
GR()NErsEN's r Aw AND FUsroN cURvE

V. CONCLUSION

The resul. ts of this paper yield. a practical method
of determining the lattice corrections to thermodynamic
functions computed on the Thomas-Fermi model. No
attempt has been made to take account of the long-
range order which may be present in the amorphous
phase above the fusion temperature. Presumably, the
existence of such order must introduce corrections to
thermodynamic functions computed on the Thomas-
Fermi model, analogous to the lattice corrections.

Mott's theory of liquids" may provide an approach
to such questions.
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A generalization of the Lindemann law given previously is used in conjunction with the Murnaghan
equation of state for a sohd to derive a law of reduced states for fusion, valid for the case of classical
excitation of the lattice vibrations at melting. If the bulk modulus and volume of the solid at fusion and
the melting temperature are reduced by dividing the quantity in question by its corresponding value at
the origin of the fusion curve, any reduced variable of this set can be expressed as a power of any other,
with an exponent involving a constant appearing in the Murnaghan equation. It is shown that the ratio
of the latent heat to the volume change of fusion obeys a similar law of reduced states, on the basis of an
assumed form of the volume dependence of the Gruneisen parameter of the solid along the fusion curve.
The constant appearing in the Murnaghan equation of state is interpreted physically in terms of an average
Griineisen parameter of the solid. The law of reduced states yields an immediate derivation of the empirical
Simon equation for the fusion curve. For the alkali metals, it is shown that experimental values of the
temperature exponent in the Simon equation are quantitatively compatible with the theoretical evaluation
given, and, furthermore, that the theory can predict approximate values of the exponent, in practice.

HE empirical equation'

log(P +A) =8 logT„+C,

where P and T are the fusion pressure and absolute
temperature, respectively, and A, 8, and C are dispos-
able coeScients, has been proposed by Simon to
represent the fusion curve. By evaluating the constant
(. at the triple point of temperature T& (and negligible
pressure), he has put the equation in the form

P„=A((T /T, )~ 17 (2)—
for elements of low melting point; this form will be
referred to as the Simon equation. If a reduced pressure
P ' and temperature T ' are defined by P /A and
T /T&, respectively, Eq. (2) yields the Simon law,

(3)

of corresponding states for fusion. This law is analogous
to the 1aw of corresponding states for a van der Waals
gas, with the constant A and the triple-point tempera-
ture as reducing parameters corresponding to the
critical pressure and temperature, respectively.

*Work sponsored by the U. S. Atomic Energy Commission.
«F. Simon, Z. Electrochem. 35, 618 (1929); Trans. Faraday

Soc. BB, 65 (1937).

If the constants A and 8 are selected by trial,
Eq. (2) yields a good fit to the observed melting curves
of solids of low melting point. Values of the constants
for various elements, as derived from experimental
work prior to 1937, are tabulated (except for D&)' by
Ruhemann and Ruhemann. ' Later work' has extended
the pressure range over which the equation is applicable.
The Simon exponent 8 is roughly 2 for most of the
substances (He, Hs, Ne, Ns) of low melting point,
except for A, for which it is somewhat over unity.
For the alkali metals, T & in Eq. (2) must be replaced by
the normal melting temperature; reported values' of
the exponent 8 are approximately 4. Values quoted for
the Simon exponent by diferent authors frequently
are fairly discrepant for the same element. Part of the
variance is presumably due to the fact that a require-
ment merely of 6t to the data does not necessarily

IK. Clusius and K. Bartholomew, Z. physik. Chem. 830, 237
(&935'.

3 M. Ruhemann and B. Ruhemann, Lozv Temperature Physics
(Cambridge University Press, London, 1937), p. 97.

4 Holland, Huggill, Jones, and Simon, Nature 165, 147 (1950);
Holland, Huggill, and Jones, Proc. Roy. Soc. (London) A207,
268 (1951); J. S. Dugdale and F. E. Simon, Proc. Roy. Soc.
(London) A218, 291 (1953).' F. Simon and G. Glatzel, Z. anorg. u. allgem. Chem. 178, 309
(1929}.
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fix the parameters of a two-parameter curve uniquely,
although Simon" has indicated the use of the initial
slope of the fusion curve (or of Clapeyron's equation)
to reduce Eq. (2) to a one-parameter curve.

