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It is shown that in a demagnetized crystal in which closure domains do not form, the domain pattern on
a surface perpendicular to the easy-magnetization axis varies with the thickness of the crystal. For thin
crystals the domain configuration should consist of plane-parallel walls. As the thickness of the crystal is
increased, the plane walls become undular to form a rickrack-type pattern, the amplitude of the waves
increasing with increasing thickness. At greater thicknesses the domain pattern becomes more complicated,
a characteristic feature being many small domains of reverse magnetization penetrating as spikes from the
surface into the interior. A typical pattern for a demagnetized sample could consist of a regular pattern
of reverse-domain spikes within large domains demarked by plane-parallel walls extending all the way
through the crystal. These theoretical predictions are compared with domain patterns recently observed
in BiMn alloys and in barium ferrite. Recently reported domain patterns in polycrystalline SiFe alloys are
interpreted as representing the latter thick-crystal configuration. The significance of the patterns found in
SiFe alloys for the theory of flux reversal is also discussed.

I. INTRODUCTION

OBERTS and Bean! have used plane-polarized
light in reflection to observe magnetic-domain
patterns in ferromagnetic BiMn alloy. This alloy has
the hexagonal (NiAs) crystal structure, a single axis
of easy magnetization along the c-axis, and a large
anisotropy constant? (K =107 ergs/cm?®). The anisotropy
is sufficiently large to inhibit closure-domain formation;
there exist in the crystal only 180° domain walls which
are nearly parallel to the c-axis. Consequently there is a
large surface density of free magnetic poles on any
surface of the crystal making a large angle with the ¢-
axis. The energy associated with these magnetic poles
and with the 180° domain walls will alone determine
the domain patterns observed on the surface.

Roberts! observed that the domain patterns on
polished surfaces perpendicular to the ¢-axis depended
upon the thickness of the crystal. In thin crystals the
patterns consisted essentially of plane-parallel walls.
In thicker crystals the patterns became undular, the
amplitude of the rickrack waves increasing with crystal
thickness. In the thickest crystals they found consider-
ably more complicated patterns such as those reported
earlier by Williams, Foster, and Wood® on (0001)
surfaces of hexagonal cobalt. After an external field had

been applied perpendicular to a surface on which rick-

rack patterns were observed, the remanent rickrack
patterns were broken up into separate domain regions,
some of which were rings with six sides. This led
Roberts and Bean to suggest that perhaps the six-
sided rings reflect the hexagonal symmetry of the lattice.

In Sec. II there is a qualitative discussion, in Sec. III

* The research in this document was supported jointly by the
Army, Navy, and Air Force under contract with the Massa-
chusetts Institute of Technology.
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a quantitative calculation, of the energy associated with
the surface magnetic poles in a ferromagnetic material
with various magnetic-domain configurations. There is
also a discussion of the character of the domains to
be expected within the bulk of the material as the
thickness of the crystal varies. From this discussion it
is shown that the rickrack and six-sided ring patterns
can be understood from a consideration of the energies
associated with the surface poles and the domain walls;
it is not necessary to assume that they are associated
with the hexagonal symmetry of BiMn alloy.

In Sec. IV there is a discussion of the domain patterns
recently observed by Paxton and Nilan* in thin ribbons
of SiFe alloy. The patterns of interest were observed in
grains in which there was no closure-domain formation.
Although Paxton and Nilan suggested that their obser-
vations were incompatible with a theory of reverse-
domain nucleation at grain boundaries® and the con-
sequent flux-reversal mechanism in metallic-tape cores,®
it is shown that the observed domain patterns can be
readily interpreted in terms of the physical concepts on
which the grain-boundary nucleation and flux-reversal
mechanisms were based.

II. QUALITATIVE DISCUSSION

It has previously been pointed out by wvarious
workers” how the energy associated with the demag-
netizing fields in a ferromagnetic sample magnetized
perpendicular to two parallel surfaces of the material
may be greatly reduced by the creation of parallel 180°
domain walls; such a wall configuration causes parallel
strips of alternately south and north poles to appear on
the surfaces. If closure domains do not form, the
optimum separation for these walls can be readily cal-
culated by balancing the surface-pole energy gain due

4W. S. Paxton and T. G. Nilan, J. Appl. Phys. 26, 994 (1955).

& J. B. Goodenough, Phys. Rev. 95, 917 (1954).

