
EQUATION' OF FUSION CURVE

relatively high melting point. For elements of low
melting point, such as the molecular crystals, applicabil-
ity of the Murnaghan equation of state has not been
verified; hence the conclusions are not necessarily
valid for elements of this class, for which the Simon
equation was originally devised.

The fundamental fusion criterion on this theory is
Eq. (7) corresponding to the Lindemann law, from
which the Simon equation follows through choice of
the Murnaghan equation (or one of similar analytic
form) as the equation of state of the solid. However, a
treatment analogous to that given here, based on a
Birch equation" (also derived from the theory of finite
strain) or other justifiable equation of state, will not
necessarily yield the analytic form of Eq. (31), but
should be capable of representing the experimental
facts as well, if Eq. (7) is accepted. Further, the
evaluation (21) of the Simon exponent implies some
dependence on the pressure range covered by the fusion

+ F. Birch, Phys. Rev. 71, 809 (1947).

curve, and the evaluation of the Simon coeKcient shows
a dependence on the arbitrary position of the origin
of the fusion curve. These considerations suggest that
the Simon equation has more the character of an
interpolation formula than a basic fusion equation, at
least for the elements of higher melting temperature.

The fact that the Simon equation can be derived so
directly from the generalized Lindemann law of I, for
low pressure, justifies to some extent the step of
extrapolating the law, for high pressure, to obtain the
fusion cuive on the basis of the Thomas-Fermi equation
of state"
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An evaluation of the Griinesisen parameter (or constant) from the equation of state of a solid has been
obtained by Druyvesteyn and Meyering on the basis of the theory of 6nite strain. The result differs (by —~~)

from the corresponding evaluation on the Debye theory, as given by Lorentz and by Slater. The value of
Druyvesteyn and Meyering is derived here without use of the formal theory of 6nite strain, and shown to
correspond physically to a model of independent pairs of nearest neighbor atoms, rather than to the Debye
model of coupled atomic vibrations. This fact resolves a paradox raised by Dugdale and MacDonald in
connection with an ideal harmonic solid, and ascribed by them to neglect of 6nite strain. The presence of a
state of 6nite hydrostatic pressure, upon which elastic waves or pressure changes of infinitesimal amplitude
are impressed, is taken into account explicitly by means of Murnaghan's theory of hnite strain, to obtain
the Griineisen parameter, as evaluated from the equation of state, on the Debye model and for a
Druyvesteyn-Meyering solid. The results are identical in the two cases with the corresponding values
obtained without use of the formal theory of 6nite strain. Hence, no basis exists for the modihcation at
6nite pressure in the Gruneisen parameter from the Debye theory, as proposed by Dugdale and MacDonald.
A comparison of average values over a relatively large number of elements, of Griineisen constants as
evaluated from Gruneisen's law and from the equation of state on the Debye model, shows excellent
agreement .at normal and at melting temperature.

I. INTRODUCTION

ROM results of J,. orentz' and Slater,"the Griineisen
parameter (or constant) yD of an isotropic solid

can be evaluated from its equation of state as

', (ar/av) (van —/a-v )-
where I' is the pressure corresponding to the volume
V. As indicated by the subscript D, this result is based

* Work sponsored by the U. S. Atomic Energy Commission.' H. A. Lorentz, Proc. Roy. Acad. Amsterdam 19, 1324 (1916).' J. C. Sister, Phys. Rev; 57, 744 (1940).' J. C. Slater, InArodlction to Chemical Physics (McGraw-Hill
Book Company, Inc. , New Vork, 1939), pp. 238, 394, 45k.

on the Debye theory; it presupposes that the Poisson
ratio of the solid is constant. In a number of papers' 6

concerned with the fusion curve and the behavior of
solids under pressure, the author has assumed that the
evaluation (1) of the Griineisen parameter is valid at
high pressure, for the Debye theory.

The question can be raised whether the theory of

4 J. J. Gilvarry, this issue LPhys. Rev. 102, 308 (1956)j~
referred to hereafter as I.

e J. J. Gilvarry, this issue LPhys. Rev. 102, 317 (1956)j,
referred to hereafter as II.

e J, J, Gilvar'ry, preceding paper P'hys. Rev. 102, 325 (1956)$,
referred to hereafter as III.
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finite strain may not modify Eq. (1) at high pressure.
On the basis of Duhem's formulation~ of the theory of
6nite strain, Druyvesteyn and Meyering have obtained
a value y~~ for the GrQneisen parameter of a solid as
evaluated from the equation of state, which can be
expressed as

7DM='yD (2)

in terms of yD of Eq. (1). The presumption in their
work is that the conflict of Eq. (2) with Eq. (1) arises
from consideration of 6nite strain. Further, Druyves-
teyn' has used Murhaghan's theory"" of 6nite strain,
with some drastic assumptions, to evaluate the Griinei-
sen parameter of a solid in terms of its Poisson ratio
alone. In later work, " however, he pointed out that
values of the GrQneisen constant obtained from
GrQneisen's law show only poorly the predicted
correlation with Poisson ratio; hence, this result of
Druyvesteyn will not be considered further in what
follows.

Of late, this question of the possible e8ect of 6nite
strain has been reopened by Dugdale and MacDonald. "
These authors point out that Eq. (1) yields a value

3 when applied to the equation of state of a solid
which they believe should show no thermal expansion;
since y~ does not vanish, Griineisen s law implies a
thermal expansion. Dugdale and MacDonald ascribe
the paradox to neglect of 6nite strain in the derivation
of Eq. (1). They attempt to resolve the paradox by
postulating (apparently without formal derivation from
the theory of finite strain) an expression for the ("riinei-
sen parameter as evaluated from the equation of state,
which coincides with Eq. (2) of Druyvesteyn and
Meyering at. zero pressure, and thus yields a vanishing
GrQneisen parameter for the case in question.

