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The correction to Gruneisen's law corresponding to the eRect
of the electrons at high pressure is determined, on the assumption
that the lattice contribution to the pressure is small, and that the
equation of state of the solid can be approximated by results of the
statistical Thomas-Fermi atom model for the electron pressure.
The eRect of a first-order temperature perturbation, for tempera-
tures low in the sense of the model, is included in the Thomas-
Fermi theory, but exchange is neglected. For temperatures subject
to the restriction noted, but high enough so that the electronic con-
tribution to the heat capacity dominates the lattice contribution,
Gruneisen's law is valid as a formal relation on the Thomas-
Fermi theory, with a physical reinterpretation of the proportion-
ality constant which enters. The fusion curve under high com-
pression is determined from a reformulation of the Lindemann law
given previously, on the similarity assumption that the ratio of
the amplitude of thermal vibration to nearest neighbor distance
has the same value at high pressure as at low. The fusion tempera-
ture as a function of pressure is determined to zero order from
results of the zero-temperature Thomas-Fermi theory, on the

assumption that Poisson's ratio is independent of temperature
and pressure. It is shown that the general temperature-perturbed
Thomas-Fermi theory is adequate to determine the fusion curve
on this model, except for the domain of large atomic number
near the Fermi-Dirac limit of high pressure, for values of Poisson s
ratio which are not relatively high. Exclusive of this domain,
it is proved that the predicted fusion curve is normal in the sense
of Bridgman, and is not in accord with the hypotheses of
Tammann or of Schames. Fusion curves predicted for the alkali
elements at high pressure are in accord with experimental results
of Bridgman for low pressure, in the sense that the high-pressure
curves show a reversal of normal order with respect to atomic
number of melting temperature in the alkali metal family, as
postulated by Bridgman from extrapolation of the low-pressure
curves. The theory presented yields a general method of deter-
mining the corrections, corresponding to the lattice contributions,
in thermodynamic functions determined from the Thomas-Fermi
model (the method is subject to a limitation on physical validity
in the Fermi-Dirac limit of high pressure).

A~UTSIDE the region of normal pressure and tem-
perature, Griineisen's law has been discussed by

various authors for a number of metals' and for solid
hydrogen and deuterium' on the basis of experimental
data, for low temperature and for low or moderate
pressure. The validity of the law for the temperatures
and moderate pressures corresponding to conditions
in the earth's mantle has been discussed by Birch. '
Visvanathan4 has considered the modiication in the law
at very low temperature due to the electrons. A similar
modification corresponding to the eGect of the electrons
is necessary at high pressure. In this paper, the exten-
sion of the law to high pressures is considered, on the
assumption that the equation of state of the solid is
given by results of the statistical Thomas-Fermi atom
model and that the lattice contribution to the pressure
is small.

By assuming the identity of the Lindemann and
Debye characteristic frequencies at moderately high
pressures, UGen' has estimated the melting point
gradient in the earth's mantle. He evaluated the Debye
frequency from the known values of the speeds of
elastic waves at various depths in the mantle (obtained
by analysis of travel times of seismic waves), obtaining
the density at each depth from Bullen's determination
of the density distribution in the earth. ' This procedure
yields a maximum temperature in the earth's mantle
at the core boundary which is in agreement with an
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independent estimate made by Daly, ' and is concordant
with an upper limit given by JeBreys. s

In this paper, UGen's method, which amounts to a
similarity assumption, is generalized to obtain the fusion
curve at high compression. The explicit development
will be based on a reformulation of Lindemann's law
given by this author in a previous paper. ' In that paper
it is shown that adjunction of an equation of state of the
solid to the reformulated Lindemann rule yields the
fusion curve; the equation of state corresponding to the
Thomas-Fermi atom model will be taken here. Final
justiication of the method must be based on a funda-
mental theory of fusion, such as that of Lennard-Jones
and Devonshire" (which implies the Lindemann rule at
low pressure). These authors considered their original
model too crude to be applied reliably at high pressure
but Domb" has applied the model (with modifications)
to the range of moderate pressure where a Lennard-
Jones intermolecular potential is a sufficient approxima-
tion, to derive theoretically Simon's empirical melting
formula. "It will be shown that the generalized Linde-
mann law, in conjunction with the Thomas-Fermi
model, yields a dependence of fusion pressure on tem-
perature which is consonant with the results of Bomb
for the range of moderate pressure.

Thermodynamic functions of the Thomas-Fermi
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atom are available from work" '4 of this and another
author, for temperatures which are low in the sense of
the model (small relative to the maximum energy of an
electron at the atom boundary). It will be shown that
Gruneisen's law and the fusion curve from Lindemann's
rule can be discussed adequately (with some reserva-
tions) to zero order under this temperature restriction.
The fact that the Thomas-Fermi atom model loses much
of its physical validity at pressures below a limit in the
order of megabars" restricts the results to high pressure,
and the statistical nature of the model limits its strict
applicability to elements of large atomic number. The
eGect of exchange in the Thomas-Fermi model" will
not be included explicitly, but the necessary modifica-
tions are fairly direct.

