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Interpretation of Domain Patterns Recently Found in BiMn and SiFe Alloys'

JoHN B.000DENoUGH
Lincoln Iaboratory, Massachlsetts Institute of Technology, Iexingtoe, Massachgsetts

{Received January 10, 1956)

It is shown that in a demagnetized crystal in which closure domains do not form, the domain pattern on
a surface perpendicular to the easy-magnetization axis varies with the thickness of the crystal. For thin
crystals the domain configuration should consist of plane-parallel walls. As the thickness of the crystal is
increased, the plane walls become undular to form a rickrack-type pattern, the amplitude of the waves
increasing with increasing thickness. At greater thicknesses the domain pattern becomes more complicated,
a characteristic feature being many small domains of reverse magnetization penetrating as spikes from the
surface into the interior. A typical pattern for a demagnetized sample could consist of a regular pattern
of reverse-domain spikes within large domains demarked by plane-parallel walls extending all the way
through the crystal. These theoretical predictions are compared with domain patterns recently observed
in BiMn alloys and in barium ferrite. Recently reported domain patterns in polycrystalline SiFe alloys are
interpreted as representing the latter thick-crystal configuration. The significance of the patterns found in
SiFe alloys for the theory of Aux reversal is also discussed.

a quantitative calculation, of the energy associated with
the surface magnetic poles in a ferromagnetic material
with various magnetic-domain configurations. There is
also a discussion of the character of the domains to
be expected within the bulk of the material as the
thickness of the crystal varies. From this discussion it
is shown that the rickrack and six-sided ring patterns
can be understood from a consideration of the energies
associated with the surface poles and the domain walls;
it is not necessary to assume that they are associated
with the hexagonal symmetry of BiMn alloy.

In Sec. IV there is a discussion of the domain patterns
recently observed by Paxton and Nilan4 in thin ribbons
of SiFe alloy. The patterns of interest were observed in
grains in which there was no closure-domain formation.
Although Paxton and Nilan suggested that their obser-
vations were incompatible with a theory of reverse-
domain nucleation at grain boundaries' and the con-
sequent lux-reversal mechanism in metallic-tape cores, '
it is shown that the observed domain patterns can be
readily interpreted in terms of the physical concepts on
which the grain-boundary nucleation and flux-reversal
mechanisms were based.

I. INTRODUCTION

OBERTS and Bean' have used plane-polarized
light in reflection to observe magnetic-domain

patterns in ferromagnetic BiMn alloy. This alloy has
the hexagonal (NiAs) crystal structure, a single axis
of easy magnetization along the c-axis, and a large
anisotropy constant' (E=10"ergs/cms). The anisotropy
is sufIiciently large to inhibit closure-domain formation;
there exist in the crystal only 180' domain walls which
are nearly parallel to the c-axis. Consequently there is a
large surface density of free magnetic poles on any
surface of the crystal making a large angle with the c-
axis. The energy associated with these magnetic poles
and with the 180' domain walls wiB alone determine
the domain patterns observed on the surface.

Roberts' observed that the domain patterns on
polished surfaces perpendicular to the c-axis depended
upon the thickness of the crystal. In thin crystals the
patterns consisted essentially of plane-parallel walls.
In thicker crystals the patterns became undular, the
amplitude of the rickrack waves increasing with crystal
thickness. In the thickest crystals they found consider-
ably more complicated patterns such as those reported
earlier by Williams, Foster, and Wood' on (0001)
surfaces of hexagonal cobalt. After an external field had
been applied perpendicular to a surface on which rick-
rack patterns were observed, the remanent rickrack
patterns were broken up into separate domain regions,
some of which were rings with six sides. This led
Roberts and Bean to suggest that perhaps the six-
sided rings reflect the hexagonal symmetry of the lattice.

