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TABLE VII. p,/p calculated from Egs. (4), (5), and (6).
T =3.0'K; T, 0.5 K.

Rp
CGlp

10
3
1

Eq. (4) (He4)

0.9999
0.999
0.994

Eq. (S) (He&)

0.999/
0.997
0.973

Eq. (6}

0.9999
0.999
0.987

down to Ep, values of about 1 cmobs. Hence the entries
below an Ep of 1, indicated by superscript a in Table
III, should not be relied on very heavily.

CONCLUSION

Experimental measurements have shown that the
thermomolecular ratios for He' between room and

liquid helium temperatures do not diBer within
experimental error from values calculated from the
Weber-Schmidt He' equation, Eq. (1), for Rp values
down to 5 cmp. Theoretical considerations based on
measured viscosities in the liquid hydrogen and helium
regions indicate that deviations from these calculated
ratios probably will exceed 1%%u~ for lower Ep values.
When very low pressures are reached, the ratios for
both gases should theoretically converge to the
molecular-flow-region limiting value of (T,/T„)&.
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The Lindemann assumption of direct contact of neighboring
atoms at fusion is replaced by the criterion that melting occurs
when the root-mean-square amplitude of thermal vibration
reaches a critical fraction p, presumed the same for all isotropic
monatomic solids, of the distance of separation of nearest-neighbor
atoms. The Debye-%aller theory of the temperature dependence
of the intensity of Bragg reflection of x-rays is used, without
further assumptions, to derive a generalized Lindemann law. In
contrast to the Lindemann form, all physical quantities involved
in this formulation are evaluated at the fusion point, and departure
of the average energy of an atomic oscillation from the equi-
partition value is taken into account by the quantization factor
of the Debye-Wailer theory. If the Gruneisen constant p of the
solid at fusion is evaluated by its definition from the Debye
frequency of the solid, use of the generalized Lindemann law and
Clapeyron's equation permits one to express y in terms of the
bulk modulus of the solid at melting and the latent heat and
volume change of fusion. By means of Griineisen's law applied
to the solid at fusion, y can be expressed likewise in terms of the

corresponding bulk modulus, thermal expansion, volume, and
heat capacity at constant volume; the two evaluations of y
connect the Lindemann and Griineisen laws. These relations
permit one to evaluate the slope and curvature of a fusion curve
as functions of y, and thus to express in terms of y the conditions
that a fusion curve be normal in the sense of Bridgman. Experi-
mental fusion data on 13 cubic metals are used to evaluate the
constant of proportionality (inversely proportional to p) in the
Lindemann frequency; the values are reasonably constant. The
corresponding values of p for Al and Cu show reasonable agreement
with values deduced from x-ray intensity measurements. The
average p seems significantly below values estimated by Griineisen.
Good agreement with the cubic metals is found for hexagonal
close-packed elements, but not for elements with more complex
lattices, in general. The two evaluations of the Griineisen constant
y~ of the solid at fusion are shown to be in good agreement,
experimentally, for 14 elements checked, but agreement fails for
the elements Ga, Bi, and Sb, which show abnormal fusion curves.

'HE order-disorder theory of fusion given by
J ennard-Jones and Devonshire' yields excellent

agreement with experiment. ' The theory has the im-

portant consequence that it provides an approximate
theoretical justification' for I indemann's theory of

fusion, ' 4 beyond the elementary considerations on
which the latter theory is based. Lindemann considers

a solid composed of simple harmonic oscillators, as in

the GrCineisen theory of solids. ' He assumes further

' Work sponsored by the U. S. Atomic Energy Commission.
' J. E. Lennard-Jones and A. F. Devonshire, Proc. Roy. Soc.

(London) A170, 464 (1939).' J. de Boer, Proc. Roy. Soc. (London) A215, 5 (1952).
3 F. A. Lindemann, Physik. Z. 11, 609 (1910).' J. K, Roberts and A. R. Miller, Heat and Thermodynamics

(Interscience Publishers, Inc. , ¹w York, 1951),p. 551.
E. Grtineisen, in Harsdbloh der Physih (Verlag Julius Springer,

Berlin, 1926), pp. 1-59.

that the oscillators are arranged in a simple cubic
lattice, and that any departure of the average energy
of an oscillator from the equipartition value can be
represented by the Einstein function appearing in the
theory of heat capacity of solids. The basic assumption
is made that fusion occurs when the amplitude of
thermal vibration of the atoms reaches one-half the
distance of separation of neighboring atoms less their
diameter; that is, when direct contact of neighboring
atoms occurs. A second assumption is made, that the
Hooke constant of the thermal oscillation (with the
mass of the atom) corresponds to the Einstein frequency
of the solid as determined by the heat capacity. These
hypotheses determine a characteristic frequency as a
function of the melting temperature, which shows good
numerical agreement with the characteristic frequencies
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of Einstein and of the later theory of Debye, if a
constant of proportionality is properly chosen.

Recently, the Lindemann law and the Debye equation
of state have been used by Salter' to derive theoretically
Simon's melting-point formula. ' The empirical Simon
relation can be justified' on the theory of Lennard-
Jones and Devonshire; it fits experimental fusion curves
reasonably well, by choice of two disposable coefFicients.
The fact that, when conjoined with the Debye equation
of state, it implies the Simon law, and that it is implied
by the theory of Lennard-Jones and Devonshire, sug-
gests that the Lindemann relation may be more than a
semiempirical rule.