As an incidental result, the theory presented provides
a general method on the Debye theory of determining
the corrections, corresponding to the lattice contribu-
butions, in thermodynamic functions determined from
the Thomas-Fermi model; the method generalizes
results of others. "

The Debye and Gruneisen theories presuppose that
an atom (nucleus and electron cloud) oscillates therm-
ally as a rigid unit. Reitz" has shown that for the limit
of a degenerate Fermi-Dirac gas and for the tempera-
tures in question, differential oscillation of the nucleus
relative to the electron cloud becomes important. As a
consequence, the (nonelectronic) thermal pressure in
this limit is determined less by the compressibility of
the lattice than by the polarizability of the atom"; an
analogous factor must be taken into account in the
theory of the long optical vibrations of an ionic crystal. "
For this reason, the validity of the results on the lattice
term in Griineisen's law and on the thermodynamic
functions of the lattice is restricted to pressures below
the limit of very high compression corresponding to a
degenerate Fermi-Dirac gas.

I. INTRODUCTION

The equation of state of the solid (assumed to be a
pure element) will be approximated by results of the
Thomas-Fermi atom model, on the assumption that
the lattice pressure is negligible relative to the electronic
pressure I', . The latter assumption will be justified in
Sec. IV. On this model, I', is approximately equal to its
zero-temperature value, designated by p for con-
venience, provided that the absolute temperature T is
suKciently less than a limiting temperature To. In

"J.J. Gilvarry, Phys. Rev. 96, 934 (1954), referred to here-
after as II; Phys. Rev. 96, 944 {1954),referred to hereafter as III.

'4 J. J. Gilvarry and G. H. Peebles, Phys. Rev. 99, 550 (1955),
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Z 4"kTp/8=4(2/9ve)~gp/xp (2)

in terms of the atomic unit 8=e'/ap of energy. Note
that, in the zero-temperature approximation, all thermo-
dynamic functions scale with atomic number Z for
fixed xp, from Eqs. (1), the scaling factor for pressure
is Z"l" and the scaling factor for volume is Z '.

Through terms in T' corresponding to a first-order
temperature perturbation in the Thomas-Fermi model,
the electronic pressure I', is given by

I'.=pE&+ (5/2) (~+2~)f (Ir~)'j (3)

where k is Boltzmann's constant and f=v'y'/8Z'e' or
f= (1.017Z'IPh) ' if h is a Hartree unit of energy. The
perturbation paramenters 0 and 7 depend on the solu-
tions of the first-order temperature-perturbed and the
zero-temperature Thomas-Fermi equations, and they
can be evaluated in terms of xp (and thus of v or p)
from fitted functions given in II and IV. In terms of the
parameter ~y defined by

er ———(8 lnP, /8 lnv) r, (4)

the isothermal and adiabatic bulk moduli corresponding
to the electronic pressure can both be evaluated as
ezP, . The value of ez is given by

er ——ep (4epr+ (5/6)do/—d lnx pj's (kT)',

in which the corresponding zero-temperature value
ep= —iE lnp/iE lnv is determined by

ep
——(5/6) (1—iE 1ngp/d lnxp). (6)

The electronic heat capacity C, , at constant volume
and the electronic entropy S„per atom, are given by

C„,,=S,= 15pv(o+2v+3io)f'k'T, (7)

in which or, like 0 and r, is a perturbation parameter
available from fitted functions given in II and IV. The
Thomas-Fermi coefficient of volume expansion n, can

terms of two dimensionless variables, gp and xp, ob-
tained by solution of the zero-temperature Thomas-
Fermi equation, the zero-temperature pressure p and
the corresponding volume e of the atom are given by

P= (ZPee/10v. p4) (y p/xp) PIP, (1a)

v= (4v/3) (exp)',

where Z is the atomic number, e is the electronic charge,
and p= ap(9v'/128Z)& in terms of the first Bohr radius
ao of the hydrogen atom. In II, computational results
were used to determine a fitted function for p p in terms
of x&, this fitted function makes the equation of state
tparametrically from Eqs. (1)j and thermodynamic
functions directly available for the case of zero tem-
perature. For validity of the zero-temperature Thomas-
Fermi model, one must have T((TO, where the limiting
temperature To is defined by
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be evaluated as

a,=5ss '(o+2r)ik'T

The normal frequencies of vibration all vary with
volume as v

—&'; note that a similarity assumption is
entailed. "

The temperature-perturbation terms given here corre-
spond to use of the volume v of the atom as an inde-
pendent (and thus unperturbed) parameter. Perturba-
tion terms of higher order can be included by means
of the general perturbation method given in II and III,
to permit corresponding relaxation of the condition
T&&Tp.

The total pressure P is the sum

P= P.+Pt
of the electronic pressure I', and the pressure I'~ due to
the lattice. On the Debye model, a monatomic lattice
can be represented dynamically by an isotropic con-
tinuum in which elastic waves of longitudinal and trans-
verse type propagate. Thermodynamic functions of the
lattice are obtainable in terms of the Debye frequency,
or corresponding Debye temperature, by standard
results of statistical mechanics. "Since the normal fre-
quencies of vibration of the lattice all vary with volume
in the same manner as the maximum or Debye fre-
quency, results of the Griineisen theory of solids are
directly applicable. ""

The pressure Pt is determined by Pt —(BFt/B—v—)r,
where the Helmholtz function Ii~ per atom of the
monatomic lattice is given (with omission of a zero-
point term) by

Ft——3kTLln(1 —e )—srD(x) j, (10)

in which x= hv/kT if h is Planck's constant and v is the
Debye frequency, and D(x) is the Debye function
dehned by

D(x) =3x-' y'(ev —1)-'dy.