In Sec. II there is a qualitative discussion, in Sec. III

II. QUALITATIVE DISCUSSION

It has previously been pointed out by various
workers~ how the energy associated with the demag-
netizing fields in a ferromagnetic sample magnetized
perpendicular to two parallel surfaces of the material
may be greatly reduced by the creation of parallel 180'
domain walls; such a wall configuration causes parallel
strips of alternately south and north poles to appear on
the surfaces. If closure domains do not form, the
optimum separation for these walls can be readily cal-
culated by balancing the surface-pole energy gain due

*The research in this document was supported jointly by the
Army, Navy, and Air Force under contract with the Massa-
chusetts Institute of Technology.' B. W. Roberts and C. P. Bean, Phys. Rev. 96, 1494 (1954);
B.W. Roberts, Conference on Magnetism and Magnetic Materials
Pittsburgh, Pennsylvania (June 14-16, 1955), Am. Inst. Elec
Eng. (October, 1955),p. 192.' C. Guillaud, J. phys. radium 12, 492 (1951).' Williams, Foster, and Wood, Phys. Rev. 82, 119 {1951).

4 W. S. Paxton and T. G. Nilan, J. Appl. Phys. 26, 994 (1955).
s J. B. Goodenough, Phys. Rev. 95, 917 (1954).' N. Menyult and J.B. Goodenough, J. Appl. Phys. 26, g (1955).
~ See the review article by C. Kittel, Revs. Modern Phys. 21,

541 (1949).

356



DOMAIN PATTERNS FOUND I N 8 i Mn AND SiFe ALLOYS

to reducing the separation. of these walls with the
domain-wall energy loss due to increasing the total area
of domain wall present. However, there are other
possible domain-wall con6gurations which, in the
absence of closure-domain formation, may give even
lower total-energy states.

The reduction in surface-pole energy by the creation
of alternate rows of north and south poles i.s due to the
formation of smaller Aux-closure paths for the demag-
netizing fields associated with the free magnetic poles.
This reduction in surface-pole energy wouM be even
greater if the Aux-closure paths were reduced in all
directions of the planar surface instead of in just one.
Since any reduction in Aux-closure path length can
only occur at the expense of more domain-wall area, the
problem is to imagine that con6guration which gives an
optimum balance between the two energies.

There are two possible con6gurations for the demag-
netized state which would give small surface-pole
energies, the checkerboard array of Fig. 1(a) and the
circular array of Fig. 1(b). The wall area associated
with Fig. 1(a) is considerably reduced without an
appreciable increase in the surface-pole energy if the
corners are rounded as in Fig. 1(c) (see Sec. III); but
this is immediately seen to closely approximate the
rickrack pattern observed by Roberts and Bean. '

The configurations of Fig. 1(d) are seen to be a
combination of the rickrack and circular patterns; such
configurations were found by Roberts and Bean on some
areas of a (0001) surface of BiMn alloy after it had
been subject to a perpendicular magnetic field of 15 000
oersteds.

The problem, then, is to calculate quantitatively the
optimum rickrack configuration and compare its energy
with the configuration of plane parallel walls. If the
optimum rickrack con6guration is roughly that ob-
served by Roberts and Bean and is of lower total energy
than a plane-wall configuration, the rickrack patterns
do not illustrate any new principle.

HI. MATHEMATICAL DEVELOPMENT

The principal mathematical problem is to develop an
expression for the energy associated with an arbitrary

(a) CHECKER80ARO PATTERN (b) CIRCULAR PATTERN

(C) MOOI'FIEO CHECKER80ARO PATTERN (d) MOOIFIEO CIRCULAR PATTERN

Fxo. j.. Domain conGgurations with low
demagnetizing-Geld energy.

If the plane surface is the surface of a material with
spontaneous magnetization I, which is oriented along
the s-axis perpendicular to the plane, the magnetic
energy per unit area is

H. I.ds,
4

Bg
IX,o = —— = +2s.u)*(x,y).

s, =o

In order to obtain a function which satis6es this

.where J. is the length of the specimen along the 2-axis.
The demagnetizing 6eld B due to magnetic poles is
perpendicular to the plane so that H=kH, and

H, = —B&/Bs, P(( =0.
Since B=H+4s.i, must be continuous across the plane,
there is the boundary condition

distribution of magnetic poles on a plane surface of boundary condition, let
magnetic material. The treatment to be used here is
essentially that outlined by Kittel. '

It is assumed that the surface magnetic-pole density
&u*=~*(x,y) is periodic in a fundamental area of sides
2+A, and 2mL„so that it can be expressed by a double
Fourier series as

(H 0) eP~~z
J' „

Substitution of g „into the Laplacian gives

4(x y) Q Q P (~+nP)'
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where $=x/L„p= y/L„and

Therefore,

and
H, = —By/Bs= W2sa&*(x,y)e~ ~,

&o

0 =s a)*(x,y)(0*(x,y)eP ~ds,
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where the fundamental area is a square of side D&' & in
which there is imbedded a circle of opposite polarity of
radius D" oi/(2 sr)&. He showed that the energy per unit
area associated with planar strips of alternating polarity
and width D' is

a =0.8525')*'D'.