Bomb has derived the Simon equation theoretically
from the order-disorder fusion theory of Lennard-Jones
and Devonshire, ' for the range of moderately high
pressure where a Lennard-Jones intermolecular poten-
tial is a sufhcient approximation. His expression for
the Simon exponent is B=1+3/tt, where I (about 9
to 12) is the (negative) exponent of the repulsive term
in the potentia1. A derivation from the same model has
been given by de Boer"; he obtains the constant value
j..25 for the Simon exponent. Both these evaluations
of the Simon exponent are somewhat too low to corre-
spond to reported values for the elements of low
melting point (except for argon), and they are definitely
too low to correspond to published values for the
alkali metals. Salter" has used the Lindemann law and
the Debye equation of state to obtain a fusion equation
identical in form with Simon's equation, with the
exponent evaluated in terms of Gruneisen's constant
for the solid. He notes that use of normal values of
the Gruneisen constant in his expression yields values
of the Simon exponent considerably below reported
values for the alkali metals, but in reasonable accord
for argon.

Recently, the author has given a generalized Linde-
mann law which may represent a basic criterion of
fusion, at least for isotropic monatomic solids. " The
generalization yields an experimentally verified relation
connecting the Gruneisen constant of the solid at
melting with fusion parameters, and explains the
validity of an empirica1 relation of Kubaschewski. "
The theory yields the conclusion that the fusion curve
is determined by conjunction of the equation of state
of the solid with the generalized Lindemann law. In
this paper, it will be shown that, by selection of the
Murnaghan equation of state'4 for the solid, the theory
of' I yields a fusion equation identical in form with
Simon's equation and providing quantitative agreement
with experiment for the alkali metals. The discussion
presupposes that the normal vibrations of the solid at
melting are classically excited, so that the quantization
parameters Q and 0 of I are equal to unity and zero
respectively. This limitation excludes cases (such as
Hs, Ds, and He at low temperature) in which the
zero-point energy at fusion is relatively large.

6 F. E. Simon, in I, Iiurkas 3femoria/ Volume {Research Council
of Israel, Jerusalen, 1952), p. 37.

F. Simon, Nature 112, 746 (1953).' C. Bomb, Phil. Mag. 42, 1316 {1951}.' J. E. Lennard-Jones and A. F. Devonshire, Proc. Roy. Soc.
(London) A170, 464 (1939).

'o J. de Boer, Proc. Roy. Soc. (London) A215, 5 (1952)."L.Salter, Phil. Mag. 45, 369 (1954).
ts J. J. Gilvarry, this issue /Phys. Rev. 102, 308 (1956)g,

referred to hereafter as I.
'3 0. Kubaschewski, Trans. Faraday Soc. 45, 931 (1949).
'4 F. D. Murnaghan, Finite Deformatiol of oN Ftastic Solitt

(John Wiley and Sons, Inc., New York, 1951), p. /0.

»= »p(Vp/V) o. (5)

By determining p empirically, Murnaghan has obtained
an excellent fit of Bridgman's pressure-volume data on
Na, for pressures up to 100 kilobars. The value obtained
for rt (and the corresponding»o) varies somewhat with
the pressure range selected for direct fit. The largest
relative deviations are found for the lowest pressures,
which corresponds to the fact that Eq. (4) represents an
approximation in the large (rather than an osculating
approximation at the origin).

The bulk modulus ~ of the solid at melting can be
regarded as a function only of the corresponding
volume V of the solid. Since the Murnaghan equation
specifies», by Eq. (5), as a function only of the volume,
application of this equation of state to the solid along
the fusion curve is a legitimate approximation. Hence,
Eq. (5) yields

» /», o
——(V„,p/ V„)&,

where K, p and V, p are the values of I(, and V,
respectively, corresponding to the origin of the fusion
curve. In principle, the parameter g should be deter-
mined from the pressure-volume relationship for the
solid along the fusion curve; unfortunately, such data
are not usually available from experiment for the
elements of higher melting temperature (such as the
alkali metals). Physical validity can be claimed for use
of the Murnaghan equation of state for the solid at
fusion only if values of g inferred from fusion curves
are reasonably consonant with those obtained from
experimental equations of state.