The in6nitesimal theory of elasticity describes an
isotropic solid by means of two elastic parameters,
which can be taken as the two Lame constants or as the
bulk modulus and the Poisson ratio. These coefficients
yield directly the values of such derivatives as 8I'/8V
or 8sE/8Vs, where E is the total energy. To evaluate
the corresponding higher derivatives, the formal theory
of 6nite strain introduces three additional coeS.cients
for an isotropic solid, which can be taken as the three
Brillouin"" or the three Murnaghan"" parameters.
These parameters yield directly the values of such
derivatives as 8'I'/8V' or 8sE/8Vs. Since Eq. (1)
contains 8'J'/8V', though not expressed in terms of

r P. Duhem, Ann. ecole Norm. 23, 169 (1906).
M. J. Druyvesteyn and J. L. Meyering, Physica 8, 851 (1941).

9 M. J. Druyvesteyn, Physica 8, 862 (1941).
'e F. D. Murnaghan, Am. J. Math. 59, 235 (1937). .

F. D. Murnaghan, in Applied 3fechaeks, Theodore eon
Kdrrltdl Artrtseersary Vol@me (California Institute of Technology,
Pasadena, 1941), p. 121.

n M. J. Druyvesteyn, Philips Research Rept. 1, 77 (1946).
~3 J. S. Dugdale and D. K. C. MacDonald, Phys. Rev. 89, 832

(1953).
'4 L. Brillouin, Ann. phys. 3, 267, 328 (1925).
'eL. Brillouin, I.es Telsetsrs ere Necaltqtse et ea Alastscitt

(Masson et Cie. , Paris, 1949), Chaps. 10-12.

3rillouin or Murnaghan parameters, it involves
consideration of finite strain. Hence, Eq. (1) for the
GrQneisen parameter on the Debye model should
contain no restriction to infinitesimal strain (a point
which has also been made by Slater'e).

In this paper, Eq. (2) for p&ts will be derived without
recourse to the formal mechanics of the theory of 6nite
strain. The derivation brings out clearly the area of
physical validity of the result; it applies to a model of
independent pairs of nearest neighbor atoms. Druyves-
teyn and Meyering obtained the expression by virtue
only of tacit limitation to such a solid. Hence, the
difference between Eqs. (1) and (2) lies in the model
employed. The former equation corresponds to a
Debye solid, in which coupling of the vibrations of the
individual atoms is taken into account. These considera-
tions yield an immediate resolution of the paradox of
Dugdale and MacDonald.

Murnaghan has reduced the theory of 6nite strain
to a form very tractable for physical applications. "
The consistency of his results with the very extensive
earlier work has been shown by Truesdell. ' The
formalism of the Murnaghan theory will be used in
this paper to derive the value of the GrQneisen
parameter under 6nite strain, as evaluated from the
equation of state for a Debye solid, on the basis of an
assumption corresponding to that of constant Poisson
ratio. The result is identical with that of Eq. (1), as
one should expect on the usual assumption that the
presence of a uniform 6nite pressure aGects the velocities
of elastic waves of in6nitesimal amplitude only through
its effect upon the density and the elastic parameters.
In point of fact, this assumption has been justi6ed by
Biot" on his formulation of the theory of 6nite strain,
by a general argument. The value of Eq. (2) is found
for the GrQneisen parameter of a Druyvesteyn-Meyer-
ing solid under finite strain.

II. HARMONIC SOLIDS

A harmonic solid is one in which the thermal behavior
can be represented by a set of lattice oscillators whose
Hamiltonian H is

H = —s'p;(pp+4sr'r, sq,s),

where the range of i corresponds to all normal modes of
oscillation, p; is the generalized momentum correspond-
ing to the oscillator coordinate q;, and v; is an oscillator
frequency. The GrQneisen parameter y of the solid is
de6ned by

y= —8 1 /n8slnV,

on the GrQneisen postulate that all lattice frequencies

'~ J. C. Slater (private communication}.
~VF. D. Murnaghan, Ferrite Deformation of ae Elastic Solid

(John Wiley and Sons, Inc. , New York, 1951), Chap. 4.
~8 C. Truesdell, J. Rational Mech. and Anal. 1, 178 (1952).
» M. A. Biot, J. Appl. Phys. 11, 522 (1940).
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v, vary with volume in the same manner. "The thermal
pressure P& of the lattice is given by

of Poisson s ratio o permits one to write Eq. (8), in
the form of I and II, as

Pi ——yEi/V, VD =gD+1/8~ —1/2E'1/2 V1/6 (13)

where the thermal energy E& of the lattice is defined by where M is the atomic weight and sn(o) is deGned by

A. Debye Solid

For purposes of later reference, a prefatory discussion
of a Debye solid will be given.

The Debye frequency vD of an isotropic monatomic
solid is defined by

3$= (4/3)s. V(ci '+2cg ')vD', (g)

where S is Avogadro's number, t/' is the atomic volume,
and c~ and c~ are the velocities of longitudinal and
transverse elastic waves, respectively; this definition
corresponds to the Debye assumption of an average
wave velocity for the two types of waves. The wave
velocities are given for an isotropic solid by

cl'= () +2~)/p, cP =1/p, (9)

if p is the density and X and p are the Lame parameters.
The definition of the bulk modulus by

yields the result

on the infinitesimal theory of elasticity. Use of this
relation and the definition,

o = -', X/(X+ii), (12)

~ E. GrQneisen, in Handbuch der I'hysik (Verlag Julius Springer~
Berlin, 1926), pp. 1-59.

2' M. Born and E. Brody, Z. Physik 6, 132 (1921).
~ D. J. Hooton, Phil. Mag. 46, 422, 433 (1955).

«=(r..lP') +(r.'2 ' "V")", (6)

in which the averages of the kinetic and potential
energies which appear must be computed from quantum
statistical mechanics. The volumetric coeScient o. of
thermal expansion for a harmonic solid can be found
from Griineisen's law

En=yC /vV,

in which E is the bulk modulus (inverse compressibility)
and C& is the heat capacity at constant volume. This
result follows directly from Eq. (5), on the Gruneisen
assumption that p is a function only of volume.