The total energy per unit top surface of a bar magnet
of length L is therefore

o„I./D'+1. 7oo*'D'

where r„ is the domain-wall energy per unit area of wall.
This total energy is a minimum with respect to the
domain width D' if o„L,/ c*v'D"=1.7.

The change in bar-magnet energy per unit top-surface
area from the parallel-strip configuration to the con-
figuration of Fig. 1(a) or Fig. 1(b), respectively, can
therefore be written as

I"io. 2. Surface-pole con6guration used in calculations of energy
associated with rickrack domain patterns.

-0

gn(1~) —&*oD'{34 1 06(Dii~i/D') —3 4(D'/Du&&) j,
5g (")=&*'D'&3 4—0 75 ~D&")~D'~

where I, is taken as os*(x,y) to insure that II, and I,
always point in opposite directions. It follows that 1 7(2sr) (D/D" '))

n»=srCoo'I-+m Q Q C C „„P„„,'(1 e~ —"').—
(excluding
m =m =0)

In the demagnetized state the areas of north and
south poles are equal so that Cpp=0. Further, in most
cases of interest e—""~((1 so that

0.65

- -OR

nm = 7r P P CmnC nrnt mm.
(excluding
re =e =0)

Using Eq. (2), Kittel' calculated the energy per unit
area of a checkerboard array corresponding to Fig. 1(a)
to be

(sa) 0 53M~2D(ra)
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Fro. 4. Aa/ca*'D' and f(n, p) vs n for
P = (1—a)/2, I.,=L„.

-0.4

where D(' & is the side of each minor square. Similarly
he calculated the energy per unit area of the con-
figuration corresponding to Fig. 1(b) to be

0- &'~) =0 374co*'D~'~'

(f-a)e
R

Lb I

I t—

l

(b)

Pro. 3. Surface-pole con6gurations for
(a) P (1—n}/2, (b=} a=0.

The optimum values for D(' ' and D(") are 1.8D' and
2.4D', respectively; and the corresponding energy
changes are A|TO '= —0.4'*'D' and Ao. &")= —0.2~*'D'
It is not, therefore, immediately obvious that the con-
figuration of parallel strips of alternate polarity can be
replaced by a more stable one. It should be noted,
however, that the walls are assumed to remain per-
pendicular to the surface. The relaxation of this condi-
tion is discussed later. It is of interest to determine first
whether the energy change Ao- can be positive for any
configuration of surface poles if the walls remain every-
where perpendicular to the surface and pass through
the crystal.

To calculate the energy associated with the modified
checkerboard pattern of Fig. 1(c), the configuration of
Fig. 2 is used. This configuration has an integrable
solution and contains two parameters, n and p, which
can be varied within the limits 0 &n & 1 and 0 &P
&(1—n)/2. If p= (1—n)/2, the con6guration is the
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trapezoidal pattern of Fig. 3(a) and varies from the
checkerboard pattern for n= 0, p=-', to a zigzag pattern
for n=1, P=O. Similarly if n=0, the configuration is
the snipped-corner checkerboard pattern of Fig. 3(b)
which varies from the checkerboard pattern for P=st
to the zigzag pattern for p=0. The details of the calcu-
lation of f(n,P)=o/a. I*'D from Eq. (2) and of the
change in energy per unit top-surface area 60- are given
in Appendix I.

It was first assumed that L,=L„.In Fig. 4 are plotted
the calculated curves for f(n, (1—n)/2) and ho/ c*a'D'

as a function of the parameter n, and in Figs. 5 and 6(a)
the calculated curves for Do/os*'D' and f(0,p), f(-'„p) vs

the parameter p. For no value of n and p is AIr &0. Since
the optimum value for p appears to be p= (1—n)/4,
the calculated values of /so/o&*'D' and f(n, (1—n)/4)
vs n are plotted in Fig. 6(b). From this plot it is apparent
that the optimum shape, under the assumptions of
Fig. 2, is a configuration with n= is, p= ss; but even this
optimum configuration has ho & 0 so that it is a less
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Fio. 6. f(a,P) and rsrr/al*eD' as (a) P for n=$, and (b) n for
P=(l —~)/4, J-*=~a.