The Lindemann law for the case of classical excitation
of the lattice vibrations at melting of a monatomic
solid can be written

RT =Oft. V,
where E is the gas constant, T is the absolute melting
temperature corresponding to the molar volume V,
and Q, defined in I, is a function of Poisson s ratio at
fusion and of the Lindemann constant. Under the
assumption of I that the fusion value of Poisson's
ratio is a constant, use of Eq. (6) in Eq. (7) yields

T /T, p
——(V, p/V )o ',

where T, p is the temperature corresponding to the
origin of the fusion curve. From this equation and

L LAVf OP REDUCED STATES

The equation of state of the solid wil1 be taken as
that derived by Murnaghan'4 from his "integrated
linear theory" of finite strain. If I' is the pressure
corresponding to the volume V of the solid, this equation
of state is

&= (»o/rt) &.(Vo/V)" 1]—, (4)

where Kp is the normal bulk modulus (incompressibility)
corresponding to the normal volume Vp, and g is a
constant. The bulk modulus a of the solid follows as
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Eq. (6), one obtains

where
a /~„, 0-—(T„/T, 0)',

b= n/(n 1)—.

(9)

where y is the value of the Gruneisen parameter of
the solid at the point (T,P ) of the fusion curve,
and q is a parameter defined in I. The quantity p 3
can be regarded as a function only of the volume V
of the solid at fusion. Its analytic dependence on V
will be taken as

(V-—s)/(V-. 0
—0) = (V-/V-. 0)", (13)

where y, o is the value of y corresponding to the
origin of the fusion curve, and p, is de6ned by

is=d 1n(y —-,0)/d lnV„, (14)

analogously to the definition of 7 in terms of the
fusion value of the Debye frequency. On the assumption
that p, is constant, its value can be inferred from the
equation

~'T-/~P-'= 2(1+~)(v- 0)T-/A—-' (15)—
of I, as applied at the origin. The parameter q is of the
order of unity, with the average value 1.2 over the
elements discussed in I; it can be presumed for purposes
of the present discussion that q shows only small
variation over the fusion curve and can be assigned
the constant value qo corresponding to the origin.
Under these assumptions, use of Eqs. (6) and (13) in
Eq. (12) yields the law

(16)

of reduced states for L/AV, where the parameter a
is defined by

&=V«-. 0/2(V-. o
—0).

Equations (6), (8), and (9) yield a law of reduced
states for fusion, in which the reducing parameter for
~, T, or V is the corresponding value at the origin
of the fusion curve; any reduced variable can be
expressed as a power of any other, with an exponent in
terms of the Murnaghan parameter y. The law is
referred to as one of reduced (rather than correspond-
ing) states in accordance with Simon's nomenclature, e

since the reducing parameters are not constant as in
the law of corresponding states for a van der Waals
gas. The relations are consistent with the Lindemann
law (7) in the form

T /T p= (K /K, p) (V /V p), (11)

which presupposes that the Poisson ratio of the solid
is constant along the fusion curve.

It is shown in I that the ratio of the latent heat I.
to the volume change 6V of fusion is given by

P=~/(n —1). (19)

Similarly, the law (16) of reduced states for L/b, V can
be written

in which
(L/~V)/~= (T /T-. p)'

&=&+0= (n+~)/(n —1),

(2o)

where fs is defined by Eq. (10). It is clear that any
reduced variable corresponding to the set ~, V, T,—-'„and L/d V can be expressed as a power of any
other.

Equation (13) demands that the Griineisen parameter
of the solid be a variable along the fusion curve.

