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From the third term the electric quadrupole moment of
the spin 5/2 DFP particle is found to be
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As a function of A it is seen that Q» is singular at the
forbidden value A= —1/2 but approaches the value
+ (28/15) (A/mc)' quite rapidly as one moves away from
that value.

CONCLUSIONS

It has been shown that the magnetic moment of a
DFP particle of half-integral spin s)1/2 is uniquely
determined to be (1/s) (eh/2mc). In general, the values

of higher moments must be expected to depend on the
parameter A. The spin 3/2 quadrupole moment has

however the unique value +(5/3)(h/nsc)'. The spin

5/2 quadrupole moment depends on the choice of A.
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An investigation is made of states in the Lee model representing a "physical" V-particle bound to an
N-particle. It is found that the energy eigenvalue problem can be reduced to a single transcendental equa-
tion involving the parity, energy, renormalized coupling, and E-V separation. Only states of odd parity are
considered. For such states this equation leads to a single-valued real potential if the renormalized coupling
constant is less than the critical value for the appearance of the so-called "ghost" states of the free physical
V-particle. For stronger couplings the potential becomes many-valued with half its real branches corre-
sponding to the presence of "normal" V's, and half to "ghost" V's. For still stronger coupling no real
energies exist. It is shown that complex energies appear, at least in the case where the virtual 8 particles are
assumed nonrelativistic and the 1V'-V separation is suKciently small. A possible reason for the appearance
of these difBculties is suggested.

I. INTRODUCTION
' 'N a recent paper, Lee' has presented an extremely

interesting example of a quantum field theory in
which mass and coupling-constant renormalization can
be carried out exactly, i.e., without the use of perturba-
tion theory. In the Lee model there are three 6ctitious,
chargeless, spinless particles: E and V are heavy
fermions and 8 is a light boson. The Hamiltonian' for
the model is

X=BCp+ K'+5K,

where gs is the unrenormalized coupling-constant, f(k)
a high-momentum cut-off function, &o=cv(k) the energy
of a free e of momentum k. The field operators Pv,f~,a
obey the usual commutation (anticommutation) rela-
tions for boson (fermion) unrenormalized field operators
in a Schrodinger representation. The mass of the Ã and
of the "physical" V is m; m —bm is the mass of the
"bare" V; and p, is the mass of 8. There is no distinction
between "bare" and "physical" Ã's, 0's, or vacuum.
We use units with A=c=p=1.

In performing the renormalization, one obtains the
relationsf

5('o=m d'tv'(p)4v(p)

+m d'pP&*(p)l(s (p)+~"dskceue(k)u(k), where

I v/vs I
=1—(v/v. )

5m= —sv/1 —(v/v, ),

vs=(gs/2~)' v=(g/2~)'

(2)

(3)

5&= —
5m~ d'pit v*(p)l(v(p),

X'= —gp(2m)
—

& dspd'p'dskb(p'+k —p)

Xf(k) (2~)-'Lk.*(p)4 (p') ~( )

+S.(p)a *(p').*(k)l, (1)
' T. D. Lee, Phys. Rev. 95, 1329 (1954).
~ G. Eall' and W. Pauli, Kgl. Danske Videnskab Selskab Mat. -

fys. Medd. 30, No. 7 (1955). (The notation of this paper will be
adhered to as closely as possible. )

(g being the renormalized coupling constant), and

r" k'f'(k)dk ~" k'f'(k)dk
pc

—1 S=
Ca) Jp

(.
d'puv*(p)&v(p) I (v~v )

(v&v.)

Now (2) leads to a contradiction if v& v, . The introduc-
tion of an inde6nite metric with metric operator
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removes this difficulty, replacing (2) by

V/V0=1 —(v/v. ). (2')

If y&y„po must be negative and K' non-Hermitian.
(Though, of course, gX is Hermitian. .) Also, in addition
to the normal physical state of the V-particle, a "ghost"
state appears with negative norm and with energy
ori+oii, where oii(y) (0 is the root of

H(oui)+1/y= 0,

Since we are concerned with "bound" states, we
only look for solutions such that o~o Q oi for any k; oio may
be anywhere on the complex plane except along the
real axis from one to infinity. Therefore we can divide
(10) by oiio —o~o and, using (2'), (3), and (6), eliminate
po, obtaining:

Ioio, po)= d'pi&i(pi) &Ipo —pi; pi; 0)r.