8 N. Menyuk and J. B. Goodenough, II Appl. Phys. 26, 8 (1955).

7See the review article by C. Kittel, Revs. Modern Phys. 21,
541 (1949).
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DOMAIN PATTERNS FOUND

to reducing the separation .of these walls with the
domain-wall energy loss due to increasing the total area
of domain wall present. However, there are other
possible domain-wall configurations which, in the
absence of closure-domain formation, may give even
lower total-energy states.

The reduction in surface-pole energy by the creation
of alternate rows of north and south poles is due to the
formation of smaller flux-closure paths for the demag-
netizing fields associated with the free magnetic poles.
This reduction in surface-pole energy would be even
greater if the flux-closure paths were reduced in all
directions of the planar surface instead of in just one.
Since any reduction in flux-closure path length can
only occur at the expense of more domain-wall area, the
problem is to imagine that configuration which gives an
optimum balance between the two energies.

There are two possible configurations for the demag-
netized state which would give small surface-pole
energies, the checkerboard array of Fig. 1(a) and the
circular array of Fig. 1(b). The wall area associated
with Fig. 1(a) is considerably reduced without an
appreciable increase in the surface-pole energy if the
corners are rounded as in Fig. 1(c) (see Sec. III); but
this is immediately seen to closely approximate the
rickrack pattern observed by Roberts and Bean.!

The configurations of Fig. 1(d) are seen to be a
combination of the rickrack and circular patterns; such
configurations were found by Roberts and Bean on some
areas of a (0001) surface of BiMn alloy after it had
been subject to a perpendicular magnetic field of 15 000
oersteds.

The problem, then, is to calculate quantitatively the
optimum rickrack configuration and compare its energy
with the configuration of plane parallel walls. If the
optimum rickrack configuration is roughly that ob-
served by Roberts and Bean and is of lower total energy
than a plane-wall configuration, the rickrack patterns
do not illustrate any new principle.

III. MATHEMATICAL DEVELOPMENT

The principal mathematical problem is to develop an
expression for the energy associated with an arbitrary
distribution of magnetic poles on a plane surface of
magnetic material. The treatment to be used here is
essentially that outlined by Kittel.”

It is assumed that the surface magnetic-pole density
w*=w*(x,y) is periodic in a fundamental area of sides
2wL, and 2xL, so that it can be expressed by a double
Fourier series as

0 o0
(@) =3 3 Copeimeron),
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F16. 1. Domain configurations with low
demagnetizing-field energy.

If the plane surface is the surface of a material with
spontaneous magnetization /, which is oriented along
the z-axis perpendicular to the plane, the magnetic
energy per unit area is

0
Om= —%f H-1Ldz,

.where L is the length of the specimen along the z-axis.

The demagnetizing field H due to magnetic poles is
perpendicular to the plane so that H=kH, and

H,=—03¢/3z, V¢=0.

Since B=H+47], must be continuous across the plane,
there is the boundary condition

9¢
Ht=——
6z 2==0

=F2rw*(x,y).

In order to obtain a function which satisfies this
boundary condition, let

d’mn =— (Hzo) mnepmnz-

mn

Substitution of ¢, into the Laplacian gives
m\? n\?
r={() ()
L. L,

H,= — 3¢/ dz="TF 2rw*(x,y)ePmn,

3

Therefore,

and

0
Om™= Wf w* (x)y) o* (x’y) errLZdz,
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F16. 2. Surface-pole configuration used in calculations of energy
associated with rickrack domain patterns.

where I is taken as @*(x,y) to insure that H, and I,
always point in opposite directions. It follows that

0'7:::7|'C002L+7r Z Z Cmn —m-—anzzal(l_e_Pan) (1)

(e;:{ur;:é
m=n=0)
In the demagnetized state the areas of north and
south poles are equal so that Coo=0. Further, in most
cases of interest e~ PmI<<1 so that

Om=T Z Z Cmnc—m~ﬂ])mnui . (2)

(e;c?ud—inwg
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Using Eq. (2), Kittel” calculated the energy per unit
area of a checkerboard array corresponding to Fig. 1(a)
to be

019 =0.53*2De)

where DU is the side of each minor square. Similarly
he calculated the energy per unit area of the con-
figuration corresponding to Fig. 1(b) to be

01 =0.374*2D D),
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Fic. 3. Surface-pole configurations for
(@) =(1—a)/2, (b) a=0.
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where the fundamental area is a square of side D in
which there is imbedded a circle of opposite polarity of
radius DU /(27)}. He showed that the energy per unit
area associated with planar strips of alternating polarity
and width D’ is

on=0.85250*D".

