission by
about 6 Mev. This value is about equal to our calculated
difference. Radiochemical results by Coryell, 4' Tewes
and James, 4' Schmitt and Sugarman, 4' and Steinberg
and Glendenin" also indicate smaller neutron emission
probability for symmetric fission.

"The nuclear mass surface is affected by nuclear shell structure
in two ways: (1), A local discontinuity from nonmagic to magic
nuclides of the same mass number; (2), A broad depression of the
surface in the neighborhood of shell edges aGecting a few nucleons
on both sides of the edge. lt is the latter eAect that is related to
asymmetric fission.

44 J. S. Fraser and J. C. D. Milton, Phys. Rev. 93, 818 (1954)."C.D. Coryell (private communication).
4' H. A. Tewes and R. A. James, Phys. Rev. 88, 860 (1952)."R. A. Schmitt and ¹Sugarman, Phys. Rev. 89, 1155 (1953).
48K. P. Steinberg and L. K. Glendenin, Phys. Rev. 95, 431

(1954).



STATISTI CAL THEORY OF N UCLEA R F I SSION

VII. OTHER APPLICATIONS

Other applications of the statistical theory will be
discussed briefly. Preliminary results have been given
in reference 39. Details will be published in the future

a. Charge Distribution

Equation (43) gives a charge distribution curve of
primary 6ssion products which is approximately a
Gaussian with a width given by Eq. (44). Typical
half-width at half-maximum has been calculated to be
0.6 charge unit. The beta-decay chain lengths of the
pair of primary fragments have a ratio around 1.1 for
the most probable charge division. Experimental evi-
dence seems to indicate that the width is about 0.8 or
1.0 charge unit and that the chain lengths are equal. "

b. Kinetic Energy Distribution

The average value of Coulomb energy given in Fig. 6
is 171.7 Mev. This may be compared with the experi-
mental value of the average kinetic energy of a pair of
6ssion fragments, 167.1 Mev. "The energy-versus-mass-
ratio curve in Fig. 6 is nearly parallel to the experi-
mental curve" and the discrepancy in the region of
mass ratio 1.1 to 1.2 has been discussed. " Typical
calculated values of the width of the kinetic energy
distribution curve are 5 Mev (half-width at half-
maximum). The experimental value" after correction
for dispersion'~ is about 7 Mev.

c. Variation of Distributions with Respect to
Target Nucleus

The peak in the maximum excitation energy curve is a
result of the superposition of the dips of the curves in

Fig. 2 and Fig. 3. When the mass number of the target
nucleus changes, these dips shift apart to form a new

superposition pattern. Consequently, there will be
changes in peak position and width of the mass dis-

tribution curve.

d. Variation of Distributions with Respect to
Incident Energy

When 6ssion is induced by particles of high energy,
Eq. (28) predicts little change in kinetic energy, a fact
which has been confirmed experimentally. ' Therefore,
the excess energy must go into excitation. When the
excitation energy is high, the small differences, of the
order of a few Mev, between its values for diferent
modes of 6ssion, become less important. Therefore, at
high energy, symmetric and asymmetric fission will

have comparable probabilities. All rare modes of fission

"L.E. Glendenin, 06ice of Naval Research Report ONR —35,
1949 (unpublished).I R. B. Leachman, Phys. Rev. 87, 444 (1952).

"D.C. Brunton and G. L. Hanna, Can. J. Research A28, 190
(1950); Phys. Rev. 75, 990 (1949). D. C. Hrnnton and W. B.
Thompson, Can. J. Research A28, 498 (1950); Phys. Rev. 76,
848 (1949).

will become more probable. However, the most prob-
able modes will remain to be most probable. This
means that the widths of all distribution curves will be
increased while the peaks of all distribution curves
remain unshifted. This prediction has been corroborated
by a large number of experiments. '

e. Prompt Neutron Distribution

The distributions of excitation energy E and de-
formation energy D determine the distribution of final
excitation energy H. As H is the energy available for
neutron emission, the distribution of prompt neutron
may be derived. The most probable value of II has
been calculated to be 26.5 Mev, which may be com-
pared with the average value estimated by Brunton. '
Brunton's value should be changed to 22.5 3&lev accord-
ing to the correct number of prompt neutrons emitted
per fission. The distribution of prompt neutrons with
respect to mass ratio of splitting has been discussed in
Sec. VI.