Kith use of the Gibbs-Helmholtz equation, one obtains'4

Pt =ytEt/v, (12)

where the thermal energy EI, per atom of the lattice
is determined (with omission of the zero-point term) by

Et= 3kTD(x)

and the lattice Gruneisen parameter p& is given by

yr= —(B lnv/B lnv) v.

(13)

The lattice contribution C., t= (BEt/BT). per atom to
the heat capacity at constant volume is

C„,t=3kg4D(x) —3x(e —1)—'j. (15)

n J. E. Mayer and M. G. Mayer, Statisticat Mechalics (John
Wiley and Sons, Inc. , New York, 1940), pp. 251, 386.

~~E. Gruneisen, in Handbuch der Physik (Verlag von Julius
Springer, Berlin, 1926), pp. 1—59.

~ J. C. Slater, Introduction to Chemical Physics (McGraw-Hill
Book Company, Inc., New York, 1939), pp. 219, 239.

~ C. Kittel, Introdlction to SolQ State

Physics

(John Wiley and
Sons, Inc., New York, 1953), p. 80.

v =gyp
—1/2@1/2vl/6

7 (16)

where m is the mass of an atom, ~ is the bulk modulus
v(BP—/Bv)r corresponding to the total pressure, and

s is a function of Poisson's ratio f7 which is defined by
Eq. (16) of I if s is replaced by sanda bye. With use
of the assumption P«&P, and of Eqs. (3) and (4), one
obtains

v= Stl e P t v t +O(Ts) (17)

where the presence of terms arising from the tempera-
ture-perturbation terms in P, and ep has been indicated
by the common notation O(T'). The relative smallness
of the latter terms in general (for T«Ts) indicates that
the assumption that v is a function only of the volume,
made as an approximation in application of the
QrQneisen theory under normal conditions, ""is closely
fulfilled at high pressure for suKciently low temperature.

In general, the value of Poisson's ratio must be
known to obtain the thermodynamic functions of the
lattice. In I, it has been assumed that the ratio is
independent of temperature. In Fig. 1, values of
0'gf f, t (ref f, t and (act f)Ay as .defined in I, are shown for
Al and Cu as a function of pressure up to about 10
kilobars, from data of Lazarus. "One notes that both
values of (a tt)A are closely constant. On the basis, in

part, of these experimental data, it will be assumed that
Poisson's ratio is approximately independent of pressure
as well as temperature.
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Pro. 1.Effective Poisson ratios as a function of pressure
from experimental results of Lazarus, for Al and Cu.

"D. Lazarus, Phys. Rev. 76, 545 (1949).

II. THE GRUNEISEN LAW

The derivation of the usual form of Gruneisen's law
presupposes that the electronic contributions to the
heat capacity and to the quantity (BP/B T)„are
negligible relative to the corresponding lattice contribu-
tions. This condition can be (and in fact generally is)
violated at high pressure; the appropriate generaliza-
tion of Gruneisen's law for this case will be considered.

The Debye frequency v of a monatomic lattice is
de6ned by
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The assumption that Poisson's ratio is approximately
constant with pressure is not contradicted by geo-
physical information' ' on the earth's mantle obtained
by analysis of seismic data. Throughout the mantle
Lpossibly of olivine (Mg, Fe)&Si04, or a similar material],
the value of the ratio is about 0.3, up to pressures of the
order of 1.4 megabars; Jeffreys' hypothesis' that the
material of the mantle is just below the point of fusion
is some justification for assuming that a solid retains
an approximately constant value of Poisson's ratio at
high pressure up to the melting point. Support for
Jeffreys' hypothesis comes from the fair agreement of
the melting temperature in the mantle at the boundary
of the core, computed on this basis, with Uffen's value. '
In any event, the assumption that Poisson's ratio is
constant with pressure and temperature implies that
—',X/(X+p), where X and p are the Lame parameters, is
constant, and thus is a similarity assumption in the
same sense as the extrapolation of the generalized
Lindemann rule, to be made later.

At high pressure, one expects that the lattice of a pure
element will be one of the close-packed forms, face-
centered cubic or hexagonal, and that pressure will

induce a lattice transformation to one of these forms
in elements whose normal lattices are not of these
ty'pes. " Values of Poisson's ratio for elements with
close-packed lattices are given in I for a number of
cases. For elements with other than close-packed
lattices under normal conditions, it is necessary to
adopt at high pressure an average value of Poisson's
ratio over the close-packed elements; from the data of
I, this average is 0.37. Note that the last assumption is
not essential to the theory, but is made in default of
experimental (or theoretical) information.

On the assumption that Poisson's ratio is constant
and that E~(&P„ the lattice Gruneisen parameter of
Eq. (14) becomes

pl= ,' (3eo 1——3dln—eo/d inII)+O(T'), (18)

from Eqs. (4) and (16); it can be seen from Fig. 3 of II
that the logarithmic derivative which appears is small
relative to ~0. Values of p& from this equation are shown
in Fig. 2 as a function of the scaled pressure Z—""p, as
computed with use of Eq. (6) from the fitted function
of II for po. In the Fermi-Dirac limit corresponding to

p—+oo, one has eo—+5/3 and thus y~2/3, and, in the
opposite limit p—+0 corresponding to an infinite atom,
one has eo—y10/3 and thus y~3/2 (in both cases,
d lneo/d 1nII vanishes). Hence, the limits of variation of

y~ are relatively small. The range of abscissas in Fig. 2

corresponds approximately to the range of computed
data directly fitted by the fitted functions of II and IV;
the highest values of pressure approach those corre-
sponding to a degenerate Fermi-Dirac gas.