The total energy per unit top surface of a bar magnet
of length L is therefore

owl/D'+1. 707D,

where o, is the domain-wall energy per unit area of wall.
This total energy is a minimum with respect to the
domain width D' if ¢, L/w**D"?=1.7.

The change in bar-magnet energy per unit top-surface
area from the parallel-strip configuration to the con-
figuration of Fig. 1(a) or Fig. 1(b), respectively, can
therefore be written as

Ac1®) =*2 D/ {3.4—1.06(Dw /D) —3.4(D'/ DU},
A9 = *2D'{3.4—0.75(D) /D)
—1.7(2m)} D’/ D)},
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F16. 4. Ac/w™D’ and f(a,8) vs « for
B=(1—a)/2, Ly=L,.

The optimum values for D% and D are 1.8D" and
2.4D', respectively; and the corresponding energy
changes are Ac¥) = —0.40*?D" and Ag(® = —0.20*%2D".
It is not, therefore, immediately obvious that the con-
figuration of parallel strips of alternate polarity can be
replaced by a more stable one. It should be noted,
however, that the walls are assumed to remain per-
pendicular to the surface. The relaxation of this condi-
tion is discussed later. It is of interest to determine first
whether the energy change Ac can be positive for any
configuration of surface poles if the walls remain every-
where perpendicular to the surface and pass through
the crystal.

To calculate the energy associated with the modified
checkerboard pattern of Fig. 1(c), the configuration of
Fig. 2 is used. This configuration has an integrable
solution and contains two parameters, « and 8, which
can be varied within the limits 0<a <1 and 0Z8
<(1—a)/2. If B=(1—a)/2, the configuration is the
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trapezoidal pattern of Fig. 3(a) and varies from the
checkerboard pattern for a=0, 8=1 to a zigzag pattern
for a=1, 8=0. Similarly if =0, the configuration is
the snipped-corner checkerboard pattern of Fig. 3(b)
which varies from the checkerboard pattern for f=3%
to the zigzag pattern for 8=0. The details of the calcu-
lation of f(a,8)=0m/w**D from Eq. (2) and of the
change in energy per unit top-surface area Ac are given
in Appendix I.

It was first assumed that L,= L,. In Fig. 4 are plotted
the calculated curves for f(a, (1—a)/2) and Ac/w*2D’
as a function of the parameter o, and in Figs. 5 and 6(a)
the calculated curves for Ac/w*?D’ and f(0,8), f(3,8) vs
the parameter 8. For no value of a and 8 is A¢>0. Since
the optimum value for 8 appears to be f=(1—a)/4,
the calculated values of A¢/w*2D’ and f(a, (1—a)/4)
vs a are plotted in Fig. 6(b). From this plot it is apparent
that the optimum shape, under the assumptions of
Fig. 2, is a configuration with e=%, =1 ; but even this
optimum configuration has A¢<0 so that it is a less

0.65
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0.56
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F16. 5. Ac/w**D’ and f(a,8) vs 8 for
a= 'y =Ly.

stable configuration than that of alternating parallel
strips of positive and negative magnetic poles.

In Appendix II the restriction L,=L, is removed
and an additional parameter y=L,/L, is introduced.
Since the optimum shape for y=1 was seen to occur for
a=4%, the surface-pole energy per unit area f(e,8,y)w**D
was calculated as a function of v for the configuration
a=% B=(1—a)/2=%. From Fig. 7 where f(},y) vs v
is plotted it is seen that although the surface-pole
energy decreases with increasing «, the change in total
energy per unit area from the plane-parallel configura-
tion is negative, Ao <0, for all values of v. It is apparent
that so long as the domain walls remain perpendicular
to the surface of the material, the lowest energy con-
figuration consists of a set of plane, parallel walls.

Although the assumption that the walls remain
everywhere perpendicular to the surface gives the
minimum domain-wall area in the case of plane, parallel
walls, it does not provide for the minimum wall area
when the walls are waved as in the rickrack patterns.
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Fi16. 6. f(a,8) and Ac/w*?D’ vs (a) B for a=3%, and (b) « for
13=(1—01)/4, L;=L,.

If the amplitude of the waves decreases regularly with
depth of penetration into the material as illustrated in
Fig. 8, there is a considerable decrease in the total wall
area. In order that such a taper of amplitude exist,
however, the 180° domain walls can no longer be
parallel to the magnetization, and magnetic poles are
associated with the domain walls. The decrease in
energy due to the reduction in wall area causes the
appearance of energy associated with the domain-wall
poles; this energy per unit top-surface area is defined
as o4. The appearance of this energy defines an optimum
rate of change of wave amplitude with penetration
depth.