The thermal oscillators, whose coordinates appear
in Eq. (3) for H, may be the virtual oscillators of the
acoustic Geld as in a Debye solid (which shows a
spectrum of frequencies), or they may be material
oscillators, as in the Druyvesteyn-Meyering solid
(where only one frequency appears) discussed below.
Such harmonic solids stand in contrast to the an-
harmonic solids treated by Born and Srody, " or by
Hooton. "

9/4s

2(1/r). L2(1—r)) '*+2/1 —2rJ *

3

(14)

B. Druyvesteyn-Meyering Solid

In this section, the Griineisen parameter given by
Druyvesteyn and Meyering will be obtained from an
atomistic model. Consider a monatomic solid with a
simple cubic lattice. Assume that each atom shares a
bond with each of its six nearest neighbors, and with
no neighbors more remote. Let each bond be represented

"J, E. Mayer and M. G. Mayer, Statistical Mechanics (John
Wiley and Sons, Inc. , New York, 1940), pp. 243, 251.

~A. E. H. Love, A Treatise on the Mathematical Theory of
Elasticity (Dover Publications, New York, 1944), fourth edition,
pp. 94, 99, 104.

s' H. Je6reys, Proc. Cambridge Phil. Soc. 26, 101 (1930).
se J. J. Gilvarry, Phys. Rev. 96, 934 (1954).

Thermodynamic functions on the Debye model, such
as the thermal energy 8& of Eq. (6), are given directly
by standard results" in terms of hvD/kT, where h

and k are the Planck and Boltzmann constants respec-
tively, and T is the absolute temperature.

To satisfy Griineisen's postulate, " that all the
frequencies vary with volume in the same manner, it is
essential that the Poisson ratio 0 be constant; otherwise
the frequencies of the longitudinal and transverse
waves show diferent variations. Kith this assumption,
use of Eq. (13) in Eq. (4) yields

yg) ———-', —-', 8 1nK/8 in V

for the Griineisen parameter yD on the Debye model.
This form for yD is essentially that of Lorentz; by Kq.
(10), it is equivalent to Eq. (1) of Slater, which, one
notes, does not contain explicitly the I arne parameters
X and p characteristic of the infinitesimal theory of
elasticity

It is common in the theory of elasticity of solids to
consider only adiabatic and isothermal processes, in
which cases a strain-energy function can be defined";
thus, the distinction between the energy and the
Helmholtz free energy will be ignored, in general.
It is known that the bulk modulus for a solid can be
taken indifferently as adiabatic or isothermal at low

pressure, " and the result for a solid at high pressure
follows from the Thomas-Fermi atomic model, for
temperatures low in the sense of the model. '6 Hence,
qualification of a partial derivative with respect to
volume as adiabatic or isothermal will be omitted, on
the basis above, and on the basis of Griineisen's
assumption that the characteristic frequency is a
function only of volume.
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by an oscillator consisting of the two atoms connected
by a nonlinear spring along their. join, and assume that
each such oscillator is independent. The Griineisen
parameter for such a solid of independent pairs of
nearest-neighbor atoms will be obtained by extension of
a method given by Madelung'7 and Einstein' to
evaluate the characteristic frequency of a solid in terms
of its elastic parameters. The model in question is
equivalent to one in which each bond is replaced by a
diatomic molecule. It is clearly artificial, but not
entirely so; Slater' has pointed out the similarity
between the metallic bond and the homopolar bond,
and has used the Morse potential for the interatomic
potential in a metal to obtain values of the Griineisen
constant showing reasonable agreement with values
from GrCineisen's law.

The volume variation of the frequency v of a single
bond oscillator is given to first order, from Eq. (4), by

"D~P1—'Ynsr(V —Vp)/Vp), (16)

where yD~ is the corresponding Griineisen parameter,
vD~ is a constant frequency, and Vp is the normal value
of the volume V. Since the volume per atom for a
simple cubic lattice is r' in terms of the interatomic
distance r, one obtains

v —vr)sr/1 —37'Dsr(r rp)/rp j — (17)

if rp is the normal value of r; note that the nonlinear
spring forming a bond is such that increase of its length
r lowers its force constant. The independent oscillation
corresponding to a bond takes place with the center of
mass of the two atoms fixed. Using reduced coordinates,
one can express the total potential energy I of this
oscillator of variable frequency (and force constant) as

Q —7p szp+sr (r—rp)'L1 —2yDsr(» —rp)/t pj, (18)

if nz is the mass of an atom.
The change E—Ep in the total energy of a solid on

compression can be expressed as a Taylor series through
third-order terms in the volume change as

1 Ep
Z—Zp= — (V—Vp)'

2 Vp

from Eqs. (19) and (20), if vp is the normal volume per
atom corresponding to the normal value rp of r.

Comparison of the leading terms of Eqs. (18) and
(21) for ts yields the form

J D~= &a~~ '/2E: p'"&p'" (22)

with snsr ——3'"/2'~sa. , for the characteristic frequency of
a solid of independent pairs of nearest neighbor
atoms. In his evaluation of the characteristic frequency
of a solid from elastic parameters, Einstein obtained
the somewhat different value (s./6)'~'(3'i'/2'~'w) for
the coeS.cient corresponding to s&~, by taking into
account the presence of 26 neighbors of each atom in a
simple cubic lattice. If X is Avogadro's number and
Vp the normal atomic volume, Eq. (22) yields

gl/3~ —1/2g 1/2V 1/6 (23)

which corresponds to Eq. (13) for the Debye fre-
quency. "

A corresponding comparison of the second terms of
Eqs. (18) and (21) for e yields

rtsL1+ (8 1nE/8 lnV) p$ (24)

for the Griineisen parameter of a solid of independent
pairs of nearest-neighbor atoms. This expression
differs from y& of Eq. (15) by ——,; it is identical with
the result of Druyvesteyn and Meyering, and agrees
with the result of Dugdale and MacDonald for zero
pressure. Note that no use of the formal theory of
finite strain has been made in the derivation.