"Support for this assumption in the case of the alkali metals
(normally body-centered cubic) is given by J. Bardeen U. Chem.
Phys. 6, 372 (1938)j; at a pressure of about 22 kilobars, Cs trans-
forms to a lattice which is probably face-centered cubic.

With use of the identity (BI'/BT), = sn, in which n is
the volumetric coefficient of thermal expansion and the
product an involves both electronic and lattice contribu-
tions, differentiation of Eq. (9) with respect to tempera-
ture at constant volume yields

~a= (y,C...+ylC„, I)/s, (19)
from Eqs. (3), (7), and (12), if the electronic Griineisen
parameter y, is defined by

sr ol/-(o—+2r+ . 3co) . (20)
Terms of higher order arising from the Thomas-Fermi
temperature perturbation have been neglected in Eq.
(19); thus, this equation is the generalization of
Griineisen's law to high pressure for temperatures small
in the sense of the Thomas-Fermi model. The usual
form of the law is recovered for C„,,/C„, ~O. The
fitted functions given in II and IU have been used to
plot y, as a function of the scaled pressure Z ' I'p in
Fig. 2. It is shown in III that —0., r, and —co are mono-
tonic-decreasing functions of p, so that y, is a monotonic
function between its limiting values, given from results
of II as 3 in the Fermi-Dirac limit, and 3 for the limit
of an infinite atom. With the former limit y, =—, corre-
sponding to the free-electron theory of metals, the
electronic term in Eq. (19) is that given by Visvana-
than. 4 One notes that both Griineisen parameters y~ and
p, are of approximately the same order of magnitude.

As noted, validity of the temperature-perturbed
Thomas-Fermi model in this application requires that
the temperature involved be significantly less than the
temperature To defined by Eq. (2). For temperatures
less than To but sufficiently high that the electronic
heat capacity dominates the lattice heat capacity, the
lattice terms can be neglected in the generalized
Griineisen law (since 7, yI). The lattice heat capacity
cannot exceed the Dulong and Petit value, 3k per atom
of a monatomic lattice, so that the equality C„,=3k
defines a limiting temperature T~ such that T& T~ is
an approximate criterion that C„, dominate C,, ~. The
value of Ti is given from Eqs. (1) and (I) by

Z '"kTi/h= (48/n ) (2/9'')'"
X((o+2r+3ol)xo'I'pools] '. (2l)
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Pro. 2. The lattice Griineisen parameter p& and the electronic
GrQneisen parameter y„as a function of scaled pressure on the
Thomas-Fermi model.
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the temperature in question be lower than the fusion
temperature (to be evaluated in the next section).
However, the limiting form (22) of Griineisen's law
can be valid above the fusion temperature, since it
does not contain a lattice term. Omission of the Reitz
frequency changes somewhat the limit of the lattice
Gruneisen parameter in the Fermi-Dirac limit. "

III. THE FUSION CURVE

The generalized Lindemann law can be written, from
results of I, as

4 t f I llttl t I iltltl

IO-' IO-' IO-'
I till. ll I t I }till t I II lilt t t 1 ltttl t t t Illll I t t lutl t t t ltltl

lO 10 IO~ IO ' 10o IO' 102

Z 'DI3 p (megabarl)

Fxo. 3. Scaled ratios of signilcant temperatures as a function
of scaled pressure on the Thomas-Fermi model.

Kcx = epPQg= 'rgCy, g) (22)

where o,, is the Thomas-Fermi value of n defined by
Eq. (8).This equation yields the result that Griineisen s
law is valid, under the temperature restriction stated,
as a formal relation on the Thomas-Fermi model, with
a physical re-interpretation of the proportionality
constant which enters. The result follows because the
6rst-order temperature-perturbed Thomas-Fermi theory
satisfies a general criterion given by Davies" that a
law of Gruneisen form apply.

The Debye temperature 0 defined by k0~= hv can be
determined to zero order from Eq. (17), by means of
Eqs. (I) and (6), as

Z 'k0/h= (g/9) (6/ )'"(~/0'")
X (1—d imp/d inxp)'lp(p&'/x&p)'", (23)

where P is the ratio of the mass of a hydrogen atom to
that of an electron, and the approximation m= 2PZm„
wher m, is the electron mass, has been used for the mass
m of the atom. The ratio of 0 to Tt, in the scaled form
Z '"0'/Tt, is shown as a function of the scaled pressure
Z ""p in Fig. 3; the fitted function of II for @p has
been used, and the value s=0.37, correspond. ing to the
average value 0.37 of Poisson's ratio over the close-
packed elements of I, has been taken. One notes that
0 is less than Tt for any physical value of Z and for
any pressure shown, so that the lattice heat capacity
has actually reached (at least approximately) the
equipartition value at the temperature T~.

The foregoing results apply only to the solid, in
general, and thus are subject to the reservation that

Pt R. O. Davies, Phil. Nag. 43, 473 (1952}.