The concept of direct contact of neighboring atoms
at fusion is factitious. In this paper, the basic assump-
tion is made that fusion occurs when the root-mean-
square amplitude of thermal vibration reaches a critical
fraction of the nearest neighbor distance of atoms at
fusion; the fraction is presumed the samh' for all iso-
tropic monatomic solids. The theory of Debye' and
Wailer' for the temperature dependence of the intensity
of Bragg reQection of x-rays is used to derive the
corresponding form of Lindemann's law without further
assumptions. As usually formulated, ' the Lindemann
relation equates a frequency determined in terms of
fusion parameters with a frequency (the Einstein or
Debye frequency) corresponding to normal tempera-
ture. In the formulation given here, all thermodynamic
variables entering the relation are evaluated at the
fusion point. As a consequence, a connection between
fusion parameters and the Griineisen constant of a solid
at melting emerges. Thus, a direct relationship between
the Lindemann and GrQneisen theories is established.

The basic Debye-Wailer theory corresponds to the
assumption of linear thermal oscillation of the atoms.
Hence, the reformulation of the Lindemann law, as
given, ignores anharmonic terms in the potential energy
of an atom, such as have been introduced into the
theory of the heat capacity of solids by Born and
Brody, " and have been included in the theory of the
temperature dependence of x-ray reQection intensity
by Wailer. "The possible eGect of lattice defects" near
the melting point has been neglected; the sharp increase
in heat capacities of the alkali metals near the fusion
point has been attributed to such a cause." Further,
the restriction of the theoretical discussion to isotropic
monatomic solids ignores Zener's extension of the
Debye-Wailer theory to anisotropic crystals. "For these

~ L. Salter, Phil. Mag. 45, 369 (1954).' F. Simon, Z. Electrochem. 35, 618 (1929); Trans. Faraday
Soc. 33, 65 (1937).

8 P. Debye, Ann. Physik 42, 49 (1914).' I. Wailer, Z. Physik 51, 213 (1923).
'~ M. Born and E. BrodyZ. Phy,sik 6 132 (1921)."I.Wailer, Ann. Physik 83, 153 (192 ).
's K. F. Stripp and J. G. Kirkwood, J. Chem. Phys. 22, 15'I9

(1954}."L.G. Carpenter, J. Chem. Phys. 21, 2245 (1953).
'4 C. Zener, Phys. Rev. 49, 122 (1936).

in which

4 (x) =x-') y(e"—1) 'dy,
0

x=kv/kT, (3)
if v is the Debye frequency. The term x/4 in Q takes
account of the zero-point energy. Comparison of Eqs.
(1) and (2) yields

(I')A, = (3kT/4x'mv')Q (x). (6)
For x small, the expansion of Q is

Q= 1+x/36 x'/3600+' ' '~ (7)

so that Q is approximately unity for x((1 or x 1.
Lindemann's basic assumption will be reformulated

to state that the root-mean-square amplitude of atomic
vibration at fusion is a critical fraction p of the distance
r of separation of nearest neighbor atoms; that is,

(~2)„—p2r

For close-packed lattices (face-centered cubic or hex-
agonal), the volume e per atom of the solid at melting
is connected with the nearest neighbor distance r by

v =r '/V2. (9)
For other lattice types, the variation of e /r ' from
the close-packed value is too small to consider here.
With this expression, Eqs. (6) and (8) yield

vm=vt m ) (10)
where v is the Debye frequency of the solid at fusion,
Q =Q(x ) in terms of the corresponding value x of x
at fusion, and vl, is de6ned by

vr, =cps ie &(kT )&, (11)
'~ C. Zener and G. E. M. Jauncey, Phys. Rev. 49, 17 (1936).

(8)

reasons (and others), one can hope at best only for
approximate agreement of the theory with experiment.

I. GENERALIZED LINDEMANN LAW

In the Debye-Wailer formula Iz=Ioe '~ for the
intensity Iz at absolute temperature T relative to the
intensity I0 at zero temperature, of x-rays reQected by
a crystal, the parameter M is given by'

M =8s'(sine/X)'(sr') A„, (1)
where P is the wavelength of the radiation and 0 is the
Bragg angle, and (I')A„is the mean-square amplitude,
normal to the plane of reQection, of the thermal vibra-
tion of the atoms. For an isotropic, monatomic crystal, "
the Debye continuum model yields

M = (6k'T/eke') (sin|)/X)'Q(x), (2)
where m is the mass of an atom, h and k are the Planck
and Boltzmann constants, respectively, and 0 is the
Debye temperature of the lattice. The quantization
factor Q is defined by

Q(x) =C (x)+~x, (3)
where C (x) is the Debye function
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g
P~ =Stts5$ Ktts &m (15)

where ff is the bulk modulus (incompressibility)' of
the solid at melting and s, from the expressions for
the wave velocities in an isotropic elastic solid, is dined
in terms of the value 0 of Poisson's ratio" of the solid

at fusion by
2'J

2(1+r ) L2(1—r )yt+2L1 —20. ) I

Use of Eq. (15) in Eq. (10) yields

Q kT =Qff ff„„
where Q(o ) is defined by

Q= (s /c)'.

Equation (17) can be written likewise as

Q~T =Qff V,
0.5

(17)

(19)

I
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Fzo. 1.Effective Poisson ratios for NaCl and for Na as a function
of temperature (M.P. designates melting point).

'6 The value can be taken indifferently as isothermal or adia-
batic for a solid PH. JeGreys, Proc. Cambridge Phil. Soc. 26, 101
(1930)g.

where T is the absolute melting temperature and the
dimensionless constant c is given by

c=3&(2f frp) (12)

The frequency vL, can be written likewise as

vl, =CAN &V &T, (13)

where M is the atomic weight and V is the atomic
volume of the solid at fusion, if

C= g&R&c, (14)

in which E is Avogadro's number and 8 is the gas
constant. Equation (13) represents the Lindemann

frequency, with V substituted for the normal volume

and a different choice of the constant C; Eq. (10) is

the generalized Lindemann law with the Debye fre-

quency evaluated at fusion and with the quantization
factor Q in place of the Einstein function.