f. Spontaneous Fission Yields

In spontaneous fission the absolute value of excita-
tion energy will be less than that of thermal neutron
6ssion by an amount nearly equal to the neutron bind-
ing energy. Therefore, the same differences of excitation
energy among fission modes will now have a more
pronounced effect on relative probability. Consequently,
the rare modes will become even rarer. This prediction
has been corroborated by experimental facts."

g. Ternary Fission

Occasionally, an n particle is emitted in the 6ssion
process. The calculation shows that the total excitation
energy will be lessened by a few Mev due to the emis-
sion of an n-particle. As a result the corresponding
relative probability will be decreased by a few orders
of magnitude. The observed rate of such events is one
in 400 binary fission events. "
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APPENDIX. MUTUAL COULOMB ENERGY OF TWO
DEFORMED FRAGMENTS IN CONTACT

The mutual Coulomb energy between two deformed
fragments, like the ones in Fig. 5, will be calculated
approximately.

The potential at a point P due to a uniform charge
sphere Ze is Ze/D, where D is the distance from P to
the center of the sphere O. J.et the direction OP be
chosen as the polar axis and assume the sphere to be
deformed according to the following formula:

r=rp[1+npPp(cos8) j.
YVhen n3 is small compared to unity, the potential at
P will be increased by an amount bV given by

Ze» rgxpPp(cos8)dS
8V= ——

(4~/3)&pP~ " (D'+rpP 2Drp cos9)&—8

3 (rp) ' Ze

7 (D) D

This accounts for the linear term of n3 and we shall

limit ourself to this approximation. The effect of de-

formation on the potential at P is the same as that due
to a shift of the "charge center" of the sphere from 0
to 0' with the distance between 0 and 0' equal to
(3/7)rpo. p(rp/D)'. The mutual Coulomb energy of the
two deformed spheres in Fig. 5 may be expressed

approximately as follows:

C=ZgZpe'/[Og', Op')

=Z~Zpe'/([0$ OQJ [0$ 0$ j [Op,Op'j}

+pi(1+~pi)+~pp(1+~pp) J

3 ( rpx ) ' 3 / rpp——CE»f py
——(13''pg

7 ([Op', Oij) 7 & [0~',

Oping

rpx/[0&', 0&$ and rpp/[Oi', Opj vary slowly with respect
to n» and n», and they appear in small terms in the
denominator. Thus we may regard them as constants.
Their values may be determined by successive approxi-
mation. Both of them are approximately 0.4 for n's
in the neighborhood of their most probable values. By
numerical substitution of this value, the above equation
reduces to Eq. (16) of Sec. IV.

The above method may be used to calculate the
mutual Coulomb energy of two fragments deformed
according to any Legendre polynomial provided that
the deformation is small. The deformation energies of
these fragments (up to the Pp term) may also be ob-
tained from the expression by Present and Knipp. "
Thus the maximizing procedure of Sec. IV may be
repeated to obtain the most probable values of mutual
Coulomb energy and deformation energies. The results"
of calculation based on several alternative assumptions
of deformation show that: the relative variation of the
most probable Coulomb energy C with mass ratio is
nearly the same in all cases but the absolute value of C
depends on deformation assumption sensitively; the
most probable deformation energies D~ and D2 are
nearly constant with respect to mass number in all
cases and their absolute values vary within a few Mev
for different assumptions of deformation.

For the relative probabilities of fission modes, the
relative variation of C and D from one 6ssion mode to
another is important, and this is insensitive to the
assumption to the type of deformation. Thus our
assumption that fragments are deformed according to
Pp(cos9) only, though an oversimplified one, is sufhcient
for the purpose of comparing relative probabilities.