In Appendix IT the special case is considered in which
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F1e. 7. f($,v) vs v; [Ad(},v)+oal/w*D’ vs v, for walls every-
where perpendicular to the surface (0q4=0) and for walls which
taper to plane walls at the crystal half-width (¢450).
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Fi6. 8. Schematic domain walls with taper.

the amplitude of the waves decreases regularly to zero
at the half-thickness L/2, then increases regularly to
full amplitude at the opposite face. The energy per unit
top-surface area (Ac+o4) is plotted in Fig. 7 for the
domain configuration a=4%, 8= (1—a)/2=1%; this energy
is seen to be positive for all values of . Since o4 is
proportional to some positive power of D/L where
D/L=(D/D')(D'/L) « L3, the term ¢4 can be reduced
to ¢q¢<g¢+Acs by increasing the crystal thickness L.
It is at once apparent that Ac>0 for a crystal thickness
in the neighborhood of (D/X), where (D/2)\) is the
distance required for the surface-wave amplitude to
decrease to zero at the optimum rate of wave-amplitude
reduction with penetration depth.

It can be concluded that in crystals which are too
thin to permit a significant change in wave amplitude
within their interior, the configuration of plane, parallel
walls is the most stable. For a thicker crystal wavy
walls are more stable than plane walls, the amplitude
of the waves increasing with thickness. However, the
amplitude will not increase indefinitely : Fig. 7 indicates
that the maximum amplitude probably occurs for v < 3.
Also the domain width is greater than that calculated
for the plane-wall case since, by Appendix 1T, D/D’>1.
This fact was observed by Roberts.!

Qualitatively it can be seen that for very thick
crystals the configuration of Fig. 9 will form in prefer-
ence to a rickrack pattern of very large amplitude. In
this configuration the surface-pole energy is similar to
that for a configuration of large amplitude, but the
domain-wall energy is considerably reduced by the
formation of rows of domains of reverse magnetization
which penetrate as spikes only partially through the
crystal, these rows being separated by plane-parallel
walls which extend entirely through the crystal. Sixtus®
has found patterns of this latter type on a polished
surface of barium ferrite parallel to the hexagonal axis.
He also reports the rickrack patterns for a surface
perpendicular to the c-axis in this material.

If reverse-domain formation is more stable than a
rickrack pattern, there are many complex configurations

8K. J. Sixtus, Conference on Magnetism and Magnetic Ma-
terials, Pittsburgh, Pennsylvania (June 14-16, 1955), Am. Inst.
Elec. Eng. (October, 1955), p. 142.
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which can occur depending upon the magnetic history
of the specimen. The ring patterns observed by Roberts
and Bean when the BiMn specimen was subject to a
large field along the c-axis are typical for a partially
magnetized sample. Since the energy associated with
the surface magnetic poles is large, the domains which
are oriented parallel to the applied field grow as a
result of a variation in the rate of taper of the rickrack
walls, the cost of increased domain-wall pole energy
being somewhat compensated by decreasing wall area.
The changes in surface configuration will not appre-
ciably increase the large energy associated with the
surface magnetic poles until extremely large fields are
applied. Consequently the surface configuration is seen
to break up irreversibly into smaller units than the rick-
rack pattern, units such as the rings shown in Fig. 1(d),
which penetrate as relatively blunt spikes into the
material ; the change in surface-pole energy with change
in surface configuration is small.

From these considerations the interesting rickrack
and ring patterns observed by Roberts and Bean are
found to be due to normal energy considerations; there
is no need to attribute them to the hexagonal symmetry
of the lattice except insofar as this gives a unique easy
axis of magnetization with large anisotropy so that
closure domains do not form.

IV. PATTERNS IN SiFe ALLOY

The absence of closure domains at the surface of a
magnetic material need not be associated with crystals
which have but a single axis of easy magnetization and
a high crystalline anisotropy, such as BiMn alloy. If
the surface of a cubic crystal cuts the three axes of
easy magnetization, for instance, there is no easy-mag-
netization direction parallel to the surface, and surface
poles exist. Although closure domains may reduce the
energy associated with these surface poles, it is easy to
imagine a situation where this is not the case.