The Bebye frequency v of the solid at melting is

iven b

which reduces to
(2o)

for x (&1 or x 1. The analogy of the last equation
to the equation of state of an ideal gas can be noted.

Conjunction with Eq. (19) of the equation of state
P= f(V,T) of the solid (P is the pressure and V is the
atomic volume) yields two simultaneous equations for
the fusion temperature T in terms of the fusion
pressure or fusion volume of the solid. Salter's deriva-
tion of Simon's melting-point formula' from Linde-
mann's law corresponds, for example, to choice of the
Debye equation of state for P= f(U, T). To use Eq.
(19), however, one must know the value of Poisson's
ratio 0 of the solid at fusion.

Detailed information on elastic constants up to a
high melting temperature (1077'K) is available from
results of Hunter and Siegel" on NaC1, obtained by an
ultrasonic pulse technique. Sodium chloride is a cubic
crystal with three independent elastic constants, so
that the expressions for wave velocities on which Eq.
(15) is based, which correspond to an isotropic solid
with two elastic constants, are not strictly valid.
However, the anisotropy factor L2c&4/(c» —c») in terms
of the elastic stiffness constantsJ has a value of about
0.7 at room temperature and thus is near unity. Hence,
by comparing the expressions for the velocity of a
longitudinal and a shear wave along a cube axis,
(cf$/d) & and (c&4/d) &, respectively, if d is the density,
with the corresponding expressions for an isotropic
solid, one can obtain e6ective Poisson ratios in the two
cases, 0;ff, $ and r, ff, $ respectively', defined by

0etf, f = (3—c'ff/K)/(3+err/K)) (21a)

oeff f —s (3 2c44/ff)/—(3+c44/ff)) (21b)

if ~ is the bulk modulus. These effective Poisson ratios
are shown for NaCl in I'ig. 1 as a function of T up to
the melting temperature. One notes that the velocity
of the shear wave in the solid does not vanish at the
fusion point, and that the average of the two Poisson
ratios of Eqs. (21), defined by

(freff)Av= s (&eff, l+2frefft) 1, (22)

is roughly constant at the Cauchy value ~ appropriate
to an ionic crystal.

The figure illustrates the basic result established by
Hunter and Siegel, that a crystalline solid behaves as
such right up to the melting point, as far as the trans-
mission of elastic waves is concerned. Hence, it is
reasonable to assume that Poisson's ratio is approxi-
mately independent of temperature up to fusion.
Experimental data as detailed and to as high a melting
temperature as that for NaCl do not exist for metals,
but the effective Poisson ratios shown in Fig. 1 for Na
(of low-melting temperature)" are not in contradiction
with the assumption. The value of s dehned by Eq.

"L.Hunter and S. Siegel, Phys. Rev. 61, 84 (1942).
's S. L. Quimby and S. Siegel, Phys. Rev. 54, 293 (1938).
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(16) is shown in Fig. 2 as a function of 0„.It should be
emphasized that the hypothesis that Poisson's ratio is
constant up to fusion is not essential to the theory, and
is made only in default of experimental information on
o. . With values of a available, Eq. (19) or (20)
permits empirical evaluation, which will be carried out
in Sec. III, of the constant c of the Lindemann fre-
quency.

The form of Eq. (20) with values under normal
conditions substituted for» and V (and with Q =1)
is ascribed by Griineisen' to Einstein and Lindemann;
a variant determined empirically has been given by
Richards. "Explicit introduction of the fusion volume
V in the Lindemann frequency has been made by
Griineisen. "These formulations correspond to replacing
the factor s„in Eq. (15) by an average over different
solids.

II. THE GRUNEISEN CONSTANT

LO,

0.75

0.25

0
0 0.1 a.2 0.5

Poisson ratio Om

04

FIG. 2. The parameter s as a function of the fusion
va1ue o. of Poisson's ratio.

0.5

The Griineisen constant y of a solid can be dered'~
by

y= —d lnv/d lnV, (23)
on the assumption that the Debye frequency v is a
function only of the volume. The value p of the
constant for a solid at fusion is

y = —
~s
—-,'d ln»„/d lnV„, (24)

from Eq. (15), on the further assumption that the
Poisson ratio 0 of the solid at fusion is independent of
the volume. A similar hypothesis is made in the deri-
vation of the analog of Eq. (24) for normal tempera-
ture" ~; grounds for extending the approximation to
the case at hand are provided by the conclusion of
Hunter and spiegel, that the elastic properties of a
solid at melting are essentially similar to those of a solid
under normal conditions. On the basis of Gruneisen's
law, ' "the value of p should be given likewise by

y =»nV/Cv, (25)

where o. is the volumetric coefFicient of thermal
expansion of the solid at the fusion point, and Cy, is
the corresponding heat capacity at constant volume.