The Murnaghan parameter sl appearing in Eq. (6) can
be interpreted in terms of an average value y, A„of the
Gruneisen parameter y over the fusion curve, by
means of the equation

y„=—-', —-,'a ln~„/d lnV„, (22)

given in I. Application of this equation to Eq. (6)
corresponding to the Murnaghan equation yields

'y-. A.= 0 &I
—0). (23)

Note that this identification in terms of an average
Griineisen constant yields a physical interpretation of
the Murnaghan parameter g (introduced as an empirical
constant in the integrated linear theory of finite strain)
which applies in general and not merely at fusion.

It has been emphasized that the Murnaghan equation
of state represents an approximation in the large for
the equation of state along the fusion curve. If the
Murnaghan parameter p is chosen by 6tting the
pressure-volume curve over a small range of pressure
near the origin of the fusion curve, one must obtain

'90 2 Y m, 0+ 0 (24)

for g in terms of the Gruneisen parameter at the origin,
as follows from Eq. (22) or Eq. (23). In this case,
Eqs. (6) and (8) can be written

a =u, p(V, p/ V„)'r"~'",
—T 0(V 0/V )s(rm. p-&/si

(25a)

(25b)

"P.W. Bridgman, Revs. Modern Phys. 7, 1 (1935)."P.W. Bridgman, The Physics of High Pressure (G. Bell and
Sons, Ltd. , London, 1949),'p. 211.

By Eq. (12), the parameter e appearing as the reducing
parameter for L/AV is equal to the value of the latter
quantity at the origin. 8ridgman has expressed
opposition to the idea of a law of corresponding states
for fusion, "since I. and AV separately do not exhibit
definite signs of such a law (except possibly for the
alkali metals)'0; note, however, that it is the ratio
L/AV which obeys the law (16) of reduced states.

By means of Eq. (8), one can write Eq. (13) as

(7 )/(7, o ) = (T .o/T ) (18)
where
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respectively, and Eq. (9) becomes

a =a„,p(T„/T, p)', (26)

v„=G/V„&" ', (28)

where G is a constant, for v in the neighborhood of the
origin of the fusion curve. The Debye frequency of a
monatomic solid at melting is given likewise by

$71/gf —1/2& I/2 V 1/6 (29)

where 3f is the atomic weight, S is Avogadro's number,
and s is a function, defined in I, of the value of
Poisson's ratio of the solid at melting. On the assump-
tion of I that the Poisson ratio at fusion is constant,
comparison of Eqs. (28) and (29) yields Eq. (25a).
Equation (25b) and thus Eq. (26) then follow directly
from Eq. (7), or from the identification v = vz„where
vt, is the I.indemann frequency dined in I.

IL SIMON EQUATION

The general result,

&'= (67 .p+1)/L2(37 .p-1)3 (27)

The three equations (25a) (25b), and (26) are valid
only as osculating approximations at the origin; by
means of Eq. (23), one can show that they differ only
in the substitution of y, o for y, A„ from their cor-
respondents in the large, Eqs. (6), (8), and (9),
respectively.

These osculating approximations are derivable
directly from the Griineisen postulate that the Debye
frequency, in general, is a power-law function only of
the volume; if v is the Debye frequency of the solid
at melting, this assumption yields the expression

q=(1 a„n dT„—/dP ) (34)

in whi. ch n is the coeScient of volume expansion of
the solid at fusion, substitution of this expression into
Eq. (30) yields

dP /dT =~ /2(7„——,')T +~ n . (35)

The second term on the right-hand side of this equation
is given by GrQneisen's law as

which corresponds to the volume variation of p ——',

and enters 8 through P of Eq. (19), can be evaluated
by application at the origin of Eq. (15) ford'T„/dP„'.
In this case, it follows that Eq. (31) yields the correct
curvature of the fusion curve at the origin corresponding
to Eq. (15);note, however, that this equation has been
derived in I on the assumption that q' is constant.