If the amplitude of the waves decreases regularly with
depth of penetration into the material as illustrated in
Fig. 8, there is a considerable decrease in the total wall
area. In order that such a taper of amplitude exist,
however, the 180' domain walls can no longer be
parallel to the magnetization, and magnetic poles are
associated with the domain walls. The decrease in
energy due to the reduction in wall area causes the
appearance of energy associated with the domain-wall
poles; this energy per unit top-surface area is defined
as 0-&. The appearance of this energy defines an optimum
rate of change of wave amplitude with penetration
depth.

In Appendix II the special case is considered in which
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- 0,4

Fro. 5. fta/oleeD' and f(n, IS) vs IS for
a=0, L,=I.„.
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stable configuration than that of alternating parallel
strips of positive and negative magnetic poles.

In Appendix II the restriction L =L„ is removed
and an additional parameter y=l.„/I.„ is introduced.
Since the optimum shape for y= 1 was seen to occur for
n = ts, the surface-Pole energy Per unit area f(n, P,P)aa*sD

was calculated as a function of y for the con6guration
n=-', , P= (1—n)/2=-', . From Fig. 7 where f( '„y) vs y-
is plotted it is seen that although the surface-pole
energy decreases with increasing p, the change in total
energy per unit area from the plane-parallel configura-
tion is negative, Ao- (0, for all values of y. It is apparent
that so long as the domain walls remain perpendicular
to the surface of the material, the lowest energy con-
figuration consists of a set of plane, parallel walls.

Although the assumption that the walls remain
everywhere perpendicular to the surface gives the
minimum domain-wall area in the case of plane, parallel
walls, it does not provide for the minimum wall area
when the walls are waved as in the rickrack patterns.
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FIG. 7. f(le,y) as y; gaia(g, i')+as)/aleID' as y, for walls every-
where perpendicular to the surface (as=0) and for walls which
taper to plane walls at the crystal half-width (a sWO).
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Consider a strip of commercially grain-oriented 3-,%
silicon steel approximately 0.01 in. thick, such as that
used by Paxton and Nilan4 in recently reported domain-
pattern studies. In their work they introduced three
angular parameters to de6ne the orientation of a given
grain with respect to the rolling plane and rolling direc-
tion customarily used for reference in sheet steel. The
[100)direction is taken as that one of the (100) direc-
tions which makes the smallest angle with the rolling
plane; this smallest angle is p. The angle the projection
of the [100)direction on the rolling surface makes with
the rolling direction is 0, and n measures the degree of
rotation of the [010) and [001) directions about the
[100) direction, a position in which they make equal
angles with the rolling plane being the reference position
u=0. Since the (100) directions are the easy axes of
magnetization, the energy due to crystalline and demag-
netization anisotropy is minimized when the mag-
netization is roughly parallel to the [100) direction;
closure-domain formation does not reduce the energy.
This particular example is chosen as the experiments
reported there appear to illustrate the pattern proposed
in Fig. 9. They also confirm the concepts on which an
earlier theory of Qux reversal was based. ' '

The patterns of particular interest for this discussion
are those Paxton and Nilan classified as "lozenges, " a
pattern which was observed for 4'(@&7'. The lozenge
figures resemble small spikes which are either open or
closed at the base and point in the [100) direction.
These figures are periodically spaced in rows with a
regular spacing between the rows. In the demagnetized
state the lozenges are all of uniform size.

Whereas Paxton and Nilan judged that the lozenge
figures are a Qux-closure pattern, this conclusion can be
ruled out immediately from energy considerations;
closure-domain formation would only increase the
magnetic-pole strength at the surface. The lozenge
patterns must enclose surface regions of opposite
polarity. Further, the lozenge shape is what wouM be
anticipated for domains of reverse magnetization;
proposed domains of reverse magnetization are illus-

trated in Fig. 10. Finally, the periodicity of the lozenges
in the respective rows suggests that these reverse
domains have been created to reduce the energy asso-
ciated with the surface magnetic poles; the assumption
of periodicity in the Fourier analysis of Sec. III is
apparently quite generally valid.