F16. 9. Thick crystals in demagnetized state: large-amplitude
ridl{rack pattern gives way to rows of spikes separated by plane
walls.
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Consider a strip of commercially grain-oriented 319,
silicon steel approximately 0.01 in. thick, such as that
used by Paxton and Nilan* in recently reported domain-
pattern studies. In their work they introduced three
angular parameters to define the orientation of a given
grain with respect to the rolling plane and rolling direc-
tion customarily used for reference in sheet steel. The
[100] direction is taken as that one of the (100) direc-
tions which makes the smallest angle with the rolling
plane; this smallest angle is ¢. The angle the projection
of the [100] direction on the rolling surface makes with
the rolling direction is 6, and « measures the degree of
rotation of the [010] and [001] directions about the
[100] direction, a position in which they make equal
angles with the rolling plane being the reference position
a=0. Since the (100) directions are the easy axes of
magnetization, the energy due to crystalline and demag-
netization anisotropy is minimized when the mag-
netization is roughly parallel to the [100] direction;
closure-domain formation does not reduce the energy.
This particular example is chosen as the experiments
reported there appear to illustrate the pattern proposed
in Fig. 9. They also confirm the concepts on which an
earlier theory of flux reversal was based.5:¢

The patterns of particular interest for this discussion
are those Paxton and Nilan classified as “lozenges,” a
pattern which was observed for 4° <¢ <7°. The lozenge
figures resemble small spikes which are either open or
closed at the base and point in the [100] direction.
These figures are periodically spaced in rows with a
regular spacing between the rows. In the demagnetized
state the lozenges are all of uniform size.

Whereas Paxton and Nilan judged that the lozenge
figures are a flux-closure pattern, this conclusion can be
ruled out immediately from energy considerations;
closure-domain formation would only increase the
magnetic-pole strength at the surface. The lozenge
patterns must enclose surface regions of opposite
polarity. Further, the lozenge shape is what would be
anticipated for domains of reverse magnetization;
proposed domains of reverse magnetization are illus-
trated in Fig. 10. Finally, the periodicity of the lozenges
in the respective rows suggests that these reverse
domains have been created to reduce the energy asso-
ciated with the surface magnetic poles; the assumption
of periodicity in the Fourier analysis of Sec. III is
apparently quite generally valid.

The most interesting feature of the lozenge pattern,
however, is its reaction to an external field applied

COLLOIDAL
MAGNETITE

F16. 10. Model for reverse-domain spike responsible for a lozenge.

F1c. 11. Complete magnetic-domain model for lozenge patterns.

roughly parallel to the [100] direction. In such a field
the lozenges of alternate rows grow, the others decrease.
When the field is reversed, the set of larger lozenges
decreases, of smaller lozenges increases. Such a behavior
can be understood if it is postulated that invisible,
parallel plane walls exist between the rows.? The postu-
lated domain pattern is shown in Fig. 11; it corresponds
to the thick-crystal configuration of Fig. 9. However,
there are three questions which must be answered:
(1) Why are only the lozenge patterns observed by
colloidal-magnetite techniques? (2) Is the spacing
between lozenge rows compatible with the optimum
spacing D’ for a configuration of plane walls parallel to
the magnetization vector? (3) Why does a strip of
silicon iron only 0.01 in. thick have a configuration
corresponding to the predictions for a thick crystal?
The answer to the first question is readily apparent.
The colloidal magnetite is attracted to the region of
the surface intercepted by a wall if the atomic moments
within the wall make large angles with the surface.
Since the atomic moments within a 180° wall are always
within the plane of the wall, only that portion of
domain wall intersecting the surface at a large angle
will contain atomic moments which are so directed that
they attract the colloidal magnetite more strongly than
the surface atomic moments within the domains them-
selves. The plane walls of Fig. 11 intersect the surface
at a small angle; ¢ <7°. The atomic moments within
these walls make even smaller angles with the surface
than do those within the domains; there can be no
attraction of colloidal magnetite to the intersection of
the wall with the surface. Similarly the base of each
lozenge pattern consists of a wall making a small angle
with the surface: this accounts for the fact that many
of the lozenge figures have open bases. The fact that
some are closed can be the result of fringe fields from
the side walls of the lozenges which make large angles
with the surface (see Fig. 10). These closures do not
necessarily reflect the configuration of the base wall.
To calculate the optimum spacing for a configuration
of plane-parallel walls of the type shown in Fig. 11, let
the angle the walls and the magnetic moments within
the domains make with the surface be ¢’<¢. The
demagnetizing fields rotate the magnetic moments out
of the easy-magnetization direction [100] to make
¢'<¢ where ¢—¢'=Hul,/2K, Hs I,, and K being