The derivation of Simon's equation given by Salter, "
based on the Debye equation of state, assumes that
the Griineisen parameter has a constant value. His
result is essentially

P P, =pA—L(T /T, p)' —lj, (32)

where A is specified only as a constant and b' is defined

by Eq. (27). Since the exponent b of Eq. (10) can be
written in terms of the average Gruneisen parameter
of Eq. (23) as

(67 A + 1)/L2(7 A 1)j (33)

it follows t;hat Salter's evaluation of the Simon exponent
corresponds to substituting y, o for y, A, in b and
taking P=O (corresponding to @=0) in Eqs. (21) for 73

Equation (30) for dP /dT„ is susceptible to a
physical interpretation. If one writes the parameter q,
in a form deducible from results of I, as

dP /dT„=q~„/2(7„~p)T, (30) .„n„=7„c,, „/V.=L(aP/aT). j„, (36)

for the slope of the fusion curve has been obtained in I.
If q is given the constant value qo corresponding to the
origin, integration of this equation with use of Eqs.
(9) and (18) yields

P- P-, o= (a/&) L(T-/T—-.o)'—1j, (31)

where I', 0 is the pressure corresponding to the origin
of the fusion curve, a is given by Eq. (17), and 8 is
de6ned by Eq. (21). Equation (31) has precisely the
form, with A =a/8, of the Simon equation (2) (except
for the introduction of the constant I', 0 of integration
to make both sides of the equation vanish together at
the origin). The equation assumes a reduced form,
analogous to Eq. (20) for I/hV, if the left-hand side
is rewritten as (P P, p)/a. —

Equation (31) of the fusion curve yields the correct
initial slope demanded by Eq. (30), and the correct
initial value a of the ratio I/hV required by Eq. (12);
thus Clapeyron's equation is satisfied at the origin,
independently of the value of the Simon exponent B.
As has been pointed out, the parameter y, of Eq. (14),

where C& is the heat capacity of the solid at fusion,
and the subscript m on the last term designates evalua-
tion of the partial derivative for the solid on the fusion
curve. Hence, the second term in Eq. (35) for dP /dT
corresponds to the increment in thermal pressure of
the lattice as T is increased. Thus, the assumption
q= qp made in deriving Eqs. (20) and (31) corresponds
to the postulate that f(BP/BT)vj„bear a constant
ratio to the total derivative dP /dT along the melting
curve. From the fact that

dP /dT =$(8P/8V)rf„dV /dT
+f(BP/BT) vj„, (37)

it follows that

DBP/BV)rj dV /dT„=N /2(7„', )T . (38)——
Hence, the first term in Eq. (35) for dP /dT corre-
sponds to the increment, as T and thus V is changed,
of that part of the pressure which depends directly on
the volume, that is, the pressure corresponding (for
low or moderate compression) to the potential energy of
an atom in the interatomic force Geld. Salter's derivation



of the Simon equation assumes that this term is
constant; thus he obtains the correct form of the
exponent b' of Eq. (27) in terms of y~, s but fails to
obtain the analog of the expression c/B corresponding
to the Simon coeKcient.

Simon' has shown that the coefficient A of Eq. (2)
is of the order of the internal pressure of the solid.
Approximate numerical consistency of this result with
the evaluation of the Simon coefBcient given here can
be shown by means of Gruneisen's law and an expres-
sion' for the internal pressure from the Gruneisen
theory of solids.

0.6

0.4

III. COMPAMSON WITH EXPERIMENT

In this section, the preceding theory will be compared
with Bridgman's experimental results" on the fusion

0
0 0.2 0.4

((r- / r-, )' -~) /s
0.6

F&G. 2. Comparison of the Simon equation (straight line), with
values of J3 tabulated in the fourth column of Table I, against
8ridgman's experimental data for four alkali metals.

(r„ / r. ,}s

FIG. i. Comparison of the law of reduced states (straight line)
for the ratio L/AV in terms of the fusion temperature, against
Bridgman's experimental data for four alkali metals. Values of
the Simon exponent B (tabulated in the fourth column of Table I)
selected in each case for best over-all Gt to the data.

curves of the alkali metals Cs, Rb, K, and Na, extending
over pressure ranges up to 12 kilobars; the element Li
will be ignored, since Bridgman's measurements were
made on a somewhat impure sample. ' To make a
comparison of Eq. (20) a,nd of Eq. (31) with the data,
values of a, o entering the reducing parameter u are
availablefrom Table I of I.Values of y sfrom Eq. (12),
and of gs from Eq. (31) of I, are shown in Table I, as
evaluated to correspond to Bridgman's experimental
values of L and hV at the normal melting point; the
values of y, o given for the alkali metals in Table V of
I correspond to data for L and AV from other sources.
The third entry of Table I is the parameter u of Eq. (17).