I
"k'f'(k)dk

B(oo') =—oo',
~ 0 GO M EO

(6)
f(k») I o; pi, po; k»)

+g(2ir) & d'po
12 ~0 12

Despite these considerations, Lee asserted that the
theory would retain its plausibility even for p&p„ i.e.,
the energy spectrum would remain real, and the
S-matrix would be unitary. Later, it was shown' that in
the scattering of 8's on V's, transitions of the V's to
their "ghost" states would make the S-matrix
nonunitary.

%e shall show that in the bound states of the g-V
system, complex energies appear for large p; the
"ghost" states will again play an important role.

f'(k»)41(po)
L~( .)+~-'j~.(p.) =(1/4 ) d'p.

oiooi» (oo»—oi 0)

The latter integral equation can easily be solved. Trans-
forming from momentum to position coordinates, we let

4'(r) = (2or) ' d'P4'1(p) exp(or (P—2po)3 (13)

and obtain

II. SOLUTION OF THE EIGENVALUE EQUATION L&(~0)+V-']y(r) =&(r,~o)y(—r). (14)

t."kf '(k) sinkrdk
X (r,oio) = (rooo)-'

~ 0 oi (oi—ooo)

lf Xy, E~, Eg are the operators representing the
number of V, X, and 0 particles, respectively, then the
quantities 1Vr+X~ and X~ Eo are con—served. There-
fore let us look for solutions of

SC Ioio,po) = (2es+o~o)
I
oio,po),

Thus, for a given o&o and y, p(r) =0 except on those

(7) spherical shells of radius r, where

with the general form &(ooo)+y '= aX(r,coo) (16m)

I~opo)=&
J d'P&1(p)lpo —p p o)

where

+J J d'pid'P24'2(pl)P2)
I
0 j piyp2 j k12)}i

Ip'; p; o)—=0v*(p')4~*(p) Io),

I 0; pi, p&, k)—=2—
i'm*(po)AN (pi) G (k) I 0)

= —l0' pop, ; k),
k12= po P1 P2|

and @1,g& are as yet arbitrary, except that go is chosen
antisymmetric under exchange of its arguments. The
factor 1V=g/go in (8) is for convenience in calculation
of the norm of Ioio,po). Now substitution of (8) into (7)
yields, after a straightforward calculation,

I, f(ki&)A(pi p&)
(~rio+&0)$1(pl)+go(2ir) '

J
d'po ', (9)

f(k»)
(~»—~o)4 0(pi, po) =go(2~) 'Ld 1(Pi)—41(po)3

2+oiio
(10)

the parity of p(r) on the shell being even or odd accord-
ing to whether (16+) or (16—) holds. Except for a
factor of two, r can be interpreted as the separation of
the 17- and V-particles in this state. The delta-function
behavior of qP(r) arises from the neglect of recoil for
the S- and V-particles, and allows us to speak of ~0 as
a potential energy.

Because of the rather complicated nature of the X

function, it will be necessary in analyzing (16&) to use
some properties of 3 which do not necessarily hold for
all reasonable oo(k) and f(k). The special cases that
will be referred to are as fo11ows:

f(k) = 1, oo(k) = (1+k')&

f(k)= 1, oi(k)=1+-'k'. -

(R)

(NR)

Case (NR) is roughly equivalent to (R) modified by a
cutoG at about k = 1, but avoids the introduction of a
cutoff parameter. In case (R), y, =0; while in case
(NR), 7,/0. In both cases the integrals representing
the X and H functions converge. It is to be expected
that any other reasonable choice of oi(k) and f(k)
would lead to Anal results qualitatively similar to those
obtained below for cases (R) and (NR).
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III. REAL ENERGIES

The following properties of ) and B will be used.
(See Figs. 1 and 2.) Assuming top &1, we have

(NR) j, then, as pip~ —pp,

t "kf'(k) sinkrdk)~—(r,')-' ~

(17) while

(18) Thus

ppoH (ppo) &0,

H(0) =0,

lim H(tpp) = —y, ',

B~—y,—'—5koo '.

)t+H+p '—+—iiirpo '&0
(19)

(20)H(top) &0,
dh)0

(21)cgpX(r, pop) &0,

X(r,too)~& ~ for pop-+0&, r fixed, (22)

X(r,top) —+0 for pp~ —po, r fixed, (23)

(24)X(r,pop)~0 for r—+po, cpp fixed,

(c)/Br)X(r, orp) &0 for too&0. (25)

For any 6xed r, the function X+H attains a maximum
value —y '(r) in the range pop &0, and

~-(r) &V' (26)

and Eq. (26) is therefore proven.
Now, using (5), (20), (21), and (17), we see that