On the assumption of independent bond oscillations,
the thermal expansion of the lattice can be determined
directly in the classical limit by means of the expression

if I is the energy of a single oscillator (since a unit cell
of a simple cubic lattice corresponds to one atom and
has twelve edges, each of which is common to four
unit cells). Taylor expansion of V=Xrs yields

3
[ $8 lnE) r tpi- '

Q= —Epsp&(r —rp)' 1/ 1/~
~

(21)
2 &cl lnVJ ro

[
1 (8 in') V—Vp

X 1+-
~

3 (81nVj p Vp
(19) where x=r—rp. From Eq. (18) or Eq. (21), one obtains

GrCineisen's law in the form

by means of Eq. (10), if Ep, Ep, and the partial deriva-
tive represent values corresponding to the normal
volume Vp. For the model of a solid in question, the
work of compression can be viewed as expended
against the potential energy of the independent bond
oscillators. For E atoms in volume V, one obtains

E—Ep =3+I)
s" E. Madelung, Physik. Z. 11, 898 (1910).
ss A. Einstein, Ann. Physik 34, 170, 590 (1911).

+(p= rDM (3&)/op, (26)

as a check on the results. Equation (25) yields a non-
vanishing thermal expansion from I of Eq. (18) or
Eq. (21) only because of existence of the anharmonic
terms, corresponding to which one obtains the ex-

~ If the value of sD~ noted above is equated to s~ of Eq. (14),
one obtains sr=0.36 as the equivalent Poisson ratio, which may
be compared with the average value —,

' over the metals I C. Zwikker,
Physical ProPerties of Solid 3SIaterials (Interscience Publishers,
Inc. , New York, 1954), p. 90).
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pression
(cl'pp/Br') p

—— 54—yD prE p, (27)

obtained by Druyvesteyn and Meyering from prior
work of Ornstein and Zernike. "

For a solid with a simple cubic lattice, in which the
potential energy U of an atom in the interatomic
force field is given, in terms of the interatomic distance
r, by

U= A/r —m+B/r" (28)

where nz and e are constants, and A and 8 are lattice
sums which are computed for pairwise interaction of
the atom with all others (considered fixed), and which
are constant for deformation without distortion,
GrCineisen2p determined the characteristic frequency
directly to obtain the expression

(m+ I+3)/6 =go~ (29)

for the Griineisen constant at normal volume. The
equation of state corresponding to the potential
energy (28) can be evaluated as

P=3Ep( —~) 'f(Vp/V)""+' —(Vp/V) "+'3~

where Ep is the bulk modulus corresponding to the
normal volume Vp. If the bulk modulus E is determined
from this equation, one verifies that Eq. (24) for p&~
reproduces correctly Griineisen's value of Eq. (29)
for the parameter at normal volume. Slater' has given
the value (v+6)/6 for the Griineisen constant at
normal volume of a solid for which rN= I in Eq. (28);
the difference from the value (n+4)/6 corresponding
to Eq. (29) of Griineisen is due to the fact that Slater
based his result on Kq. (15) for the Debye model.

A solid of the type of Druyvesteyn and Meyering
shows thermal vibrations corresponding to the single
frequency given. by Eq. (17). Hence, thermodynamic
functions, such as the thermal energy Ei of Eq. (6),
can be expressed in terms of hvDpr/kT by making use
of results from Einstein's theory" of the heat capacity
of solids. The properties discussed above, depending on
the cubic term in the interatomic potential energy, are
consistent with the usual thermodynamic functions
derived directly from the partition function Q=P„
XexpL —(I+-'s)hvDpr/kT), since the energy levels of
an anharmonic oscillator are independent of the cubic
term within first-order perturbation theory. "

Lattices more general than the simple cubic can be
treated by following Slater's procedure, ' used in his
heuristic representation of the metallic bond by a
diatomic molecule, of writing the volume per atom as
cr' in terms of the interatomic distance r of nearest-
neighbor atoms, where the constant c is characteristic
of the lattice type. In such a case, Eq. (20) remains

"L.S. Ornstein and F. Zernike, Proc. Roy. Acad. Amsterdam
19, &289, &304 (t9tu)."L. Pauling and E.B.Wilson, Introdlct~on to Qeuntlm Mechun-
ics (McGraw-Hill Book Company, Inc. , New York, 1935),
p. 160,

.valid, since each oscillator introduces a generalized
coordinate q;=r —rp to describe the solid, which has
3S degrees of freedom. Taylor expansion of V=Xcr'
changes the constant factor in Eq. (21) for e, however.
For the more general lattices in question, therefore,
the value of sDsr in Eq. (23) for v&pr becomes 3'tsc'is/

2'far, but Eq. (24) for yDpr remains unchanged. For
such lattices, Griineisen's law in the form (26) can be
verified by means of Eq. (25).

The preceding results can be generalized directly to
the case of a simple cubic lattice where the mass of an
atom differs from the common mass of its six nearest
neighbors, as in the structure of the alkali halides.
If the mass ratio is significantly diGerent from unity,
the value of s&~ approaches K3/2pr. This value is quite
close to the corresponding coefficient, as noted above,
obtained by Einstein; in point of fact, both Madelung
and Einstein had ionic crystals of the type of the
alkali halides in mind in their treatments. For the
degenerate case of mass ratio very different from unity,
the Druyvesteyn-Meyering solid can be viewed as a
solid of independent (light) atoms, where the coupling
to the heavy atoms serves the function of providing an
interatomic force field for the light atoms. The Griinei-
sen parameter yD~ is independent of the mass ratio.

(2'sP'')" (2'2~"'V")"—= sPiV (31)

for an ensemble of purely harmonic oscillators; since
the average kinetic and average potential energies
which enter are equal, one has P&——0. As will appear,
the Debye and the Druyvesteyn-Meyering models
make di6erent predictions on the equation of state of
an ideal harmonic solid.