Equation (20) states that the ordinate (L/hV)/a,
when plotted against (T /T, s) n, should yield a

"P.W. Bridgman, Phys Rev. 5, 155 (.1914)
&

27, 68 (1926)."P.W. Bridgman, Proc. Am. Acad. Arts. ScI. 56, 59 (1921).

straight line of inclination 45 . In Fig. 1, this ordinate
from Bridgman's experimental values of L and AV and
values of u from Table I is shown as a function of
(7.

' /T, s)s for the alkali metals, where the Simon
exponent 8 has been selected by trial in each case to
yield the best over-all 6t to the data. For the same
value of B in each case, the values of (P P, )/sa-
corresponding to Bridgman's pressure-temperature
data at fusion are shown in Fig. 2 as a function of
B '((T /T, s)

n —1g; the data yield closely the
straight line of inclination 45' demanded by Eq. (31).
The maximum error indicated at the highest ordinate
on Fig. 2 for any element does not exceed 3%, which
may be within the experimental error. The values
of the Simon exponent 8 obtained for each element are
shown in Table I, with values, for comparison, as
determined by others from essentially the same data.
The disparities are explainable on two counts: the
election in this paper to obtain the Simon exponent by
a best fit corresponding to Eq. (20), rather than to the
Simon equation (31) directly, and the requirement of
this theory that the Simon coefficient A be a/B, with a
given by Eq. (17), which insures that Clapeyron's
equation is satisfied at the origin of the fusion curve.

The question at issue is to show that the values of
the Simon exponent obtained are compatible with the
theory given. Since experimental data on the volumes
of the alkali metals along the fusion curve are not
available, the values of the Murnaghan parameter g,

TAsI.E I. Parameters of the Simon equation.

Cs
Rb
K
Na

1.34
1.64
1.20
1,13

1.18
1.22
1.15
1.13

10 ga
bars

0.0119
0.0146
0.0202
0.0454

B
Eq. (20)

4.50
3.70
4.21
3.15

4 75'
4.2
4.53
3.56

+ Value for Cs from Simon and Glatzel (reference 5); values for Rb, K,
Na from J.A. W. Hugg01, as quoted by Salter (reference 11).
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TABLE II. Parameters of fusion curves.

Eq. (15) Eq. (21)
V~, Av 'Y~, Av B

Eq. (23) Eq. (39) Eq. (40) Eq. (21)

Cs 35' 23
Rb 4.7 3.1
K 2Q 2Q
Na (2.v} (2.v)

~ ~ ~

3.79b
{50-60

kilobars)
2.86

(9O-1OO
kilobars)

1.0
1.4
0.9g

(& v)

1.1p 2.6
1.42 3.2
0.9g 2.3

(& o) (2 v)

3.8
3.6
3.9

(3.s}

« Values at the origin of d~Tm/dPyg~ in Eq. (15) were computed from
second differences of T~ fjs P~ from Bridgman's data (reference 17). It
was necessary to smooth the values of cDT~ near the origin for K. For Na,
the values of 6'Tm were too erratic to permit smoothing, and the value at
the origin was taken as the average of values corresponding to the first
four intervals of P~.

b See reference 14. Parenthetic pressure ranges correspond to direct fit.

'Yvvv, Av s 1 (Tvvv, p/Tm, mvvx)

v.,.-l 9-1)(T., /T-, .-1) (39)

where T, , is the maximum temperature on an
observed fusion curve. It is seen that agreement is
reasonable for tabulated values of T, A„ in Table II,
as abtained by means of Eq. (23) from the values of
p in the second column, and as obtained by means of
Eq. (39) from the values of iv, and vl in the erst and
second columns, respectively. One should not expect
identity necessarily, since the two evaluations of
y, A„correspond to diGerent methods of averaging.
Finally, one notes that dy /dT is negative, from
Eq. (18); the sign of the derivative agrees with the
relation y, A„&y, o, which holds for the values of
y, A, in Table II except for one instance in the doubtful
case of Na.