9 The possibility that invisible parallel walls exist was sug-
gested to us by W. S. Paxton and T. G. Nilan during an informal
discussion of their work.
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respectively the demagnetizing field, the saturation
moment, and the crystalline anisotropy constant.” Then
the total energy per unit top surface area of a system
of plane-parallel walls like that of Fig. 11 (omitting the
lozenges) is

o=0uh/ (D’ sing’)+ fuw®D',

where o= fnw*D’ is the magnetic energy per unit area
associated with the parallel strips of magnetic poles of
surface magnetic-pole density w*=1, sing’. If the tape
thickness /% were large and ¢’ were 90°, then f,=0.8525.
In order to take advantage of this knowledge, assume
hypothetical surfaces perpendicular to the plane walls
and separated by a distance L=1%/sin¢’. For these
surfaces w*=1, and f,,=0.8525 so that as in Sec. III
the optimum value for wall separation is (o, L/1.712)%.
From this it follows that for 319} silicon iron with
h=0.01in., g, =1 erg/cm?, ¢’ =4°, B,=19.7X10° gauss,

D 1 ( owh
I, sing’ \ 1.7 sing’

]
) ~107% cm.

Since the observed spacing between rows of lozenges
in the demagnetized sample was about 10~% cm, the
proposed invisible walls are energetically feasible. The
wider observed spacing is easily accounted for by the
existence of the reverse-domain spikes in addition to
the plane walls. If the observed spacing had been
smaller, however, the invisible walls would not have
been energetically feasible.

The answer to the third question is simply that it is
not the crystal thickness, but the effective crystal
thickness L=//sing’~3.6 mm which determines the
surface domain configuration. If the ratio of minor to
major dimension of the reverse-domain spike is about
1/30, the length of the reverse domains represented by
the lozenges is about 0.5 mm, or L/7. The rickrack
pattern is most stable if this length is about L/2; the
effective thickness L=/%/sing’ does correspond, there-
fore, to the thick-crystal case so that a domain con-
figuration corresponding to Fig. 9, or Fig. 11, is to be
expected.

Once the configuration of Fig. 11 is accepted, the
interesting behavior of the lozenge patterns becomes
obvious. The invisible parallel walls of the configuration
are the mobile walls in the presence of soft magnetic
fields. In the presence of an external field roughly
parallel to the [100] direction, those large domains
which are oriented parallel to the field grow, those
oriented antiparallel shrink because of the motion of
the invisible parallel walls. Since the lozenge patterns
are due to reverse domains which are enclosed within
these larger domains, these grow or shrink with the
host domain. It should be noted that these reverse
domains grow or shrink against the forces from the
externally applied field; the energy associated with the
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surface magnetic poles is apparently larger than that
associated with the external field.

Finally, these experimental results give interesting
confirmation to the concepts set forth in an earlier
paper.® First, the magnitude of the domains of reverse
magnetization varies in a regular way with the size of
the parent domain within which it is created. This was
the basic assumption required for the term in the
coercive force which varies inversely with the mean
grain diameter.

Second, the domains of reverse magnetization are
created in a periodic manner, an assumption which was
used for the calculation of the energy associated with
planes of magnetic poles. There is a correction to be
made in Sec. IIT part B of that paper, however. If
cylindrical domains of reverse magnetization are created
at a planar surface with base radius 7 in elementary,
periodic areas D?, the energy associated with the
surface magnetic poles is, according to Eq. (1),

om=mCo’L+ (harmonic terms)
=g o[ (2772/D*) — 1 4 (harmonic terms),

where go=mw*?L/3 if the planar surface is the boundary
of a grain of diameter L. The factor § appears after
account is taken of the finite dimensions of a grain-
boundary surface. In the earlier paper the expression
was given as

om=a0¢| (2w7*/D*)— 1|+ (harmonic terms).

It follows, therefore, that the field required to move
the wall irreversibly against the surface magnetic poles
is

Tw*? 2r?
H,(w*) = X2 ————~1),
61, D?
which reduces to the value given previously for the
contribution to the coercive force due to grain-boundary
magnetic poles when 7= D/2. Since r=D/2 is the value
of r at which periodically distributed reverse domains
meet one another, 7{w*?)/(61,) remains the only reason-
able value to take for this contribution to the coercivity
and all the conclusions of the earlier paper remain valid.