From Kq. (24) for the Griineisen parameter of a
Druyvesteyn-Meyering solid, the condition p&~ ——0
yields

E=Ep(V p/V), (32a)

P=Kpg(Vp/V) 1$, —(32b)

for the bulk modulus and equation of state (correspond-
ing to P=O for V= Vp) of an ideal harmonic solid on
this model. In this case, Eq. (18) or Eq. (21) yields
the potential energy e of a bond oscillator as

e= (3/2)E n '"(r—rp)'+OL(r —rp)'], (33)
~ H. C. Corben and P. M. Stehle, Clussicul Mechunics (John

+iles and Sons, Inc. , New York, 1950), p. 202,

C. Ideal Harmonic Solid

An ideal harmonic solid will be defined as one in
which the oscillator frequencies v; are strict constants.
The constancy of the frequencies demands that the
Gruneisen parameter vanish, from Eq. (4). It follows
from Gruneisen's law (7) that the coefficient of thermal
expansion vanishes, and, from Eq. (5), that the thermal
pressure I'g vanishes. The latter conclusion is in
agreement with the virial theorem, which one derives
as
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where the notation OLx7 has been used for terms of
order equal to or higher than that of x; the terms
indicated in this manner have already been neglected in
determining the energy levels of a bond oscillator. "
This potential energy contains no cubic term; that the
corresponding thermal expansion vanishes follows
directly from Eq. (25), within the approximation made
in obtaining the energy levels. Through cubic terms, the
Taylor expansion of e agrees within a proportionality
factor with the potential energy V of Eq. (28) for
m = —1 and e= —2, if A, 8, and an added constant are
selected properly. Kith this choice of ns and e, GrOnei-
sen's value (29) for pic~ vanishes, as it should.

For an ideal harmonic solid of Debye type, the
condition pD ——0 yields

E=ED(VO/V)'", (34a)

8= 3EOL (Vo/V)'~' —2], (34b)

from Eq. (15), if E=EO and I'=0 at U=VO. The
equation for the bulk modulus follows directly from
the condition that i &, as given by Eq. (13),be constant.
As one notes, the results di6er from the corresponding
ones of Eqs. (32) for a Druyvesteyn-Meyering solid.
In contrast to the assumption of independent pairs of
nearest-neighbor atoms, the Debye model postulates
coupled atomic oscillations; coupling is introduced by
means of the continuum approximation, by which the
actual lattice vibrations are represented by elastic
waves. Corresponding to these differences, the GrOnei-

sen parameters computed on the two Inodels do not
agree exactly, and the predicted equations of state for
an ideal harmonic solid diGer.

The formal analog of Eq. (33) for an ideal harmonic
solid of Debye type, corresponding to use of the result
of yD =0 ill Eq. (19), is

jv —jvQ 3 2f fQ-=-&""(-")' 1+- — +or( -")j, (35)
3Ã 2 3 fQ

for a simple cubic lattice. In spite of the fact that the
equation contains a cubic term, one cannot use this
result for m in Eq. (25) to conclude that an ideal
harmonic solid of Debye type shows a nonvanishing
thermal expansion, since (E Eo)/3X cannot be-
interpreted as the potential energy of an independent
pair of nearest neighbor atoms or of an independent
atom (for one-dimensional motion) in an interatomic
force field, and the validity of Eq. (25) is restricted to
such a case. It goes without saying that the difference
r—ro appearing in Eq. (35) cannot be identified as the
displacement which enters the expression for the
potential energy of a thermal oscillator on the Debey
model, since it is the normal coordinates q; of the
acoustic oscillators which enter the potential energy in
the Hamiltonian IJ of Eq. (3). The effect of thermal
expansion is to change the normal coordinates q; to
new values q, where both show mea, n value zero, and

&o change the frequencies v; to new values v given by

v = i,L1—yg)(V —Vp)/VpJ, (36)

which minimize the Helmholtz free energy, as Peierls"
shows. Thus, Eq. (35) represents a purely formal
expansion for a Debye solid.

Dugdale and MacDonald" consider a solid in which
the potential energy P per nearest-neighbor pair of
atoms is such that P ~ (E—Ro)' in terms of the difference
of the distance R between the pair from its normal
value RQ. At zero temperature, the total internal energy
in this case is proportionai34 to (V'~' —Vo'~')'. Dugdale
and MacDonald identify such a solid as an "ideal
harmonic body" (this definition does not coincide
with the definition of an ideal harmonic solid used in
this paper). These authors note that computation of
the pressure at T=O from this total energy yields
p& ——3 from Eq. (15) at zero pressure; since they assume
that the body in question has no thermal expansion,
they view this nonvanishing GrCineisen parameter as
a paradox. However, even though the restoring force
along a bond is strictly proportional to bond extension,
resolution of the restoring forces of the bonds on the
crystal axes introduces terms containing trigonometric
factors in the corresponding components of the restoring
force on an atom, in general, since the atoms are
coupled. This eGect introduces anharmonicity in the
vibration of an atom in the two- or three-dimensional
case, and thus a thermal expansion, as correctly
predicted by the Debye theory. To suppress this
behavior, one must imagine the nearest neighbor pairs
of atoms as independent, in which case the body is a
Druyvesteyn-Meyering solid with an internal energy
proportional to I of Eq. (33), and Eq. (24) for yn~
correctly yields pD»=0 at zero pressure. Note that the
e6ect in question does not exist for the linear chain,
where the' restoring forces of all bonds are in the same
straight line; in agreement with the discussion of
Dugdale and MacDonald, one verifies independently
that yD~ and y~ are identical in this case."

It is clear, accordingly, that the paradox of Dugdale
and MacDonald arises only by imputing to a Debye
solid properties which belong to a Druyvesteyn-
Meyering solid.

IG. CASE OF FINITE STRAIN

In the following, the presence of a state of finite
hydrostatic pressure, upon which elastic waves or

"R. E. Peier1s, Quantum Theory of Solids (Oxford University
Press, London, 2955), p. 32.

'4 Strictly, the validity of this expression for the energy is
incompatible with a simple cubic lattice for nearest-neighbor
interactions only, since no rigidity exists in this case; in such a
lattice, this expression is changed by distortion of a cubic cell
into a rhomboid, but the energy is unaffected since no bonds
change in length. Hence, for a cubic lattice, the result applies
without qualification only in the body- or face-centered case.