The most interesting feature of the lozenge pattern,
however, is its reaction to an externa1 Geld applied

GOLLOI OAL
MAGN

FIG. 10. Model for reverse-domain spike responsible for a lozenge.

FIG. 11. Complete magnetic-domain model for lozenge patterns.

roughly parallel to the [100) direction. In such a Geld
the lozenges of alternate rows grow, the others decrease.
When the Geld is reversed, the set of larger lozenges
decreases, of smaller lozenges increases. Such a behavior
can be understood if it is postulated that invisible,
parallel plane walls exist between the rows. ' The postu-
lated domain pattern is shown in Fig. 11;it corresponds
to the thick-crystal con6guration of Fig. 9. However,
there are three questions which must be answered:
(1) W'hy are only the lozenge patterns observed by
colloidal-magnetite techniques? (2) Is the spacing
between lozenge rows compatible with the optimum
spacing D' for a configuration of plane walls parallel to
the magnetization vector? (3) Why does a strip of
silicon iron only 0.01 in. thick have a configuration
corresponding to the predictions for a thick crystall'

The answer to the first question is readily apparent.
The colloidal magnetite is attracted to the region of
the surface intercepted by a wall if the atomic moments
within the wall make large angles with the surface.
Since the atomic moments within a 180' wall are always
within the plane of the wall, only that portion of
domain wall intersecting the surface at a large angle
will contain atomic moments which are so directed that
they attract the colloidal magnetite more strongly than
the surface atomic moments within the domains them-
selves. The plane waBs of Fig. 11 intersect the surface
at a small angle; @&7'. The atomic moments within
these walls make even smal1. er angles with the surface
than do those within the domains; there can be no
attraction of colloidal magnetite to the intersection of-
the wall with the surface. Similarly the base of each
lozenge pattern consists of a wall making a small angle
with the surface: this accounts for the fact that many
of the lozenge figures have open bases. The fact that
some are closed can be the result of fringe GeMs from
the side walls of the lozenges which make large angles
with the surface (see Fig. 10). These closures do not
necessarily reQect the configuration of the base wall.

To calculate the optimum spacing for a con6guration
of plane-parallel walls of the type shown in Fig. 11, let
the angle the walls and the magnetic moments within
the domains make with the surface be P'(p. The
demagnetizing GeMs rotate the magnetic moments out
of the easy-magnetization direction [100) to make
$'&P where p p'=Hg, /2K, H~, I„—and K being

9 The possibility that invisible parallel walls exist was sug-
gested to us by %. S. Paxton and T. G. Nilan during an informal
discussion of their vrork.
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respectively the demagnetizing field, the saturation
moment, and the crystalline anisotropy constant. ' Then
the total energy per unit top surface area of a system
of plane-parallel walls like that of Fig. 11 (omitting the
lozenges) is

o =o„h/(D' sing')+ f co*'D',

where o =f pp*'D' is the magnetic energy per unit area
associated with the parallel strips of magnetic poles of
surface magnetic-pole density ~*=I,sing'. If the tape
thickness h were large and p' were 90', then f =0.8525.
In order to take advantage of this knowledge, assume
hypothetical surfaces perpendicular to the plane walls
and separated by a distance L=h/sing'. For these
surfaces ~*=I, and f =0.8525 so that as in Sec. III
the optimum value for wall separation is (o„L/1.7' ) &.

From this it follows that for 3~% silicon iron with
h=0.01 in. , o. =1 erg/cm', p'=4', 8,=19.7X10' gauss,

1 ( o„h

I, sing' &1.7 sing')

surface magnetic poles is apparently larger than that
associated with the external field.

Finally, these experimental results give interesting
con6rmation to the concepts set forth in an earlier
paper. ' First, the magnitude of the domains of reverse
magnetization varies in a regular way with the size of
the parent domain within which it is created. This was
the basic assumption required for the term in the
coercive force which varies inversely with the mean
grain diameter.