The approximate equality of these two evaluations

which enters 8, must be obtained indirectly. Values of
the parameter p corresponding to the volume variation
of p —

3 are shown in Table II, as determined by Eq.
(15) from quantities evaluated at the origin; values of
d'T /dI' ' were computed by numerical differentiation
of the fusion temperature with respect to pressure. As
noted, the value for Na is somewhat doubtful, as is
that for K to a less extent. These values of p and the
values of the fourth column of Table I for 8 yield the
tabulated values of g in the second column of Table II,
from Eqs. (21). It is seen that the values of r) are
reasonably concordant with the listed values obtained
by Murnaghan from direct fit, over ten-kilobar intervals
of pressure, of the pressure-volume curve for Na at
normal temperature.

A severer test of the assumptions underlying the
theory can be obtained by noting that the average value

y, A„of the Gruneisen parameter along the fusion curve,
defined by Eq. (23) in terms of r), should be approxi-
mately equal to the average value defined implicitly by
Eq. (18) for the variation of y —

s with fusion tempera-
ture. The latter average is given by

the definition P=p/(r) —1) permits one to solve the
equation for q by trial, if qo and p are known. Values of
g obtained in this manner, with use of values of y, 0 and

p from Tables I and II, respectively, are shown in the
sixth column of Table II; the agreement with the values
of the second column is satisfactory. Values of 8 from
Eq. (21) corresponding to values of p and vl from the
erst and sixth columns, respectively, are tabulated in
the last column of Table II; the agreement with the
values of the fourth column of Table I is good for Rb
and K, but the differences in the cases of Cs and Na
reflect the sensitivity of 8= (vi+p)/(r) —1) to the value
of q —1 in the denominator. Thus, the theory given is
able to predict an approximate value of the Simon
exponent for the alkali metals; by way of contrast
with the values of the last column of Table II, note that
Salter's evaluation (27) of the Simon exponent yields
numbers of the order of 1.5.

By use of a Taylor expansion of Eq. (18) to obtain
an evaluation of y, A„one 6nds the explicit expression

n-s(ns+1+L(ns —1)'—4~(T-.-PT-. o
—1)j'") (41)

valid as an approximation provided T, /T, p is
suKciently small. This equation yields values of g
difFering from those corresponding to Eq. (40) by about
6% an the average for Cs, Rb, and Na; it fails for
K, where the large value of T, , /T, s—1 (in this
case about —,') makes the radical imaginary.

On the assumption that the heat capacity of the
solid at fusion has the Dulong and Petit value, Eqs.
(36) and (34) of I yield the approximation

q=1+2y (3y —1)Q, (42)

in which 0 is the parameter appearing in Eq. (7). Use
of Eq. (18) in this expression for q with values of ir
and g from Table II, permits one to evaluate the
minimum value q;„of q corresponding to the tempera-
ture T, , on a fusion curve. The relative difference

(qs —q; )/qp is largest for the elements K and Cs
showing the largest ordinates in Fig. 2, in which
cases it amounts to about 10%. Since this value
probably exceeds the experimental error in the fusion
data, Eqs. (20) and (31) are valid only as first-order
approximations; a more re6ned analysis should take
the variation of q into account.

IV. CONCLUSION

The successful comparison of theory with experiment
for the alkali metals permits one to assess tentatively
the signi6cance of the Simon equation for elements of

of p, Ay yields a method of inferring the value of p from
knowledge of the values of y„,s and p. If Eq. (39) is
rewritten, by means of Eqs. (23) and (24), as

1—(T,p/T, ,„)~ '

(0—1)(T-,-/T-, o
—1)
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relatively high melting point. For elements of low
melting point, such as the molecular crystals, applicabil-
ity of the Murnaghan equation of state has not been
verified; hence the conclusions are not necessarily
valid for elements of this class, for which the Simon
equation was originally devised.