Differentiation of Eq. (19) with respect to V, with
use of Eq. (24), yields

(1—0 /Q )d lnT /d lnV =-', —(2—0 /Q )y„, (26)

where 0„(x) =x dQ„/dx is given by

0„=—C (x )+x„(expx„—1)-'+gx„. (27)

From the fact that

dP /dT =(BP/t)T) +(BP/r)v)rdv /dT, (28)

where the total derivatives are evaluated along the
fusion curve and the partial derivatives (and V )

'9 T. W. Richards, J. Am. Chem. Soc. 37, 1643 (1915).~ E. Griineisen, Ann. Physik 39, 258 (1922).~ J. C. Slater, Phys. Rev. 57, 744 (1940).~ J. C. Slater, Introduction to Chemica/ I'byes (Mcoraw-Hill
Book Company, Inc., Nerv York, 2939},pp. 238, 259, 262, 452.

correspond to the solid at fusion, one can show that

dT /dV
= —(»„/V )(dT„/dP )(1 »n dT„—/dP ) '. (29)

Use of this expression and of Clapeyron's equation in
Eq. (26) yields

0 1—0 /Q„q» AvQ„2—0 /Q„L (30)

in which
q=(1 »„n„TA—v/L) ', (31)

where I. is the latent heat of fusion and AV is the
change in volume (from solid to liquid) in fusion.

The expansion of 0 for x small is

0 =x '/18 —x 4/900+ (32)

so that 0 is approximately zero for x « i or x i.
Under these conditions, Eq. (30) yields

s+ ,'q»„SV/-L, -
which can be written alternatively as

(33)

in general, or alternatively, as

q=i+p Cv, T &V/LV, (36)

from Eq. (25). These relations for y, which are
algebraic in fusion parameters, yield a direct connection
via Eq. (25) between the Lindemann and Griineisen
theories. The connection is susceptible to an experi-
mental veriGcation, which will be carried out in Sec. III.

,+, (qZ/())(T ~-V/-LV„), (34)

from Eq. (20). The parameter q of Eq. (31) is equal to
the reciprocal factor in the right-hand side of Eq. (29);
since (BP/Bv)r for the solid at fusion does not differ
greatly from dP /dV, q correspondingly does not
diGer greatly from unity, and can be written

q=1+» n T„a,V/L, (35)
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From Eq. (26) with the use of Eq, (29), one obtains

O„ t O~ dT„
1—"+n.T.

I
2— i~-—s

Q„ Q„)
O~ T-

Iv.—s
— (37)

Q„)

&„—-'s+d& /d 1nV„)0
is satisfied.

The necessity for evaluating at the fusion point the
Debye frequency appearing in Eq. (10) is underwritten

by the experimental results of Owen and Williams. '7

These authors found that values of 0 deduced, by
means of Eq. (2), from measurement of the intensity of

Sragg reQection of x-rays, are not constant for Al, Cu,

ss P. W. Bridgman, The Physics of ffigh Pressstre (G. Beil and
Sons, Ltd. , London, 1949), pp. 160, 189.

s4 P. W. Bridgman, Revs. Modern Phys. 7, 1 (1935}.
~~ G. Tammann, Erzstullisieree Nnd Schmelsee {Verlag von J.

A. Barth, Leipzig, 1903), p. 90; AggregutmstdmEe {Verlag von I.
Voss, Leipzig, 1922), p. 94."L.Schames, Ann. Physik 38, 830 (1912);39, 887 (1912)."E.O. Ovren and R. %. Killiams, Proc. Roy. Soc. (London)
A188, 509 (1947).

For x small, this equation yields

dT /dP =2(y ;')T /—qtc-, . (38)

If y &-,', this equation states that the fusion tempera-
ture T is a monotone-increasing function of the
fusion pressure I', so that, in this respect, the
fusion curve predicted by the generalized J.indemann
relation is normal in the sense of Bridgman. 3 Only
if y =-', at finite pressure can the predicted fusion

curve be in accord with the hypothesis of Tammann, "
that the fusion temperature rises to a maximum and
then falls, and only if y —&-', for I' large can it be in

accord with the alternative hypothesis of Schames, "
that an asymptotic fusion temperature exists. Equation
(33) can be rewritten as

L/ AV=-', (y ——,') 'qtc„,. (39)

Since this equation speciles only the ratio L/AV, it
yields no direct information on the existence or non-

existence of a critical point (where L and AV must

vanish simultaneously so that dT /dP remains finite),
but it is consistent with the latter possibility, since the
ratio is speci6ed as always positive if p —

3 is positive.
The preceding results show that the theory yields

correctly the sign of the slope of the normal fusion

curve if y &-s'. Equation (38) yields the approximation

d'T /dP '= 2(y —a+de—„/d1 nV) T/ 'q„tt', (40)

corresponding to Q = I, 0 =0, and q a constant of the
order of unity. The fusion curve for all substances,
according to Bridgman, ""shows a negative value of
d'T /dP ', that is, the curve of T es P„is concave

to the pressure axis. Hence, the fusion curve predicted

by the generalized Lindemann law is completely normal

in the sense of Bridgman only if p &3 and the ine-

quality
(41)

and Au over the temperature range from 293 to 900'K.
The observed values of 8 at temperature T relative to
the value Os at temperature Ts are represented well by"

0= esL1—yn(T —Te)j, (42)

where n is the volumetric coefficient of thermal expan-
sion. This relation is precisely what the Griineisen
theory demands on the basis of Eqs. (15) and (23), if
the temperature dependence of 0" exists only by virtue
of the change in volume.

A relation for y in terms of fusion parameters (but
depending also on the average coefficient of thermal
expansion from absolute zero to the melting tempera-
ture), somewhat similar to Eq. (33), has been given by
Griineisen. "The result depends on Griineisen's hypoth-
esis that the fractional change in volume from absolute
zero to the melting temperature is a constant for all
solids, and like Eq. (33), it is derived by use of
Clapeyron's equation to convert a differential into an
algebraic function of fusion parameters.