"The author is indebted to Dr. W. G. McMillan in connection.
w.'th the argument of this paragraph,
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pressure changes of infinitesimal amplitude are impres-
sed, will be taken into account explicitly by means of
the formal theory of finite strain, to justify Eq. (1)
for a Debye solid and Eq. (2) for a Druyvesteyn-
Meyering solid. Thus, any restriction in the preceding
discussion to the case of infinitesimal strain will be
lifted.

by a power-series expansion.
From the definition (10) of the bulk modulus K,

Eq. (37) yields

where
K=K, 3(VBK/aV), e, —

Ki 7i+ 3P+ 3P1&

(40)

(41a)

(VBK/8V) i 2t+ (2/9)N ———(1/9)Pi. (41b)

One notes that inclusion of the second-order term in

Eq. (37) for P makes the graph of P Pi against the-
dilatation (V—Vi)/Vi a parabola, instead of the straight
line corresponding to the first-order term in e. The
presence of the 6nite pressure introduces the correction
term Pi to 3K+2@, in the first term of Eq. (37) for
P Pi, which, by Eq—. (41a), changes the physical
interpretation of the Lame parameters in terms of the
bulk modulus at finite pressure, as compared to the
interpretation of Eq. (11) for infinitesimal pressure. It
must be emphasized that the Lame parameters 3

and p, , and the Murnaghan parameters l and I, are
functions of P'~, in general.

By a fundamental theorem of Murnaghan, " an
elastic body which is initially isotropic remains so
when subjected to a, 6nite strain due to hydrostatic
pressure alone; the initial state (Vi,Pi) above must be
produced in this manner. If a general infinitesimal
stress is superposed in this situation, the body remains

A. Debye Solid

For finite deformation, under hydrostatic pressure
alone, of an isotropic elastic solid about the arbitrary
point (Vi,Pi) on its pressure-volume curve, Murnaghan
has shown" that the change P—P~ in pressure of the
silid from the point (Vi,Pi) to the point (V,P) is given

by a Taylor series through second-order terms in a
parameter e as

P—Pi= (3X+21J+Pi)e
—i (181+2e—6'A —4p —3Pi)+, (37)

where X and p are Lame parameters evaluated at the
point (Vi,Pi), and l and e are Murnaghan parameters
corresponding to the same point. The variable e is
connected with the volumes by the exact relation

1—2e= (V/V )'" (38)
which yields

1 V —Vi 1 (V—Vip' 2 ~V —Vip'
+—

i

3 Vi 18 E Vi ) 81 ( Vi )

K=L+-', M, (44)

analogous to Eq. (11) in the infinitesimal case. The
expression (12) for the Poisson ratio in the infinitesimal
case must be replaced for finite strain by a generalized
Poisson ratio Z de6ned by

Z= i,L/(L+M). (45)

The stability conditions'4 E, M &0 require that
Z&-,', and one obtains Z—+o- in the limit P~, P—+0.
With introduction of Z, the response of the solid under
6nite strain to a superposed infinitesimal stress of
general type can be described completely by the two
para, meters E and Z, instead of I, and M.

Use of Eqs. (44) and (45) in the analog of Eq. (8)
obta, ined by replacing c~ and c& by C~ and C&, respectively,
yields

gg I/3~—1/2~S/2@I/6 (46)

for the Debye frequency vn, where 5=sz&(Z) in terms
of sD of Eq. (14). Corresponding to the case of Sec.
IIA, it is necessary that Z be constant to satisfy the
Griineisen postulate that the frequencies of the longi-

tudinal and transverse waves show the same volume
variation. Under this assumption, the definition (4)

"D. S. Hughes and J. L Kelly, Phys. Rev. 92, 1145 (1953).

approximately isotropic. Hughes and Kelly" have
extended a prior result of Murnaghan" to show that
the response of the solid to the superposed infinitesimal
stress in this case is completely speci6ed by two
generalized Lame parameters I. and M, in a manner
entirely analogous to the specification by ) and p, in
the infinitesimal case. The values of I. and M are given
by

I=A+Pi —(6l—2m+v —2X—2p —Pi)e, (42a)

M = ii —Pi—(3m 2n—+3K+31i+Pi)e, (42b)

in which m, like I and e, is a Murnaghan parameter
evaluated at (Vi,Pi).

The speeds C~ and C~ of longitudinal and transverse
waves, respectively, of infinitesimal amplitude super-
posed on a state of finite strain due to hydrostatic
pressure, are given by equations analogous to Eqs. (9)
in the infinitesimal case, as

Cp= (L+23II)/, C '=M/, (43)

where p is the density corresponding to the volume V.
Hughes and Kelly give expressions for I. and M which
omit terms in Pj, since these authors referred the body
to an initial state of zero pressure, for experimental
purposes. If use is made of the relation p=pa(1+3e)
obtained from Eq. (39), for p in terms of an initial
density po, Eqs. (43) reduce to the corresponding
expressions of Hughes and Kelly for P~ ——0, and agree
with the corresponding relations of Brillouin.

With K given by Eq. (40), the values of L and 3E
satisfy the relation
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Pro. 1.The generalized Poisson ratio Z as a function of pressure for
polystyrene and for Pyrex glass, from data of Hughes and Kelly.

X+app =Ep, (49)

so that the combination of J arne parameters on the
left is a constant. From Eq. (41b), one obtains

6l+ p»i= Ep, —(50)

in which the combination of Murnaghan parameters is
constant. The last equation imposes no restriction on
the second-order coefFicient m; this parameter must be
chosen as a function of volume so that Z of Eq. (45)
has the value r, which must be taken as a constant, so
that the Griineisen postulate is satisfied for the fre-
quencies. Accordingly, the J-arne parameters X and p
have constant values separately for an ideal harmonic
solid of Debye type.