Second, the domains of reverse magnetization are
created in a periodic manner, an assumption which was
used for the calculation of the energy associated with
planes of magnetic poles. There is a correction to be
made in Sec. III part 8 of that paper, however. If
cylindrical domains of reverse magnetization are created
at a planar surface with base radius r in elementary,
periodic areas D', the energy associated with the
surface magnetic poles is, according to Eq. (1),

o' = pl Cpp L+ (harmonic terms)

op t( 2'' /D') —1$'+ (harmonic terms),

Since the observed spacing between rows of lozenges
in the demagnetized sample was about 10 ' cm, the
proposed invisible walls are energetically feasible. The
wider observed spacing is easily accounted for by the
existence of the reverse-domain spikes in addition to
the plane walls. If the observed spacing had been
smaller, however, the invisible walls would not have
been energetically feasible.

The answer to the third question is simply that it is
not the crystal thickness, but the effective crystal
thickness L=h/sing'=3. 6 mm which determines the
surface domain con6guration. If the ratio of minor to
major dimension of the reverse-domain spike is about
1/30, the length of the reverse domains represented by
the lozenges is about 0.5 mm, or L/7. The rickrack
pattern is most stable if this length is about L/2; the
effective thickness L=h/sing' does correspond, there-
fore, to the thick-crystal case so that a domain con-
figuration corresponding to Fig. 9, or Fig. 11, is to be
expected.

Once the con6guration of Fig. 11 is accepted, the
interesting behavior of the lozenge patterns becomes
obvious. The invisible parallel walls of the con6guration
are the mobile walls in the presence of soft magnetic
fields. In the presence of an external 6eld roughly
parallel to the t100$ direction, those large domains
which are oriented parallel to the field grow, those
oriented antiparallel shrink because of the motion of
the invisible parallel walls. Since the lozenge patterns
are due to reverse domains which are enclosed within
these larger domains, these grow or shrink with the
host domain. It should be noted that these reverse
domains grow or shrink against the forces from the
externally applied field; the energy associated with the

where o p m&a*'L/3 ——if t.he planar surface is the boundary
of a grain of diameter L. The factor —', appears after
account is taken of the 6nite dimensions of a grain-
boundary surface. In the earlier paper the expression
was given as

o. =o p~ (2mr'/D') —1 ~+ (harmonic terms).

It follows, therefore, that the 6eM required to move
the wall irreversibly against the surface magnetic poles
18

which reduces to the value given previously for the
contribution to the coercive force due to grain-boundary
magnetic poles when r =D/2. Since r =D/2 is the value
of r at which periodically distributed reverse domains
meet one another, pr(or*')/(6I, ) remains the only reason-
able value to take for this contribution to the coercivity
and all the conclusions of the earlier paper remain valid.

In the third place it was assumed that in soft mag-
netic materials the domains of reverse magnetization
which grow to reverse the Qux in the core are created
within the bulk of the material, the poles at the surface
of the material being so large that the reverse domains
at the surface are restricted to small changes only. The
lozenge patterns indicate this to be the case, the reverse
domains growing against the applied field for values of
&f as low as O'. The mobile walls in the flux-reversal
process at low 6elds are the invisible plane-parallel
walls.

It should be remarked, however, that in the ultrathin
tapes there is a large surface-to-volume ratio, and there
may be a sufhcient orientation of the moments due to
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the magnitude of shape anisotropy compared to the
crystalline anisotropy to make g'(4'. In such a tape
the walls created at the intersection of a grain boundary

with the surface would be mobile; perhaps in this case
the surface may be considered the signilicant source of
mobile walls for Qux reversal.

APPENDIX I

To calculate the energy associated with surface poles with the periodic configuration' shown in Fig. 2, Eq. (2)
is used; the coeKcient Cpp is zero since the con6guration represents a demagnetized state. The Fourier coefficients
are given by

P')r p m ~2+ x ~ (1+P)x 2m
~

I'I ~++~Pm ~ I 2 tr)o x+AI ~m (1—P) ~m'+)+Pm'

4Zr' "O "O "(S—p)~" O ~(i—p)~ ~~ Jp~ JO—p~ ~Lz»i ~Ls ~Z+p~

where

p
L3 ~m'+Ay, ~ L4 ~v+A3

Js'(1+p)~ As J Ls 4 As

(2—P) m' ~x+A4

J L4

&
—4 (m$+

ms�

)d~d p

I i= LszrL1 —2nP/(1 —n)),
Ls =-,'zr L1+2np/(1 —n)),
I.s ———,'~t 3—2aP/(1 —a)),
1-4——-', sr' 3+2nP/(1 —n)),

It follows that for even e, C =0 while for odd e,

4'
1+(—1) "+" '(1—n) sin~

ir2e2 E1-n)

A =(1/ )I 5
' (1—n))

A s= —p+ (2+p}sr,

As= —(1/a) 2—o~(3+n)),
A 4= —g+ (2+p)zr.