III. COMPARISON WITH EXPERIMENT

Values of thermodynamic variables at the fusion
point are assembled in Table I to check Eq. (20) for
the elements which show the same cubic lattice (body-
centered or face-centered) at both normal temperature
and fusion, and for which sufhcient data can be ob-
tained. For Pb and Al, the temperature variation oI
the bulk modulus can be obtained from measurements
of Birch and Law, " extending to temperatures fairly
close to the melting temperature. In other cases, the
tabulated values of K were obtained from the (approxi-
mate) formula

tc =&sL1 stn(t„—t )], (43)
where t is the centigrade fusion temperature and the
normal bulk modulus Kp corresponds to temperature tp,
the parameter

si = (Kn) (c)K/ctT) p =Kn (ctn/BP) z' (44)

is a dimensionless constant varying from about 3 to
perhaps 10 for most solids. The values of q shown are
averages for each element obtained from a survey of
data given by Birch,"or from a tabulation of GrQneisen'
based on results of Bridgman. Prom the corresponding
temperature ranges indicated for q and for the thermal
expansion n, the correction of Eq. (43) (unnecessary

"For Al, Eq. {42) is valid up to only 600'K, since the values
of 0~ show nonlinearity as a function of T near the melting
temperature. For such a case, C. Zener and S. Biiinsky /Phys.
Rev. 50, 101 (1936)j have given a modi6cation of the Debye-
Kaller theory in terms of a variable 0 of form more general than
corresponds to Eq. (42}.One can show, with use of Griineisen's
law, that their expression for 0 reduces to the linear form (42)
if the heat capacity Cz is constant. The limitations on the simple
Debye-%'aller theory {in terms of a constant 0&) at high temper-
ature are discussed by R. W. James (The Optical Principles of
the Di ractioe ofX-Ruys {G.BeU and Sons, Ltd. , London, 1948),
p. 231 .

9F. Birch and R. R. Law, Bull. Geol. Soc. Am. 46, 1219
(1935).

~ F. Birch, J. Geophys. Research 57, 227 {1952).
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TABLE I. Values of the ratio s s V /RT and of the Lindemann constant c for elements with cubic lattices.

Cs
Rb
K

Na

tm
oc

29.7»
38.7
62.5

97.6

186.d

10 OKO

bars

0.0203"
0.0314
0.0318

0.0691

0.116b

~ ~ ~

3.2
{0-95'C)

4.35
{0-95'C)

4.6e
(o-95 c)

10oa
('C)-I

~ ~ 0 d

~ ~ ~

255.
(0-50'C)

213.
(0-95'C)

168.d
(0-95'C)

0.0203
0.0314
0.0308

0.0643

0.101

V~
cmg/mole

71.0'
56.0
45.7

24.0

13.4'

{0.30)e
(0 30)'
0.30'

0 24e

(o.24)'

SnPKo VO

RTm

12.7
15.p
11.4

15.8

1.1.7

s~3K~V~

RT~

12.7
15+1
11.2

14.8

10.5

3.6
3.9
3.3

Weight

1
9/10

9/10

Pb
Al

327.4' 0.42»
660.1 0.75/

0.35"
0.565

18.8'
10.3

0.425'
0.33

12;
18.0

10.
14.p

3.2
3.7

9/10
9/10

Cu

Ni

Pd

pt

1083,

1532.

1453.d

1552.

1769.

1 ook

1.37

1.68"

1.87"

1.90

2.76

6.71
(30-75'c}

'l.8
(30-75'C)

7.6'
(0-100'C)

6.0'
(30-75'c)

3.4
(3o-75 c)

9.2
(30-75 c)

67.2~
(o-9oo c)

60.9
(o-iooo'c)

45.0~
(20-900'C)

48.9~
(25-900'C)

41.4
(16-iooo'c)

30.6
(0-1000'C)

o-5s

0.81

1.5

11.2'

7 68m

94

9.7

0.37'

0.33

0.28j

0.36j

0.39

0.39

19.5

13.1

12.9

17.4

9.s

3m{}

3 1

3.3

3.Q

3/4

3/4

& Kubaschewski (reference 32).
b Gilvarry (reference 38).
& Birch (reference 30).
d From S7nithsonian Physical Tables (Smithsonian Institute, Washington, D. C., 1954).
+ Value for K computed by Eq. (22) from elastic constants given by C. Kittell )Introduction to Solid State Physics (John Wiley and Sons, Inc., New

York, 1953), p. 50j; value for Na computed similarly (for normal temperature) from data of Quimby and Siegel (reference 18).Values for Cs and Rb
taken equal to that of K; value for Li taken equal to that of Na.

f Computed from thermal expansion to the melting point.
g Slater (reference 22).
h Computed from temperature corrections of Birch and Law (reference 29).
1 Determined (or extrapolated) from data in I.andolt-J3$ nstein physikalisch-cheeische Tabellen (Verlag Julius Springer, Berlin, 1923), fifth edition.

& Values (or averages) from Metals Handbook (American Society for Metals, Cleveland, 1948), or from Mechanical Properties of Metals and Alloys,
National Bureau of Standards Circular C447 (United States Government Printing OKce, Washington, D. C., 1943).