In the third place it was assumed that in soft mag-
netic materials the domains of reverse magnetization
which grow to reverse the flux in the core are created
within the bulk of the material, the poles at the surface
of the material being so large that the reverse domains
at the surface are restricted to small changes only. The
lozenge patterns indicate this to be the case, the reverse
domains growing against the applied field for values of
¢ as low as 4°. The mobile walls in the flux-reversal
process at low fields are the invisible plane-parallel
walls.

It should be remarked, however, that in the ultrathin
tapes there is a large surface-to-volume ratio, and there
may be a sufficient orientation of the moments due to
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the magnitude of shape anisotropy compared to the with the surface would be mobile; perhaps in this case
crystalline anisotropy to make ¢’ <4°. In such a tape the surface may be considered the significant source of
the walls created at the intersection of a grain boundary mobile walls for flux reversal.

APPENDIX I

To calculate the energy associated with surface poles with the periodic conﬁguratioh' shown in Fig. 2, Eq. (2)
is used ; the coefficient Cyo is zero since the configuration represents a demagnetized state. The Fourier coefficients
are given by

20* T 2 T 1+8)w 1r+$—ﬂ1r Ly amtAL 7(1—B) prtitpr
I TN TN A

4r? 0 @) a—f)r gr Ji—pr L Y4 EHpr

7+A2 Ly am+A3 @—B)T amtAy
A AT i
1+8)v A2 L3 v A3 Ay

=jr{1—208/(1-a)], A1=(1/e)[f—3r(1—0)],
Ly=4r{1+208/(1—0)], As=—§+Q2+B)m,
Ly=37[3—208/(1-a)], 4 =—(1/a)[£—lr(3+a)],
Li=3n{3+208/(1—0) ], As=—E+(2+0)

It follows that for even #, Crnn=0 while for odd #,

where

4w* nPw
Con= ———{ 14+ (—1) = 2(1—q) sin(———) },
wn? 1—a
4iw*( 3—a 1/1—=a 14-o nryl B
{ sin(nﬁﬂ-)-!——(———) sin[nﬂvr( )] } (—— )cos(nﬁﬂ-) },
2 4(1—a) 4\14-a 1—a 2\2 1-a
20 nBT 1/1—a 2nBr nBr nr 1+a
{ sin(———)—i—[—(————) sin(——)—i—————] cosl:—(—):” for #/a odd integer
2iaw™ | [1—a? a 2\ 14« 1—a 1—a a 2
m2n? 2a nBT 1/1—« 2nBm nGw nw f14+a T
Lo () 6) = () -] (50) )
1—a? a 2\1+4« 1—a 1—a o 2 2

for #/a even integer,

‘ Cnn= C—nnz -

Cn/cx, n=c—-n/zx. n=

7 sin (mfBr)
(am~+n)Bm (am—mn)Br ———if m odd
4ie* sin [————-»—— ] sin[———~————] m(m—n?)
Conm 31 —cpemmet | 1o 1= |+
. ? (—1m —1 cos(mfBm)
(am~+n) (m—+n) (am—n) (m—n) — if m even
 (m2—md)

If L,=L,, then Pn,= (r/D)(m*+n*?, and Eq. (2) gives

‘ i { [1-}—( 1) D121 —q) sm( 61)]
1r4 1 2n® 1—a
1 3— 14« nr /1 B8 2
+\/_n5[4( - sin(nBm) - ( ) sm[nﬁw( )]T . (—2——1_a) cos(n,&r)] }
” o 1( 22 g 1/1—a 7\ T 7 /14« 2
+ % A (DG =) =)= 2O
. (1>dd 4(14a?)? n5(1—a? a 2\14a 1l—a 11—« o 2

n/a =odd int.

fla

(Egquation continued on nexi page.)
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2 e GO = (2)-E1 -1 ))

n/u -—even int.