4')* 3—e
Cnn=C nn=-

zrsn' 4(1—n)

1 p1 np — (1+up nzr ~1 p
sin(npzr)+ —

( I
sin npzr

I I +—
I

—— leos(np
4(1+n) E1—n) 2 E2 1—a)

pnp~q -1 ~1-nq ~2np~q np~-
sin — sin

2in(o* 1—ns E n ) 2 (1+nj (1—n) 1—n

nzr (1+a)
cos —

~ ~

for n/a odd integer
.n&2)

c„]...——c .(...——

X2n2 nzr (1+up
COS n) 2) 2

2n t'npzr~ 1J'1—ny p2npzrq npzr-
cosl f+ —

] /
sin]. 1—n' E u ) .2&1+a) 41—n) 1 n—

(nm —n) pzr
sin

(am+n) psr
41M sin

~ & (1 a) p
—4(tn+n)sls

~2 ( 1)m.(nm+n) (m+ n) (nm —n) (m —n) .

If l. =I.„, then I' „=(zr/D) (ms+no)&, and Eq. (2) gives

for n/n even integer,

'n sin(mpzr)
lf RZ odd

nz(nz' —n')

—i cos(mpsr)
if m even

(m' —n')

0 64
f(u p)=

GD D K 1 21$
R Odd

1+(—1)("+')"(1—n) sin(
&1—n

3 tx

+
v2n' 4(1—n)

1 )1—ui (1+ad nsr t'1 p
sin(npsr)+ —

I )
sin npzr(

) +—
(

—
)

cos(npsr)
4(1+n) E1—nj 2 E2 1 nj—

tl Odd
tc/a odd i'.

a' 1 2us |'npzr p 1 (1 n~ (—2npzr q npzr
Sln — Sln

4(1+as)lno 1—as E a j 2 $1+a) (1—u) 1—n

nsr (1+a)
cos a&2)
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f
n odd

n/a =even int.

1 2n

4(1+n')ZI' 1—n'

pzzp~~ "1 ~1—n~ )2Npzrq zzpzr
- -Nzr &1+a~

cos — sin — — cos-
&a ) 2(1+a) (1—n) 1 n — n ( 2 ) 2

00 00 )amply ) Np~ q+ g P (n—'m' zzz)—sin(mPzr)+( —1)'"+"&z' (1—n)( nm+ I') sin)
~

cos~
m &1—a)

n, m odd
mQn, n/a

~amply ~ zzpzr ~
- '

—ml(1 —nz) cosl - —
I sunni&1-a ) &1-n)

(nzm2 N2) 2 (mz zzz) 2 (mz+ N2) $

co cc ~ zzpzr q )umpire+ P P (n'm' zz'—) cos(mPzr)+( —1)&"c+" '&I' (1—a)( nm+ z)zsin~ ) cos~
i (1—n) E1—a )

n odd, m even
m gn/a

t' Npzr q ~umpire—mzz(1 —a') cos) ( sin)
41—a) & 1 n) —

I

(u'm' zz'—)'(m' zz'—)'(m'+zz')' (I 1)

It is interesting to first examine the two special cases f(0,p) and f(n, —,(1—n)), which follow directly from Eq. (I.1)
RS

64 [1+(—1)'"+"I' sin(NPzr) $' [sin(zzPzr) + (~i —P) (Nzr/2) cos (zzPzr) ]'
f(o,p) =—Z — — — +

2n' v2n'
n odd

~ [(I/m) sin(mPzr)+ ( 1) '~—+~ &(m/n) sin(zzPzr)]'
+ZZ

1 1 (m' zz')'—(m'+zz') &

n, m odd . . [(—1)&-+" '&&'sin(~P~)+cos(mP~) jz
)+Z 2- (I.2)