& Slater (reference 21).
& GrQneisen (reference 5).
m Stott and Rendall (reference 33).

for Cs and Rb) should be accurate for I and Na, and
should be reasonably accurate for Li. For elements
below Al in Table I, the listed values of ~ are merely
estimates, of an accuracy which is uncertain but which
decreases for the elements of higher melting tempera-
ture. " Values of the fusion volume t/ were obtained
from a critical survey of fusion data given by

"Birch and Law (reference 29) represent their measurements
of compressibility on Al up to 435'C by a linear relation in the
temperature, and their measurements on Pb up to 259'C by an
expression containing a small quadratic tecum, which corresponds
to only six percent of the total change observed in compressibility
with temperature, or only one percent of the compressibility itself.
The observed temperature coefficients are in close agreement
with those obtained by Bridgman over the restricted range
30-75'C. The data of Hunter and Siegel (reference 17) show that
some curvature exists in the graph of a vs T. To compensate for
any curvature, values of the average thermal expansion over as
large a temperature range possible were taken, so that Eq. (43)
should be valid at least as a zero-order approximation. These
considerations yield some justification for assumption of this
linear relation over the temperature ranges in question. Iron
undergoes phase transitions below its melting temperature, but
this fact does not invalidate use of Kq. (43), since the 8-phase
stable near fusion is merely a reappearance of the normal a phase.
For both Fe and Ni, any "6&-eBect" [C. Zener, Eiasiicity old
AeelasHcity 0 Metals (University of Chicago Press, Chicago,
1948)„p.105 has been ignored.

Kubaschewski, " from work of Stott and Rendall, ~ or
from data in standard tables. The tabulated values (in
some cases estimated from single-crystal constants) of
Poisson's ratio 0 refer to normal temperature. Table I
shows the value of s 'lr V /RT for each element,
assigned a weight to correspond to the presumptive
accuracy in ~ and t/'; the corresponding value of c
defined by Eqs. (17) and (18) is shown likewise.
Throughout this section, Q =1 and 0 =0 will be
taken; these assumptions cause negligible error.

On the assumption (8), the tabulated values of the
ratio s 's V„/RT„should be constant, from Kq.
(20), as is true approximately. The listed values of
s 'IrsVs/RT (Vs is the normal volume) corresponding
to the Lindemann assumption are roughly constant
likewise, which indicates that the two assumptions are
approximately equivalent, empirically. However, there
is less tendency for the values of s 'lr V /RT„ to
increase at the higher fusion temperatures relative to
the values for the alkali metals, than is the case for

w O. Kubaschewski, Trans. Faraday Soc. 45, 931 (1949). ,

33 V. H. Stott and J. H. Rendall, J. Iron Steel Inst. 175, 374
(1953).
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TABLE II. Comparison of critical ratios p of vibration amplitude
to nearest neighbor distance at fusion, from I-ray and fusion
data.

A1
CQ
Au

300
280
&so

0.24
0.20
0.2g

2.9
2.6
2.9

0.08g
0.070
0.071

P
(Table I)

0.066
0.070

Extrapolated from data of Owen and Williams (reference 27); the
quadratic temperature correction in the case of Al was made from an
average curve drawn to the data of Fig. 4.

s '~sVs/RT . It is essential to retain the factor s s in
s„'s„V„/RT,without averaging over the elements;
otherwise the values of the ratio show wide deviations
from the average for Pb and for Li (to a less extent).
The presumption is strong that values of 0 actually
corresponding to the fusion temperature and accurate
values of a mould reduce the variance shown by the
table for the constant c of the I.indemann frequency.
Aside from such uncertainties, possible effects of
anharmonicity, " and, particularly in the case of the
alkali metals, lattice imperfections, "part of the vari-
ance shown may be due to deviations of the Debye
continuum model from the more accurate models of
Born and von Karmin'4 or Blackman, " or from
Bhatia's extension" of the model of Born and von
Karman to cubic metals.

In Table II are shown the values of 0'„,the Debye
temperature of the solid at fusion from the x-ray
intensity measurements of Owen and Williams, " as
extrapolated linearly for Cu and Au but quadratically"
for Al. The corresponding root-mean-square amplitude
$(res)A, )& of thermal vibration at fusion, as computed
from Eq. (6), is shown likewise, with the values of r„
determined by Eq. (9) from the values of V in Table I.
For Al and Cu, the critical ratios p=DN')s„]&/r„show
reasonable agreement with the values, given for com-
parison, deduced from the corresponding values of c in
Table I by means of Eq. (12).

An average value over the elements (with their
assigned weights) in Table I is shown in Table III for
the constant c of the Lindemann frequency, with its
weighted standard deviation Z and the ratio Z/c. The
corresponding value of C from Eq. (14), and of p from
Eq. (12), are shown likewise. The average value of p
from the data of Table II is given also, with the corre-
sponding values of c and C. One notes that the over-all
agreement is quite satisfactory. Both values of p
appearing are signi6cantly below the average values of
0.085, and of somewhat less than' 0.105, estimated by
Griineisen. Weighted averages of c computed separately
for the body-centered (alkali elements and Fe) and
face-centered elements in Table I agree with each other
within less than ten percent, so that no evidence exists,

~ M. Born and T. von Ksrmsn, Physik. Z. 13, 297 (1912).
"M. Blackman, Proc. Roy. Soc. (London) A159, 416 (1937).
's A. B.Bhatia, Phys Rev. 97, 363 (19.55).

Table I
Table II

3.4
3s

Standard
deviation Z

0.09

Z/c

0.03

$0-12+
(erg/'K)& mole 1jl

2.6
2+5

0.072
0.070

I G. W. Brindley and P. Ridley, Proc. Phys. Soc. (London)
SI, 69 (1939}.

within the signilcance of the data, for a systematic
difference in c between the two classes of elements. The
ratio of the standard deviation to the average, computed
with equal weight for each element, of the Lindemann
analog of c obtained by replacing ~ V by NOVO, exceeds
the corresponding ratio in Table III by a factor of
about three.