+ i i {z(a"’m?—n?) sin(mBm')—}—(—-1)‘”’*’")’2[(1——01) (am?+n?) sin(a ﬁvr) cos( nﬁvr)
1 m

nm odd
—mn(l1—a? cos(a—rfﬁ—f) sin( "o )“ / (a?m?—n2)? (m*— n?)?(m?>+n?)*

m#En, n/a
1—a

+ i i { (a?m?—n2) cos(mBm)+(— 1)<m+n-1>/2[(1_ o) (am+?) sin ( lﬁﬁ_ﬂ' ) cos (Oﬂnﬁﬂ')

12 —a 1—a
7 odd, m even
m#En/a
nBr amfBr 2
—mn(1—a?) cos(———) sin( )] ] / (a2m?—n2)?(m2—n?)? (m2+4n?)} } . (1L1)
' 1—a 1—a
It is interesting to first examine the two special cases f(0,8) and f(e, 3(1—a)), which follow directly from Eq. (I.1)
as
10.)= [1+ (=12 sin (nﬂW)]2 [sin(npr)+ (3—B) (n/2) cos(nfm) I
e 2n® V2n®
n odd
w » [ (n/m) sin(mBr)+ (—1) ) 2(m/n) sin(nlr) ]
+r ¥
n?m oclld (m —n2)2(M2+n2)*
m¥En
o o [(—1)m+s+D2 gin (nBr)+cos(mBr)
+L % ——— ] (12)
L ek
64( = @@ @ o [14-cos(amr) Jn? o o [14cos(emr)]e?
,i(1—a))=— _
fle,3(1—a)) o nid 2n5+n21 21: 2m2(a2m2 n?)?(m2+n2)t ? § 2(a2m?—n)?(m2—+n?)*
rr;r;":/a m even

m¥n/a

T 1‘ (13)

T 16(1+ad)tmsl
n/a=int.
n odd

The curves for f(e,8) of Figs. 4 and 5 are calculated from Egs. (I.3) and (I.2), respectively. The curves for
Ag/w*D’ follow from the relation:

Ac/w*D'=3.4—2f(a,8) (D/D")— 17S(a,ﬁ)(D'/D), (1.4

where s(a,8) is the length of domain-wall intercept with the surface in the area D2 The curves of Fig. 6 are cal-
culated from Egs. (I.1) and (1.4).

APPENDIX II

If the restriction L,= L, is removed and a variable parameter y=L,/L, is introduced, then D=vwL,==L, and
Pn=n(v?m*+n?)t/D. In the case 8= (1—a)/2, Eq. (1.3) is modified to

Jam) 64 i o? i zoo: [14-cos(amr) Jn?
Y)=—
a o 5 nzns xa 22 (P — 1) (y 22— m2)
m#n/':zn
w [14cos(amm) Ja? o wrad 1
s> P2 b
142 2(a*m?—n®)*(v¥m*4-n?)} L 16(y*+a?)? #?

even m ¥n/a n/a =int.
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If the walls are everywhere perpendicular to the surface, the area of wall per unit top-surface area is Ls(a,y)/D?
where

s(ayy) =[1—a+ (@++)¥]D/v (I1.2)

and the change in energy per unit top-surface area on going from a parallel-wall to a trapezoidal configuration is

Ao, where
Ac/w®? D' =3.4—2f(a,y)D/D'— 1.7[1—a+ (2+~+»)¥]D’'/D.

Since the optimum value of D/D’ is {1.7[1—a+ (a®++?)*]/2 f(oz,’);)}%, this change in energy is
Ac(o,y) /™D =3.4—2{3.4[1—a+ (2+) ] f(a,y) } . (11.3)

In Fig. 7 are plotted f(,y) and A¢(3,v)/w*D’ as calculated from Eqs. (IL.1) and (II.3).
If the domain walls are not perpendicular to the surface, but taper toward a plane wall within the interior of
the material as shown in Fig. 8, then instead of Ls(a,y) it is necessary to calculate

L[2 D D/2X\
2 f s()ds=— f (1= -+ [a+v2(1— 222/ D) Jidz+1,/2— D/ (20)
0 Y Yo

NGl ()

where D/2\ is the depth beneath the surface at which the wall becomes planar if a uniform taper to that depth
is assumed. In the special case D/2A=L/2,

L/2 D
2fsWF%mm
0 Y

1 ot v+ ()}
o =1 - 2 )i — s .
plam)=1 +i@%w)+7m( )]

(o4

where

In this case Eq. (I1.3) must be modified to
Ao (a,y) /D' =3.4—2{3.4p(ayy) f(ay) } = 04/ D',

where o4 is the energy per unit top-surface area due to the magnetic poles at the domain walls which result from
the angle the tapered walls make with the magnetization within the domains. In order to have A¢>0, it is necessary
to have
0 <o4/w®D’ <3.4—2{3.4p(a,y) f(ayy)}*. (I1.4)
In Fig. 7 there is also plotted
(Ao+toa)/w*D'=3.4—2{34p(3,7) GV}
as a function of v.