The fact that the J arne parameters are constant for
an ideal Debye solid means that the equation of state
is identical with that obtained by Murnaghan" on

yields Eq. (15) for the Gruneisen parameter on the
Debye theory, which is the result obtained without
use of the formal theory of finite strain. By application
of Eq. (15) at the point (Vi,Pi), with use of Eqs. (41),
the expression for yD becomes

yD
————,'[1+(18l+2e—Pi)/(3X+2p+Pi)], (47)

in terms of Lame and Murnaghan parameters.
For an ideal harmonic solid of Debye type, the

requirement that p& of Eq. (15) vanish yields

P=Pi+3Ei[(Vi/V)'~' —1] (48)

as the corresponding equation of state, if the constant
of integration is evaluated at the point (Vi,Pi). One
recovers Eq. (34b) if use is made of Eqs. (34) to relate
E~ and PJ, to the bulk modulus Eo at the normal volume
Vo., thus the equation of state shows a transitivity
property. Use of the same relations for E& and P& in
Eq. (41a) yields

the linear theory of finite strain. The equation of state
given by Murnaghan, corresponding to the "integrated
linear theory of finite strain, " which was used in III
to derive the Simon equation for the fusion curve,
reduces to Eq. (34b) if the Griinesisen parameter of the
solid on the fusion curve vanishes. One notes that the
sign of the combination of Murnaghan parameters in
Eq. (50) is negative, which is agreement with the
general results of measurements of these parameters
made by Hughes and Kelly on various solids. The
signs of the second-order coefficients were predicted by
Brillouin to be negative in general, as is necessary if the
wave velocities increase with pressure.

As a check on the assumption of constant Z, values
of this parameter from experimental results of Hughes
and Kelly for polystyrene and for Pyrex glass are
shown in Fig. 1, as a function of pressure. Comparison
of Fig. 1 with Fig. 1 of I and Fig. 1 of II shows that the
assumption is fulfilled reasonably as compared to the
corresponding assumption on o..

&Dp»[1 3»Dpr(» »i)/»ij——(54)

for the frequency v of a bond oscillator, if r& is the
value of the interatomic distance r corresponding to
the point (Vi,Pi); this expression replaces Eq. (17) in
the infinitesimal case. The corresponding potential

B. Druyvesteyn-Meyering Solid

For the change E—E& in total energy of a solid from
the point (Vi,Pi) to the point (V,P) under a change in
hydrostatic pressure, Murnaghan has given the
expression"

E—Ei= Vi[3Pie+ (3/2)(3X+2p)e' (91+—e)e'], (51)

which, as one verifies, yields Eq. (3/) for P Pi, with-
use of Eq. (38). By means of the expansion (39),
one obtains

E Ei= Pi (V V—i)+—-', (3X+—2@+Pi)
X (V—Vi)'/Vi+ (1/54) (18l+2e—9X

6p 4Pi) (V —Vi)—'/ViP. (—52)

The first term in this expression is an energy of compres-
sion whose presence ensures that —(BE/BV)i=Pi,
corresponding to the fact that the total energy of the
solid cannot possess a minimum at (Vi,Pi) unless
P& ——0. For a Druyvesteyn-Meyering solid of E atoms
in volume V, the remaining energy of compression can
be represented as the potential energy of 3S independ-
ent bond oscillators of potential energy I by

E Ei+Pi(V Vi) =3K—u, —(53)

which replaces Eq. (20) in the infinitesimal case. In
contrast to E, e is such that (Bm/BV) i 0, corresp——onding
to the fact that the potential energy of an oscillator
must possess a minimum at (Vi,Pi).

The definition (4) of the Gruneisen parameter yields
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energy I of the oscillator becomes

»DM (» »1) LI 27DM(» »1)/»1 3 (55)

TAsLE I. Comparison of average GrCineisen constants from
equation of state and from Griineisen's Ia~.

VDM= gDM+1/3~ —1/2E 1/2V 1/6 (56)

analogous to Eq. (18).By means of Eqs. (52) and (53),
an alternative expansion of I in powers of r—rj can
be obtained. Comparison of the result with I as delned
by Eq. (55) yields

Average of
19 elements
Average of
14 elements 1 8e

'y .
(GrQneisen

pm, a7»1 law)

1.96b

as the characteristic frequency, if note is taken of
Eq. (41a), and yields

yDM ————',—-', (181+2N—Pi)/(3)1+2P+Pi) (57)

directly as the corresponding Gruneisen parameter in
terms of Lame and Murnaghan parameters. One
obtains

7DM s L1+ (ej lnK/el lnV) 1j (58)

from Eqs. (41); this result corresponds exactly with

Eq. (24) obtained for zero pressure. By direct use of
Eq. (25) to calculate (r—»1)A„one can verify Griinei-
sen's law under finite strain. The analog of Eq. (27)
becomes

(a'I/ar'), = 54yDMK,—, (59)

which, with reference to Eq. (57), brings out a point
emphasized by Druyvesteyn and Meyering, that the
anharmonic term in the potential energy of an atom in
the interatomic force field is a function of the second-
order elastic coefficients.

For an ideal harmonic solid of Druyvesteyn-Meyering
type, integration of the relation pD~=O for an arbi-
trary point and evaluation of the constant of integration
at the point (Ui,P1) yields

P= Pi+K,D V1/V) 1j, —(60)

as the equation of state. This expression reduces to
Eq. (32b) by use of Eqs. (32) to evaluate Ki and Pi,
thus the equation of state shows a transitivity property
(as noted for the corresponding Debye solid). Note
that )1+ (2/3) p must be such a function of pressure that
Eqs. (32a) and (41a) are satisfied simultaneously.
For I in the case of this ideal solid, one obtains an
expression corresponding exactly to Eq. (33), from
which direct use of Eq. (25) to compute (r ri)A, yields-
a vanishing thermal expansion.

IV. COMPARISON %'ITH EXPERIMENTAL DATA

It is clear from the foregoing that the two evaluations,

yD and y~D, for the Gruneisen parameter as evaluated
from the equation of state, correspond to two di6'erent
models. That both models represent approximations
follows from the more refined analysis of Barron, "
and from considerations noted by plater' and Zener"
in conriection with the Debye model. However, from

31 T. H. K. Barren, Phil Mag. 46, '/20 (1955).
3 C. Zener, Elasticity used Anelasticity of Metals (University of

Chicago Press, Chicago:, 1948), p. 30.