The fundamental fusion criterion on this theory is
Eq. (7) corresponding to the Lindemann law, from
which the Simon equation follows through choice of
the Murnaghan equation (or one of similar analytic
form) as the equation of state of the solid. However, a
treatment analogous to that given here, based on a
Birch equation" (also derived from the theory of finite
strain) or other justifiable equation of state, will not
necessarily yield the analytic form of Eq. (31), but
should be capable of representing the experimental
facts as well, if Eq. (7) is accepted. Further, the
evaluation (21) of the Simon exponent implies some
dependence on the pressure range covered by the fusion

+ F. Birch, Phys. Rev. 71, 809 (1947).

curve, and the evaluation of the Simon coeKcient shows
a dependence on the arbitrary position of the origin
of the fusion curve. These considerations suggest that
the Simon equation has more the character of an
interpolation formula than a basic fusion equation, at
least for the elements of higher melting temperature.

The fact that the Simon equation can be derived so
directly from the generalized Lindemann law of I, for
low pressure, justifies to some extent the step of
extrapolating the law, for high pressure, to obtain the
fusion cuive on the basis of the Thomas-Fermi equation
of state"
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An evaluation of the Griinesisen parameter (or constant) from the equation of state of a solid has been
obtained by Druyvesteyn and Meyering on the basis of the theory of 6nite strain. The result differs (by —~~)

from the corresponding evaluation on the Debye theory, as given by Lorentz and by Slater. The value of
Druyvesteyn and Meyering is derived here without use of the formal theory of 6nite strain, and shown to
correspond physically to a model of independent pairs of nearest neighbor atoms, rather than to the Debye
model of coupled atomic vibrations. This fact resolves a paradox raised by Dugdale and MacDonald in
connection with an ideal harmonic solid, and ascribed by them to neglect of 6nite strain. The presence of a
state of 6nite hydrostatic pressure, upon which elastic waves or pressure changes of infinitesimal amplitude
are impressed, is taken into account explicitly by means of Murnaghan's theory of hnite strain, to obtain
the Griineisen parameter, as evaluated from the equation of state, on the Debye model and for a
Druyvesteyn-Meyering solid. The results are identical in the two cases with the corresponding values
obtained without use of the formal theory of 6nite strain. Hence, no basis exists for the modihcation at
6nite pressure in the Gruneisen parameter from the Debye theory, as proposed by Dugdale and MacDonald.
A comparison of average values over a relatively large number of elements, of Griineisen constants as
evaluated from Gruneisen's law and from the equation of state on the Debye model, shows excellent
agreement .at normal and at melting temperature.

I. INTRODUCTION

ROM results of J,. orentz' and Slater,"the Griineisen
parameter (or constant) yD of an isotropic solid

can be evaluated from its equation of state as

', (ar/av) (van —/a-v )-
where I' is the pressure corresponding to the volume
V. As indicated by the subscript D, this result is based

* Work sponsored by the U. S. Atomic Energy Commission.' H. A. Lorentz, Proc. Roy. Acad. Amsterdam 19, 1324 (1916).' J. C. Sister, Phys. Rev; 57, 744 (1940).' J. C. Slater, InArodlction to Chemical Physics (McGraw-Hill
Book Company, Inc. , New Vork, 1939), pp. 238, 394, 45k.

on the Debye theory; it presupposes that the Poisson
ratio of the solid is constant. In a number of papers' 6

concerned with the fusion curve and the behavior of
solids under pressure, the author has assumed that the
evaluation (1) of the Griineisen parameter is valid at
high pressure, for the Debye theory.

The question can be raised whether the theory of

4 J. J. Gilvarry, this issue LPhys. Rev. 102, 308 (1956)j~
referred to hereafter as I.

e J. J. Gilvarry, this issue LPhys. Rev. 102, 317 (1956)j,
referred to hereafter as II.

e J, J, Gilvar'ry, preceding paper P'hys. Rev. 102, 325 (1956)$,
referred to hereafter as III.