The ratio of Tj to To is shown, in the scaled form
ZTt/Tp, as a function of the scaled pressure Z ""p in
Fig. 3. One notes that Tj, is signi6cantly below the
limiting temperature TD for moderate or large Z, but
the condition fails to hold for the lower Z-values,
particularly for the lowest values of scaled pressure.
Hence, for T~&&T&&T0, the extended Gruneisen law
reduces to

kT =Q —t(}~ v, (24)

kT„=IIepPv+0(T '), (27)

which is valid as a zero-order approximation for the
melting temperature, provided x &&1 or x 1, and
provided T ((Tp, where Tp is defined by Eq. (2).

where T is the absolute melting temperature, and ~„
and v are the bulk modulus and. volume of the atom
for the solid, respectively, as evaluated at fusion. The
quantization factor Q, which takes account of de-
parture from equipartition, is defined in I as a function
of the ratio

x„=0„/T„,
where 0' is the Debye temperature at fusion; 0 is
defined by

II= [2'"v.s„(o~)p/3' 'g (26)

where s is given in I as a function of the fusion value
of Poisson s ratio, and p is the critical ratio of the

root-mean-square amplitude of thermal vibration to
nearest neighbor distance at fusion. In general, con-
junction with Eq. (24) of the equation of state
P= f(v, T) of the solid yields two simultaneous equa-
tions for the fusion temperature in terms of the fusion
pressure P; the Thomas-Fermi equation of state will
be adopted for the solid at high pressure, under the
assumption P~&&P,. The fusion criterion is that the
ratio, at temperature T and pressure P, of thermal
vibration amplitude to nearest neighbor distance, equal
the corresponding ratio at normal pressure, where the
latter is assumed the same for all isotropic monatomic
solids; possible eGects of di8erential motion of the
nucleus relative to the electron cloud are ignored. "
Thus a similarity assumption is entailed in this extra-
polation of the generalized Lindemann law to high
pressure. The value 0- of Poisson's ratio at fusion will
be taken in accordance with the previous assumption
that Poisson's ratio is independent of temperature and
pressure.

Since the temperature perturbation method used in
connection with the Thomas-Fermi model corresponds
to use of the atom volume v as independent variable,
one has v„=v. From Eqs. (3) and (4), the value of ~ is
epp+0(T '). Hence, use of the Thomas-Fermi model
under the approximation P&«P, yieMs
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FIG. 4. The scaled fusion temperature from the extrapolated
Lindemann law as a function of scaled pressure on the Thomas-
Fermi model, for a Poisson ratio of 0.37 corresponding to an
average over the close-packed elements. The Debye temperature
0, and the limiting temperatures T0 and T1, are likewise shown
{dashed). Temperatures are in Hartree energy units (27.2 ev or
3.16)&10~ 'K).

Alternatively, Eq. (27) can be written

kT =Qep(yp —1)tt+O(T '),

where I is the zero-temperature Thomas-Fermi energy
given in II, and yp (not to be confused with a Gruneisen

parameter) is defined by I=pvj(pp —1) and is evaluated
in II. The fusion pressure P is p+O(T '), from

Kq. (3). From Eqs. (1) and (6), the zero-order approxi-
mation to T can be expressed as

Z-7I'kT„/8 = (4/9) (2/9sr')'"

)&Q(1—d lnyp/d lnxp)xp' '&ps '. (29)

This fusion curve is shown as a function of the scaled
fusion pressure Z ""p in Fig. 4, as evaluated from the
fitted function of II for p p, the value s„=0.37 has been
taken, corresponding to the average Poisson ratio 0.37
over the close-packed elements, which yields 0=0.012
from the value p= 0.072 of Table III in I. Scaled values
of the limiting temperatures To and T~, and of the
Debye temperature 0 corresponding to a Poisson ratio
of 0.37, are shown (dashed) on the same graph.

In terms of 0~ defined by Eq. (23), one has 0~ =0"
+O(T '). The value of the ratio x, of Kq. (25), corre-
sponding to this value of 0 for o =0.37 and to T
of Kq. (29), is shown in the scaled form Z'"x as a
function of the scaled pressure Z ""p in Fig. 3. One
notes that the condition x «1 or x 1 is met in
general but can be violated for the lowest values of Z
at the lowest scaled pressure shown. For the latter
domain, higher order terms in Q

' can be taken into
account by expanding the parameter as

in terms of the variable,

x„'=kO„/QIr v„, (31)

for the pressure of a degenerate gas of Z-electrons in the
volume v of the atom. The chemical potential sl' pequa1
to kTp of Eq. (2)j at zero temperature can be evaluated
from results of II as

II'= pt (9sr')'"Z"'hap'/v'", (33)

in this case, where ao is the first Bohr radius for hy-
drogen. From Eq. (24), the melting temperature in the
Fermi-Dirac limit can be expanded as

37sr
k T„=-'p QZ1I' 1+—(QZ)'+ (QZ) 4+

2'7 3645
(34)

Numerically, QZ is 1.I for Z=92 and for the average
value 0.37 of Poisson's ratio over the close-packed
elements, but it is only 0.52 for Z=82 and for a Poisson
ratio of 0.43, which is the normal value" of the ratio
for Pb; thus, the series of Fq. (34) is rapidly convergent
for Pb. Hence, results of the general temperature-
perturbed Thomas-Fermi model from II and III are
sufhcient to determine the fusion curve, in general,
except for the domain of large Z near the Fermi-Dirac
limit of pressure when the Poisson ratio is not relatively
large. Since the purely formal extrapolation made of the
generalized Lindemann rule takes no account of the
possible e6ect of differential motion of the nucleus
relative to the electron cloud, ' these results for the
Fermi-Dirac limit are subject to some doubt as regards
physical validity.