In Table IV, values of the ratio s 's V /RT, and
of the constant c defined by Eqs. (17) and (18), are
shown for a number of elements with noncubic lattices.
In the cases where experimental results for these
anisotropic crystals show a signihcant difference in the
linear compressibilities a„and u~, parallel and perpen-
dicular to the crystal axis, respectively, extrapolated
bulk moduli were determined from the relation

K =Cii+2gi. (45)

From the fact'7 that the mean-square thermal displace-
ment in a hexagonal crystal is given in terms of the
corresponding values, (rs, P)s„and (e~')A„, parallel and
perpendicular to the crystal axis, respectively, by

( ')"=lL( „')"+2(..')"j, (46)
and the fact that the average Debye temperature (O~)&„
is given in terms of values O„and O~, associated with
directions para1lel and perpendicular to the crystal
axis, respectively, by

((Q~)s Ps —r
(Qw -s+ 2 Q~

—s) (47)
it follows that Eq. (45) represents a proper average in
this case. One notes that the values of s„'Ir V /RT
and of c for the hexagonal close-packed elements Zn
and Mg are consonant with those in Table I, in agree-
ment with one's expectation.

The other elements in Table IV with more complex
lattices and of generally lower-melting point (excluding
Te but including Sb) seem to form a distinct group
with a value of the Lindemann constant higher than
corresponds to Table III. It should be emphasized that
because of the limitation of Eq. (2) to isotropic solids,
the theory as formulated is not directly applicable to
elements with complex lattices. For such elements, the
mean-square amplitude of thermal vibration, as aver-
aged over different directions in the crystal, should be
connected with the average Debye temperature from
expressions for wave velocities in an isotropic solid, by
a function differing in a constant of proportionality
from that corresponding to Eq. (6). For complex
crystals, Eq. (9) also requires modification, and the

TABLE III. Values of empirical constants, from averages.
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Tasz,XIV. Values of the ratio s 'e V /R2' and of the Lindemann
constant c for elements with noncubic lattices.

Lattice 'C
10 ~sf V sett~ V~

bars cms/mole crt RT~ c

Zn h.c.p.
Mg h.c.p.

Hg rhomb.

Ga complex

419,5' 0.4g 9.56' (1/3) 1s 3.e
651 0.34 14.8 0.35 11 3.s

—38.9' 0.2g' 14.14' (1/3) 3& 5.s

29.7' 0.49' 11.8' (1/3) e 41 6.4

Sn
Bi
Te
Sb

tetra.
rhomb.
Se type
rhomb.

231 9» 0 47b 16 5o 0 33' 34
271.3 0.29 21.6 0.33 26 5.1
452 0 2& 20 9 (1/3) 13 3.e
630.5 0.4r 18.8 (1/3) 2g 4.6

a From Smithsonian Physical Tables (Smithsonian Institute, Washington,
D. C., 1954).

b Extrapolated from data of Bridgman (reference 23) for 30 and 75 C,
corrected according to Slater (reference 21). For all elements except Bi,
Eq. (4S) was used.

From Smithsonian Physical Tables (Smithsonian Institute, Washington,
D. C., 1954) or Landolt-Bernstein physikalisch-cht:mische Tabellen (Verlag
Julius Springer, Berlin, 1923), fifth edition.

& Parenthetic values are average over metals fC. Zwikker, Physical
Properties of Solid Materials (Interscience Publishers, Inc. , New York,
1954), p. 90j; other values from Mechanical Properties of Metals and A/loys,
National Bureau of Standards Circular C447 (United States Government
Printing Office, Washington, D. C., 1943).

e From value for liquid at melting point quoted by J. F. Kincaid and
H. Eyring fJ. Chem. Phys. 5, 587 (1937)g, combined with rough value for
difference in compressibility of liquid and solid at fusion given by P. W.
Bridgman fProc. Am. Acad. Arts Sci. 47, 347 (1912)j.

&Value for solid at 20'C given by Bridgman (reference 23) corrected
according to Slater (reference 21).

possibility cannot be ignored that p of Eq. (8) is a
function of lattice type.

To compare the Griineisen constants y as deter-
mined from fusion parameters and from Griineisen's
law, thermodynamic variables at fusion are tabulated
in Table V for those elements in Tables I and IV for
which data are available. These data, in conjunction
with those of TaMe I or IV, are sufhcient to determine

from Eq. (25) and from Eq. (33). Values of Cv,
were computed from values of CP, , the fusion heat
capacity of the solid at constant pressure, by means of
the thermodynamic identity Cv, =CP, —~ a 't/ T .
The value of y, the Griineisen constant under normal
conditions, is shown likewise for comparison. One notes
that agreement of the values of y is very good, in
general, for the elements with cubic lattices and with
hexagonal close-packed lattices (Zn and Mg); any
disparities do not exceed those common in comparisons
of y from GrQneisen's law with values deduced from
the analog of Eq. (24) under normal conditions. """
The agreement holds in spite of the fact that the values
of x and L range in magnitude by a factor of about 40
and 7, respectively. For Hg and Sn, the agreement is
fair, in spite of the deviation of c from the average of
Table III in these cases.

For all the elements in Table V except Ga, Bi, and
Sb, y exceeds -', and the fusion curve is normal as
regards sign of slope. For the latter three elements, the
slope dT /dI' is negative for the phases which are
stable at ordinary pressures. "It is known that Ga and

» J.J. Gilvarry, J. Chem. Phys. 23, 1925 (1955).
39 Antimony is not listed by Bridgman (references 23 and 24)

as showing an abnormal fusion curve. However, results of Y.