(16+) cannot be satisfied for real rpp unless Mp&coi ol
too&0, and that (16—) cannot be satisfied for real top

unless co~&o)p&0. Thus, for a given real coo and y,
p(r) will have the same parity on all shells where it
does not vanish; in other words, the parity operator
not only commutes with K, but is a function of it.
Only states of odd parity (cpi «po &0) will be considered.
For such states, there can only be one shell on which

p(r) does not vanish. (See (25).] The norm of such a
state can be shown (see Appendix) to be

—
r)/Bebop (H+ X), (27)

except for positive factors. Now for fixed r,

1'y 'Y (pop~ ~ )
X+H+y ' +— (28)

(top~0 —).
Equations (17), (18), (19), (20), (23), (24) hold in
general, i.e., for any reasonable choice of the functions
tp(k) and f(k), and follow directly from (15) and (6).
Equations (21) and (25) hold in cases (R) and (NR).
(See Appendix and Sec. IV.) Equation. (22) holds
whenever (21) holds. It is easy to see that (26) will
follow from (17), (18), (19), (21), (22), and (23), if we
can show that X+H& —j,. ' for some finite pip &0. For
y, =0 this is trivial. If y, g0 and 8 is finite Las in case

For 7&7„we do not use the indefinite metric, so
there can only be states of positive-definite norm. But
it is clear from (27) and (28) that if for any fixed r and
fixed y &y, there is more than one root of (16—), then
some of the roots will correspond to states of negative
or zero norm. Thus for y(y, we have a single-valued
potential top(r, y).

For y&y, the situation is not so simple. Discarding
for the moment the possibility of states with zero norm,
we see from (27) and (28) that there must be an even

o)l

3
x

Frc. i. Schematic representation of the eigenvalue problem for
odd parity and lixed r. A typical y with y, (y&y (r) is shown;
the circled intersection points correspond to states with norm ~1
and real coo. If y(y, there will be one real co0 with positive norm,
and ii y) y (r) there will be no real cop.

FIG. 2. Schematic representation of the eigenvalue problem for
even parity and lixed r. A typical y with y, &y&p (r) is shown;
the circled intersection points correspond to states with norm
%1 and real co0. It is apparent from Figs. 1 and 2 that no mixing
of even and odd parities can occur in a stationary state of real
energy.
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number 222 of real roots of (16—); if labeled 010&'& with
cop&') (cop&') & &cop~'"', then cop&' will correspond to a
state of norm (—1)'. If y is small enough, then I&1.
I See (26).$ The physical significance of the negative-
norm states can be seen by letting r go to in6nity; then
for p sufFiciently small we will have just two states, one
with &op

——0 and positive norm, the other with 010=poi (p)
and negative norm. Thus the states of negative norm
represent a "ghost" V bound to an Ã.

Now, if y is slightly smaller than y (r) there must
exist just two states, one with positive and one with
negative norm. As y is increased, the two states will

approach each other in energy, merging when y=y (r)
into one state of energy pop(r) and zero norm. If y) p (r),
there can be no states with that r and real Mp.

IV. COMPLEX ENERGIES

The situation described in the last paragraph leads
to the supposition that there must exist complex roots
of (16—) when y&p (r) In a. ddition to the disappear-
ance of real roots for such p, note that the norm of any
state of complex energy must be zero, since

(010 I gX I 010)= (010+2222) (010
I q I

coo)

must be real. Thus the existence of complex cop would
ensure continuity of the norm at y=y (r).

To simplify the actual demonstration of these com-

plex energies as much as possible, we consider the case
(NR), with r assumed to be very small. In this case the
integrations in (4), (6), (15) are easy to perform, and
we obtain

++= 2) +&~ = S)
1 —1 1

a) (rj&2,01 )= (r ')10-'Le " e "5-——

aI H(Mp)+r j= (1—z)(dp —ocop +6&
~=—a(V ' —

V '),
a—= (prv2)-',

Z—= (1—o10)&.

These results hold for all cop and r, except of course for
+p & ].. When +p is complex, Z must be taken as having
positive real part. (It is easy to see that (21) and (25)
now hold. )

Now if r=0, Eq. (16—) becomes

Zp+Z+L(26) '—1)Z—L3(26)—'+1)=0. (29)

The solution of this equation is now perfectly straight-
forward, except that care must be taken to reject as
spurious all roots with Re(Z)(0. As expected, we

obtain for y &y, one real pop. For y„(0)&y &y„ there
are two real pop merging when y=y (0) into one real
010. For y)y (0), there are two complex pop, which are
not complex conjugates. The quantity y (0) is given by

7-(0)=v.(1+»+) '&7.,
where 6+ —6.'/X10 ' is the greater value of 5 for
which the discriminant of (29) is zero.