which reduces to x„when Q 1.
The ratio of T (corresponding to the average

Poisson ratio 0.37) from Eq. (29) to Tp of Eq. (2),
expressed in the scaled form Z 'T /Tp, is shown as a
function of the scaled fusion presure Z ""p in Fig. 3.
One notes that the condition T «To is met reasonably
for any Z at the lower scaled pressures. In the Fermi-
Dirac limit, however, T can become comparable to
Tp for large Z, since T /Tp —+(2/3)QZ (numerically,
0.74 for Z=92 and for 0 corresponding to the average
Poisson ratio). Hence, for the larger values of Z at the
higher pressures, a sufficient number (depending on
the value of Poisson's ratio) of perturbation orders
must be included in the general perturbation method
given in II and III, or the electronic pressure should
be determined from the Thomas-Fermi equation as
generalized to arbitrary temperature. '

The neglected perturbation terms are easily evaluated
in the Fermi-Dirae limit, from the expression"

2 Zrt' 5sr' (kT ~
' sr4 JI kT y

'
1+

l I

—
l I+, (32)

3 v 12 (II') 261 rt')

Q -'=1—x "/36—x„'4/20251 (3o)
» C. Zwikker, Physical Properties of Solid Materials (Inter-

science Publishers, Inc., New York, 1954), p. 90.
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d'~m

dP '
d lnep dip d' Inep Qv

Qp» +
d lnv d lnv d(lne)' epp

+0(T '), (36)

where the coefficient of Qe/epp in square brackets is
always positive. Hence, the fusion curve on the assump-
tions made is completely normal in the sense of Bridg-
man; the hypothesis of Tammann, " that the fusion
temperature rises to a maximum and then falls, and
that of Schames, " that an asymptotic fusion tempera-
ture exists, are both denied. The proof given applies
only to the range of atomic number, pressure, and
Poisson ratio where the general perturbation method
of II and III is applicable, so that the signs of the
pertinent derivatives can be inferred from the leading
term of zero order. From results of I, or by means of
Clapeyron's equation applied to Eq. (35), one obtains

I/be= ep(ep —1—d lnep/d lnv) 'P+0(T ) (37)

for the ratio of the latent heat of fusion I.per atom to
the corresponding change dv, from solid to liquid, in
volume per atom. Since this equation specifies only the
ratio I./be, it yields no direct information on the exis-
tence or nonexistence of a critical point (where L and
Av must vanish simultaneously so that their ratio
remains finite), but it is consistent with the latter
possibility, since the coefficient of epp is positive.

Equation (37) corresponds to the evaluation of the
Griineisen constant from fusion parameters, as given
by Eq. (33) of I. Hence, this relation persists for high
pressure. However, the evaluation of the Griineisen con-
stant at fusion from Griineisen's law, as given by Eq.
(25) of I for low pressure, must be modified to corre-
spond to the generalized Griineisen law (19) at high
pressure. As noted, the generalized law is subject to
the condition T~& T, but the limiting form (22) is
independent of this restriction. One can show from Kqs.
(21) and (29) that the generalized form reduces approxi-

zz G. Tammann, Zristalltszeretz ted Schetetzee (Verlag von J.A.
Barth, Leipzig, 1903),p. 90;A ggregotzustttede (Verlag von L. Voss,
Leipzig, 2923), p. 94.

4 L. Schames, Ann. Physik 38, 830 (1912);29, 887 (1912).

The Griineisen constant y of the solid at fusion, as
delned in I, is pi+0(T '), where pt is given by Eq.
(18).The parameter q of I is 1+0(T '), and, since the
condition x ((1 or x ~i is fulfilled in general, the
parameters Q and 0 of I will be given the values
unity and zero, respectively. Hence, results of I yield

ItdT /dP = (ep—1 d ines/d lnv)Qv+0(T z) (35)

for the slope of the fusion curve. It is easily shown from
numerical results of II that the parenthetic coeKcient
of Qv is at,ways positive, so that the fusion curve on this
model has normal sign of slope when the temperature-
perturbed Thomas-Fermi model is applicable. Similarly,
one obtains
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mately to the latter form, below fusion, for the larger
values of Z and for the larger scaled pressures.

For the Thomas-Fermi atom model at zero tempera-
ture, one notes froin Eq. (4) that p~e—'0 for small
changes in e, where ep has the value 10/3 corresponding
to an infinite atom and the value 5/3 in the Fermi-Dirac
limit. Equation (27) implies, therefore, that the tem-
perature variation of the melting pressure goes from
P ~T ' ~ to P ~T '" as the pressure varies from
zero to infinity. Simon's empirical equation" for low
pressure predicts P„+A cc T n, where A and B are
constants; the value of 8 is about 4 for metals and about
2 for other substances, However, Bomb's derivation"
of the equation from the model of Lennard-Jones and
Devonshire". yields B=1+3/ tfzor moderately high
pressure, where tt (about 9 to 12) is the (negative)
exponent of the repulsive term in a Lennard-Jones
potential; in this case, the constant A can be ignored.
Hence, Eq. (2'7) is substantially consistent with Domb's
result for the moderate-pressure range.