(mz-Nz)z(mz+Nz)Z l

n odd

64
[

cc a ce cc [1+ cos (amzr) $zz cc cc [1+cos(amzr) ]a
f(n, k(1 —a))=—2 — + Z 2 + 2 Z

zr' I i 2zz' » 2m'(u'm' —zz')z(m'+I') ~ i 2 2(a'm' I)'(mz+zzz) Z—
n odd n, m odd n odd

m &n/a m even
m Pn/a

00 m'n'
I. (1.3)

16(1+u')& zzz I

n/a ~ int.
n odd

The curves for f(n,p) of Figs. 4 and 5 are calculated from Eqs. (I.3) and (I.2), respectively. The curves for
60/cv*~D' follow from the relation:

Arr/au*'D' =3.4 2f(n, P) (D/D') 1—.7s(n,P) (D'/D), — (I.4)

where s(n,p) is the length of domain-wall intercept with the surface in the area P. The curves of Fig. 6 are cal-
culated from Eqs. (I.1) and (I.4).

APPENDIX II

[1+cos (nmzr) ]nz64 [ a'
f(nV)= —' 2 +Z Z

zr [ i 2zzz i i 2mz(azmz —crzz)z(yzmz+crzz) c

odd n odd n, m
m gn/a

If the restriction L,=L„ is removed and a variable parameter y= L„/L, is introduced, then D=yzrL, =zrL„and
P zr(y'm'+zz')&/D. In the case P= (1 n)/2, Eq.—(I.3) is modiaed to

[1+cos (umzr) $a'
+ ZZ

2 (nzm2 zz2) 2 (c&czmz+ zzz) ~c

odd n
evea m +n/a

zrn 1)
(II,1)

16(y'+u') & zzz I
odd n

n/a int.



DOMAIN PATTERNS FOUND I N 8i M n AND SiFe ALLOYS

If the walls are everywhere perpendicular to the surface, the area of wall per unit top-surface area is Ls(n, y)/D',
where

s(n, y) = [1 n—+ (n'+y') &]D/y (II.2)

hand the change in energy per unit top-surface area on going from a parallel-wall to a trapezoidal configuration is
60-, where

6 / 'D'= 3.4 2f(,—y)D/D' —1 7[1—+ ( '+y')~]D'/D.

Since the optimum value of D/D is (1.7[1—n+ (n'+y')&]/2f(n, y))', this change in energy is

Do. (n,y)/(o*'D' =3.4 2(3.—4[1 n+ (—n'+ y') '*]f(n,y) ) '. (II.3)

In Fig. 7 are plotted f(is,y) and ho ( sip) /&u*' D' as calculated from Eqs. (II.1) and (II.3).
If the domain walls are not perpendicular to the surface, but taper toward a plane wall within the interior of

the material as shown in Fig. 8, then instead of Ls(n, y) it is necessary to calculate

2
do

~D j2X

s(s)ds= — (1—n+[n'+y'(1 —2Xs/D)']lds+L/2 —D/( 2X)

(
~ &2X&|ED

(7+ (n'+7') ~
l—n i+- (n'+y')l+ —Ini—

) 2 p E n )
where D/2X is the depth beneath the surface at which the wall becomes planar if a uniform taper to that depth
is assumed. In the special case D/2X=L/2,

)s/2 D
2 s(s)ds = Lp(n, y),—J,

t'V+ (n'+V')' )
P (n y) = 1 n+ —(a'+y—')&+—ln

2

In this case Eq. (II.3) must be modified to

h(r (n,y)/(o*'D'= 3 4 2(3.4P .(n—,y)f(n,y) ) 1 og/co*'D', —

where 0& is the energy per unit top-surface area due to the magnetic poles at the domain walls which result from
the angle the tapered walls make with the magnetization within the domains. In order to have 40.&0, it is necessary
to have

In Fig. 7 there is also plotted

as a function of g.

0 (0 /(ed*'D' (3.4—2(3.4P (n,y)f(n,y) ) &.

(ha+op)/a)*'D'= 3.4 2(3 4p.(—,y) f($. ,y) ) *'

(II.4)