It is now obvious that for any y)y (0) we will have
complex cop if r is chosen sufficiently small.

V. DISCUSSION

That the Harniltonian in a theory with inde6nite
metric is not Hermitian makes it impossible to carry
out the standard proofs of the unitarity of the S-matrix'
and the reality of the energy eigenvalues. These condi-
tions, which are essential for a physically plausible
theory, must rather be tested directly for each individual
problem. It has been previously shown' that in the Lee
model the S-matrix does in fact become nonunitary for
a renormalized coupling y larger than a critical value
y„we now also see that there exist in the Lee model
certain "bound" states of complex energy if the coupling
becomes greater than a second critical value y (r).

It seems a reasonable conjecture that these difFiculties
will arise in any theory in which energy eigenstates of
negative norm appear which are not degenerate with
similar energy eigenstates of positive norm. In the case
of quantum electrodynamics this is not the case, for the
scalar photons are degenerate with the longitudinal
and transverse photons, and so there is room for a
subsidiary condition (the Lorentz condition) which
describes how these states are to be mixed to form
"physical" states of positive norm only. As is well

known, the use of the indefinite metric in quantum
electrodynamics does not lead to the sort of difhculties
described here. In the Lee model, however, no "ghost
state" of an S-V bound system of negative parity has
the same energy as any similar odd parity state of
different r, or as any similar even parity state.

These results serve to emphasize once again the
extreme care that must be taken if any departure from
the usual formalism of quantum mechanics is to be
made.

VI. APPENDIX

A. Calculation of the Norm

Consider two states of the form (11) differing only in
their total momenta, and let cop be real. Then the scalar
product of these states is

~—= (~ppp'
I ~ I ~opp)

d P1 d Pal (P1 )41(ya)

x I&I'(po' —pi'; pi'; 0IqIpo —pi,' pi; 0)

+g2(22r) ' t td'p2'd'P2

f(&12')f(&12)(0; yi', y2', &12'
I g I 0; yi,y2; 42)

X
(P0120112 ) (0012 010) (0012 &0)

~ C. Mgller, Kgl, Danske Videnskab Selskab Mat. -fys, Medd.
23, No. t (1945); 22, No. 19 (1946).
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Now, using the properties of q and noting that g is
imaginary for p&y, and real for y&y„we have, for
any p,

~=&(Po-Po') d'Pl&i(P) I'

f'(k)
&& E'+ (y/4pr) d'k

GO CO
—G)p

t' f '(k)—(7/4~) I~ dpkdpP41*(Po —P—k)4~(P)
CO GO COp

B. Relativistic 2 Function

In case (R) we have f'(k) = 1, co (k) = (1+k')&, so that

ke'~"dk
X(r,(op) = (2ir(op)

—'
~ CO((d —Np)

Let C be a closed contour enclosing the upper half of
the complex plane except for that part of the imaginary
axis from s=i to s=z . Then for all cop with nonzero
real part, pe etre Z

X(r ppo) —Xo(r,cep) = (2ircoo) '
~ ~(~)[~(~)-~p]

=v&(Po —Po') d"
I &(r) I'

1 p" exp[—r(1+I')&]dN
Xo(r,(oo) = ——

r ~, , +Ip" k'f'(k)dk
X y' —v. '+

(d 0)—Mp Thus, for real cop we have

Xp(r, (dp)f'(k)e ""l-
—(1/4m. ) ~d'ry'(r)y( —r) d'k

GO GO
—07p

(cop (0)

.Since p(r) =&g(—r), we have

X(r,vo) =' Xo(r,coo)+ (pr/coor)

)&exp( —r(1—cvp')&) (0(cup(1).

M=yb(Pp —Pp') d'r~y(r) ~' y
It is now obvious that (25) and (21) hold for ceo(0.
For 1&Mp) 0 note that

I
"k'f'(k)dk 1 t "kf'(k) sinkrdk

~o (o((o—cop)' r &p

Xp(r,coo) )—e" l" dl —m

e r
7

r "o coop+up 2csor

If we assume that (16&) can only be satisled for one
value of r, the norm must have the same sign as the
quantity

t" k'f'(k)dk 1 t "kf'(k) sinkr
v '—v. '+ dk,

&o ~(~—~o)' r ~o op(~ —~o)'

and, using (16&), this becomes

8
[H(Mp) +X(r Mp)],

8+p

which reduces in the case of odd parity and negative
ppo to expression (27).

X(r,~o)) e "+ exp[—r(1—+p')&])0,
2' pr Orpr

and therefore (21) also holds for 1)&up) 0.
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