A significant feature of the melting formula (29) is
the scaling of the melting temperature with atomic
number as Z'" for x~ fixed." Computed melting tem-
peratures from this equation are shown in Fig. 5 for
the alkali metals as a function of pressure above 5
megabars, for a value of Poisson's ratio equal to the
average 0.37 over the close-packed elements"; the
order of increasing melting temperature is Li to Cs.
The experimental results of Bridgman" for the melting

3' The leading term of Eq. (34) states that the melting tempera-
ture scales as Z'~' for fixed volume, or as Z for fixed pressure, in
the Fermi-Dirac limit; in this case, more explicit scaling is
possible, because gt» from results of II can be obtained directly
in terms of xb and thus of v.

~P. %. Bridgman, Phys. Rev. 8, 253 (2924); 27, 68 (2926)",
Proc. Am. Acad. Arts Sci. 56, 59 (1921).

IO I I IIIIII I IIIIIII I II|IIII I I IIIIII I I IIIIII I I IIIIII I I IIIIII

&O
' IO ' IO' IO ' IO' IO' IO' IO'

Pressure (m e gab a rs)

FIG. S. Comparison of the fusion curves for the alkali metals
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redicted by the extrapolated Lindemann law (for e =037) at
'gh pressure with Bridgman's experimental fusion curves at

low pressure; the dashed portions correspond to a reasonable
fairing at intermediate pressures of the two curves into one another
for each element. In the inset, the fusion curves of Bridgman
are shown on a linear scale.
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temperatures as a function of pressure are shown on
the same diagram; the order of increasing melting
temperature is Cs to Li at the lowest pressures, or the
reverse of that predicted by Eq. (29). The fusion curves
of Bridgman are shown on a linear scale in the inset
on Fig. 5; one notes that the curves for Na and K cross
near the upper limit of pressure. As interpreted by
Bridgman on the basis of a graphical extrapolation, the
data indicate almost with certainty that the curve for
K will cross that of I.i; they imply with high probability
that the curve for Na likewise will cross that of I.i;
and they suggest strongly that the curves for Rb and
Cs eventually will cross those of the other alkali metals
with increasing pressure. Hence, Bridgman" " has
hypothesized that at pressures above the order of
25 kilobars, the normal melting order with respect to
atomic number in the alkali metal family will be re-
versed completely. The dashed lines in Fig. 5 have been
drawn to correspond to a reasonable fairing of the
curves for low and high pressure into one another;
complete reversal of the normal fusion order occurs in
the neighborhood of 25 kilobars, in agreement with
Bridgman's hypothesis.

IV. THERMODYNAMIC FUNCTIONS OF THE LATTICE

The salient thermodynamic functions of the lattice
have been listed in Sec. I. The lattice contribution S~
per atom to the entropy is given by~'

Si=3kL(4/3)D(x) —ln(1 —e *)], (38)

evaluate the parameters directly. These considerations
yield a general prescription for obtaining the thermo-
dynamic functions of the lattice at low temperature,
which is the analog of the method given by Feynman,
Metropolis and Teller" for obtaining the corrections in
thermodynamic functions due to the atomic nucleus
at high temperature.

The upper limit of temperature for validity of these
expressions for the thermodynamic functions of the
lattice is the melting temperature T . For T»O' or
T 0, the thermodynamic functions assume their
equipartition values, so that the lattice pressure
becomes

Pi= 3yikT/e, (40)

which is a result obtained previously by others't (by a
method equivalent in its assumptions to the Griineisen
theory) The. thermal energy E~ of the lattice becomes"

(41)

which corresponds to C,, q=3k. For equipartition, the
dependence of the thermodynamic functions of the
lattice Lexcept those involving the entropy of Eq. (39)j
on Poisson's ratio disappears, since this ratio enters the
functions only through the parameter x=O/T. From
the considerations of Sec. III, equipartition is always
reached below the fusion temperature, except for the
lowest values of Z at the lowest scaled pressures.

An upper limit I'~, on the lattice pressure can be
obtained by evaluating I'& at fusion, which yields

which, for x(&1 or x 1, reduces to Pi, „——3Qyippp+0(T„'), (42)

Si=3kL4/3+in(T/0) j. (39)

By comparison of the latter equation with S, as given
by Eq. (7), a limiting temperature can be set such that
Si is dominated by S,. Since S& 4k for T 0, and the
logarithmic function in Eq. (39) is slowly varying, the
condition T& T~ can be used as a rough criterion that
S, dominate S&, where Ti of Eq. (21) is the limiting
temperature for dominance of C... over C,, ~. Other
thermodynamic functions of the lattice on the Debye
model, such as the Gibbs function and enthalpy, are
easily obtained from the functions given.

To determine the thermodynamic functions of the
lattice at any temperature and pressure, it is sufhcient
to know the lattice Gruneisen parameter y~ and the
Debye temperature O~, which enter parametrically into
the functions. The latter parameters have been evalu-
ated to zero order on the Thomas-Fermi model by
Eqs. (18) and (23), respectively, on the assumption
P«(P, (which remains to be justified). Terms of higher
order in yi and 0" can be included by means of the
general perturbation procedure of II and III, or alter-
natively, results of the Thomas-Fermi model as gen-
eralized to arbitrary temperature" can be used to

~ P. W. Bridgman, The I'bye's of High Pressure (G. Sell and
Sons, Ltd. , London, 1949), p. 211.