& Values for 10 elements (Mn, Fe, Co, Ni, Cu, Pd, Ag, W, Pt, and Pb)
from Slater (reference. 3); values for 9 elements (Li, Na, K, Rb, Cs, Al, Au,
Mo, and Ta) from Gilvarry (reference 39).

b Values from Griineisen (reference 20), revised in the cases of the alkali
metals and of Al, Au, Mo, and Ta to correspond to incompressibilities given
by Gilvarry (reference 39).

e From Table V of I (values for Ga, Bi, and Sb excluded).

the artificial nature of the Druyvesteyn-Meyering
solid as compared to the Debye model, one expects
yD to represent a better approximation than yD~.
Dugdale and MacDonald state that use of yD~, as
against yD, improves slightly the over-all agreement of
values of the Gruneisen constant from the equation
of state and from Gruneisen's law, for the elements in
Slater's tabulation. ' However, this tabulation shows
large deviations in the two evaluations of the constant
for the three alkali metals included and for some
relatively incompressible metals (Au, Mo, and Ta).
A redetermination by the author" of compressibility
parameters for these elements (with inclusion of Rb
and Cs) from more recent experimental data of Bridg-
man reduced the discrepancies in these cases, so that
the contention of Dugdale and MacDonald could not
be maintained.

One should expect the inevitable experimental
inaccuracies to cancel to a significant extent in a
comparison of the averages for a reasonably large
number of elements, of evaluations of the Gruneisen
constant on particular models. In. Table I, average
values for 19 elements of yD and yD~, as obtained from
the equation of state for zero pressure, are compared
with the corresponding average obtained with use of
thermal parameters from Griineisen's law (7);one notes
that agreement of yD with the value from Gruneisen's
law, shown in the last column, is excellent. An everage
value for 14 elements is shown likewise for the Gruneisen
constant y D of the solid at fusion, given in I as

~., D= ,'+ ', qK„~V/I, -- (61)

where E is the bulk modulus of the solid at melting, .

hV and 1. are the volume change and latent heat of
fusion, respectively, and q is a parameter of the- order
of unity. This equation has been derived in I on the
basis of Eq. (15) for the Griineisen parameter, and thus
is valid on the Debye theory; the corresponding value

y, D~ for a Druyvesteyn-Meyering solid is p, D —3.
The agreement shown by the table is exact, within
the accuracy of the data, between p D and the corre-
sponding value derived from application of Gruneisen's

39 J. J. Gilvarry, J. Chem. Phys. 23, 1925 (1955).
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law to the solid at the melting point. These data
suggest that the assumptions underIying the evaluation
of the Gruneisen parameter from the equation of state
on the Debye model are met reasonably well by
elementary solids, on the average.

V. CONCLUSION

The results obtained show that formal consideration
of finite strain leaves the evaluation of the Gruneisen
parameter from the equation of state unaltered, for
either a Debye solid or a Druyvesteyn-Meyering solid.
Hence, no reason exists on the basis of the theory of
finite strain for the arbitrary modihcation in the
evaluation of the parameter for a Debye solid, as
proposed by Dugdale and MacDonald. This statement
presupposes that the wave amplitudes of the lattice
vibrations are infinitesimal. It is not denied that an
intrinsically anharmonic theory, such as that of Born
and Srody" or of Hooton, "may demand revision of
the value of the Griineisen parameter as determined
from the equation of state, but such a model likewise

requires revision of the value of the characteristic

frequency, as fixed by Eq. (8) on the Debye theory.
Under1ying the definition of the Gruneisen parameter
is the postulate that all lattice frequencies vary with
vo1ume in the same manner; it is not obvious, c priori,
that this requirement can be met within the framework
of an essentially anharmonic theory.

The development of I, II, and III is based on the
Debye-%aller theory derived from the Debye model, in
contrast to the original Lindemann theory based on an
Einstein model. Since the form of Griineisen parameter
taken in the papers in question corresponds to the
Debye theory, it is felt that in this respect the results
have been justi6ed fully.
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Auger Electron Emission in the Energy Spectra of Secondary Electrons
from Mo and W
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With the aim of determining to what extent the energy distribu-

tion of secondary electrons from targets of Mo and W may contain
fine structure, measurements have been made using primary
energies from 100 to 2000 electron volts. An electrostatic analyzer
of the 12'l-degree type having an experimentally determined

resolution of one percent was used. Observations of the pressure
in the vacuum system, after heating the target above 2000'K and

cooling to room temperature, showed that an energy spectrum
could be recorded before formation of the first monolayer of
contamination on the target surface.

Energy distribution measurements revealed: (1) Several sub-

sidiary maxima at fixed differences in energy from the primary

energy, these di17erences being characteristic of the target material
and independent of the primary energy itself. (2) Several sub-

sidiary maxima in the energy distribution at fixed positions along
the energy scale lying between 10 and 500 electron volts, charac-
teristic of the target material, and independent of the primary
voltage. The maxima described in (1) are considered to be primary
electrons reRected after su6'ering discrete losses of energy to the
target. These discrete losses are believed to indicate the positions
of the higher energy levels of the target material. The maxima
described in {2)are interpreted as Auger electrons. Combining the
energy level values determined from the discrete loss measure-
ments with energy values for the deeper lying levels available
from x-ray studies, it is possible to predict the energies with which
Auger electrons might be expected to be emitted. Some of the
predicted energies for Auger electrons agree reasonably well with
with the energies observed experimentally both for Mo and for %.

I. INTRODUCTION

~HE general shape of the energy distribution of
secondary electrons from a metal target is that

of a smooth curve whose two principal features are a
large maximum of slow secondaries occurring near two
or three volts and a sharper, usually smaller maximum,
caused by elastically reQected primaries. Furthermore,
several workers have observed some Gne structure in the

*Now at the Department of Physics, Queen's University,
KIngston, Ontario, Canada.

energy spectrum of secondaries from a number of dif-
ferent metals. Rudberg, ' studying Cu, Ag, and Au,
reported inelastic reQection of primary electrons that
had su6'ered discrete losses of energy, these losses being
independent of the primary energy and characteristic
of the target material. Haworth' ' made similar observa-
tions for targets of Mo and Cb but observed further that

~ E. Rudberg, Phys. Rev. 50, 138 (1936).' L. J.Haworth, Phys. Rev. 48, 88 (1935).' L. J. Haworth, Phys. Rev. 50, 216 (1936).