&V/Vm

L Cs,w
cal/ cal/
mole C mole

10sa butts('C)-1 Eq. {33) Eq. (25)

Cs
Rb

K
Na
Li

0.026»
0.025

0.0255»
0.025
0.0165

500' 7.39» 0.29"
524 7.17 0.27

571» 7.98O 0.25»
630 7.55 0.22
703 7.08 0.18

1.4 1.6 1.60b
1.5 1.8 1.86

1.19 1.2 1.41b
1.1 1.2 1.37
0.74 0.88 1.17

Pb
Al
Ag
Cu

0.035' 1190' 6.97' 0.12'
0.060 2520 7.8 0.099
0.038 2740 7.47 0.081
0.0415 3110 7.5 0.070

3.7 3.4 2.73'
2.6 2.1 2.17
1.7 2.O 2.40
1-s 1-s 1.96

Zn
Mg
Hg
Sn

0.03+
(+0.005)

0.042'
0.041
0.037
0.028

3600' 10.s& 0.064"

1720» 7.07' 0.113»
2080 7.6 0.110

602 6.79 0.171
1690 7.17 0.095

1.8
1.9
3.2
2

1.s
2-1
2 1

28

1.60d

2.01~
1.51
~ ~ ~

2.14

Qa -0.032' 1340' 6.39' 0.054' (—1.2) 1.2 ~ - "
Bi —0.0335 2600 6 86 0 040 (—0 6e) 0.89 1.14
Sb —0.0095 4740 6.4 0.033 (0.1s) 1.) 0.92

Kubaschewski (reference 32).
b From Grtineisen (reference 5), corrected to correspond to values of try

in Table I.
o Carpenter, Harle, and Steward, Nature 141, 1015 (1938).
~ GrQneisen (reference 5).
e Stott and Rendall {reference 33).
& J. H. Awberry, quoted by F. E. Simon fNature 172, 746 (1953)g.
+Value recommended in survey of data by J. B. Austin fIndust. and

Engr. Chem. 24, 1225 (1932)g.
& Value (from empirical formula of Kubaschewski) given by Stott and

Rendall (reference 33).
& Kubaschewski (reference 32).Value for Sb is from Matuyama (reference

40).

Matuyama (Science Repts T8hoku Imp. Univ. 27, 1 (1928)$
show a definite negative value of b, V, in contradiction of the
positive value of M. Toepler LAnn. Physik und Chemic 53, 344
(1894)g, which is reproduced in the Interstattortal Crstioal Tables
(McGraw-Hill Book Company, Inc. , New York, 1929).

N. F. Mott, Proc. Roy. Soc. (London) A146, 465 (1934).

Bi undergo a phase transition at high pressure to a
polymorphic form showing a normal fusion curve; the
behavior of ice is similar. One notes from Table V that
identity of the Griineisen constants from fusion pa-
rameters and from Griineisen's law fails outright for the
three elements in question. A similar anomaly arises in
connection with Mott's theory of liquids. "Mott treats
the liquid state essentially as an amorphous solid on
the Debye theory, by assigning a characteristic fre-
quency to the liquid which is lower than the corre-
sponding frequency of the solid. This assumption
permits evaluation of the ratio of characteristic fre-
quencies in the solid and the liquid, and thus the
corresponding ratio of electrical conductivities, in terms
of the latent heat of fusion and the melting temperature.
Mott's expression for the ratio of the conductivities is
in good accord with experimental values, in general,
but it fails in the cases of Ga, Bi, and Sb, by yielding
the wrong sense (relative to unity) of the ratio.

Kubaschewski" has pointed out that the quantity

B=LV /Ttl, V (48)

is nearly a constant for a considerable number of

TABLE V. Comparison of Gruneisen constants.
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metals, with the average value 60 cal/deg mole, which
yields the empirical relation dI' /dT =8/V from
Clapeyron's equation. In terms of this constant one
obtains

y„=-'s+-',qR/03, q=1+y Cv, „/8, (49)

from Eqs. (34) and (36), respectively, which yield
y =1.6 and q=1.2 as average values over the metals,
if Cy, is given the Dulong and Petit value and if 0 is
evaluated (with o = s) from the value c=3.4 of Table
III. The average values of y from the data of Table V
(exclusive of values for Ga, Bi, and Sb) are 1.8 from
both Eq. (25) and Eq. (33); the corresponding value
of q is 1.2. The validity of Kubaschewski s relations is
a consequence of the fact that p is nearly a constant
over most solids; in a similar manner, the validity of
an empirical relation antedating the formulation of
GrQneisen's law by many years is justi6ed by the law
of Dulong and Petit and by the constancy of p over
most solids. "

IV. CONCLUSION

The excellent agreement shown by Table V between
the two evaluations of the Gruneisen constant at fusion
is a strong indication of the validity of the reformulation
of I.indemann's law, for monatomic elements. The
agreement implies that the relation v = vL, yields not
only the right magnitude, approximately, of the fusion
temperature, but likewise the correct slope of the fusion
curve. As one notes, no attempt has been made to
check the theory against experiment for the ionic or

molecular crystals. Direct extension of the theory to
ionic crystals is complicated by the limitation of the
Debye-%aller theory to monatomic solids.

One notes that Eq. (10) differs from the corresponding
J.indemann form, in the essential respect that quantum
eGects are included on the basis of the Debye, rather
than the Einstein theory. Similarly, the form (24)
taken for the GrCineisen constant corresponds to that
derived 6rst by I.orentz" and later by Slater" for the
Debye model. Dugdale and MacBonald4' have sug-
gested a form for the Griineisen constant as evaluated
from the equation of state, which implies that this
value for p should be reduced by 3. In a further
paper, 4s however, the author shows that the result (for
zero pressure) of Dugdale and MacDonald is appro-
priate to an Einstein solid of independent atoms. Hence,
the considerations of this paper, and of the following
two papers, are fully consistent with the Debye theory.
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