Et „30pp(yp 1)N——+0(T '—), (43)

where I is the zero-temperature Thomas-Fermi energy
and pp is defined by u= pn/(qp —1).

This method of obtaining the thermodynamic func-
tions of the lattice is valid only for pressures below the
Fermi-Dirac limit, because of neglect of the Reitz
frequency. " The question of the transition from the
thermodynamic functions given here to the corre-
sponding ones in the Fermi-Dirac limit has been dis-
cussed by McMillan. "

by means of Eqs. (27) and (40). One notes that, to
zero order, the ratio Pi, /p of maximum lattice pres-
sure to electronic pressure is independent of the atomic
number Z. The limits of variation of the ratio are not
large, since the limit of y~eo in the Fermi-Dirac limit
is 10/9 and the limit for an infinite atom is 5. Corre-
sponding to these two limits, the ratios of the maximum
lattice pressure to the electronic pressure are 100/3
and 150, or, numerically, about 4% in the Fermi-
Dirac limit and about 18% in the limit of an infinite
atom for an average Poisson ratio of 0.37. These
considerations justify the basic assumption P~&(P„on
which the entire treatment of this paper is based. A
maximum thermal energy E&, of the lattice can be
obtained from Eqs. (28) and (41) as the fusion value
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V. CONCLUSION

The resul. ts of this paper yield. a practical method
of determining the lattice corrections to thermodynamic
functions computed on the Thomas-Fermi model. No
attempt has been made to take account of the long-
range order which may be present in the amorphous
phase above the fusion temperature. Presumably, the
existence of such order must introduce corrections to
thermodynamic functions computed on the Thomas-
Fermi model, analogous to the lattice corrections.

Mott's theory of liquids" may provide an approach
to such questions.
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A generalization of the Lindemann law given previously is used in conjunction with the Murnaghan
equation of state for a sohd to derive a law of reduced states for fusion, valid for the case of classical
excitation of the lattice vibrations at melting. If the bulk modulus and volume of the solid at fusion and
the melting temperature are reduced by dividing the quantity in question by its corresponding value at
the origin of the fusion curve, any reduced variable of this set can be expressed as a power of any other,
with an exponent involving a constant appearing in the Murnaghan equation. It is shown that the ratio
of the latent heat to the volume change of fusion obeys a similar law of reduced states, on the basis of an
assumed form of the volume dependence of the Gruneisen parameter of the solid along the fusion curve.
The constant appearing in the Murnaghan equation of state is interpreted physically in terms of an average
Griineisen parameter of the solid. The law of reduced states yields an immediate derivation of the empirical
Simon equation for the fusion curve. For the alkali metals, it is shown that experimental values of the
temperature exponent in the Simon equation are quantitatively compatible with the theoretical evaluation
given, and, furthermore, that the theory can predict approximate values of the exponent, in practice.

HE empirical equation'

log(P +A) =8 logT„+C,

where P and T are the fusion pressure and absolute
temperature, respectively, and A, 8, and C are dispos-
able coeScients, has been proposed by Simon to
represent the fusion curve. By evaluating the constant
(. at the triple point of temperature T& (and negligible
pressure), he has put the equation in the form

P„=A((T /T, )~ 17 (2)—
for elements of low melting point; this form will be
referred to as the Simon equation. If a reduced pressure
P ' and temperature T ' are defined by P /A and
T /T&, respectively, Eq. (2) yields the Simon law,

(3)

of corresponding states for fusion. This law is analogous
to the 1aw of corresponding states for a van der Waals
gas, with the constant A and the triple-point tempera-
ture as reducing parameters corresponding to the
critical pressure and temperature, respectively.

*Work sponsored by the U. S. Atomic Energy Commission.
«F. Simon, Z. Electrochem. 35, 618 (1929); Trans. Faraday

Soc. BB, 65 (1937).

If the constants A and 8 are selected by trial,
Eq. (2) yields a good fit to the observed melting curves
of solids of low melting point. Values of the constants
for various elements, as derived from experimental
work prior to 1937, are tabulated (except for D&)' by
Ruhemann and Ruhemann. ' Later work' has extended
the pressure range over which the equation is applicable.
The Simon exponent 8 is roughly 2 for most of the
substances (He, Hs, Ne, Ns) of low melting point,
except for A, for which it is somewhat over unity.
For the alkali metals, T & in Eq. (2) must be replaced by
the normal melting temperature; reported values' of
the exponent 8 are approximately 4. Values quoted for
the Simon exponent by diferent authors frequently
are fairly discrepant for the same element. Part of the
variance is presumably due to the fact that a require-
ment merely of 6t to the data does not necessarily

IK. Clusius and K. Bartholomew, Z. physik. Chem. 830, 237
(&935'.

3 M. Ruhemann and B. Ruhemann, Lozv Temperature Physics
(Cambridge University Press, London, 1937), p. 97.

4 Holland, Huggill, Jones, and Simon, Nature 165, 147 (1950);
Holland, Huggill, and Jones, Proc. Roy. Soc. (London) A207,
268 (1951); J. S. Dugdale and F. E. Simon, Proc. Roy. Soc.
(London) A218, 291 (1953).' F. Simon and G. Glatzel, Z. anorg. u. allgem. Chem. 178, 309
(1929}.


