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Properties of Half-Integral Spin Dirac-Fierz-Pauli Particles
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A method is developed to eliminate extraneous components from the Dirac-Fierz-Pauli equations for
half-integral spin particles. Starting from the Rarita-Schwinger formulation, Hamiltonian forms of the
equations for the independent components of the wave functions are obtained. The process is carried out in
detail for the field-free spin 3/2 and spin 5/2 particles and the reduced equations are quantized. It is shovrn
that the interaction with the electromagnetic field can be introduced in an infinite variety of ways. A one-
parameter class of equations containing the interaction is obtained for each spin. By reducing these equa-
tions in the nonrelativistic limit it is shown that the gyromagnetic ratio is in each case independent of the
parameter and has the unique value of the reciprocal of the spin. For the cases of spin 3/2 and spin 5/2, the
quadrupole moment is also obtained. It has the unique value + (5/3) (h/mc) for spin 3/2. For spin 5/2, it
depends on the parameter but is close to +(28/15) (ft/me)' over most of its range.

moments of particles with arbitrary half-integral spins.
For the cases of spin 3/2 and spin 5/2, the nonrela-
tivistic expansion is carried further and the intrinsic
quadrupole moments of these particles are obtained.

In what follows, the letters er, P, y, n, P, j,
will be used for spinor indices; a, b, c, for Dirac
four-spinor indices; p, , v, f(:, for four-vector indices;
i, j, k, for space-vector indices. The units in which
A=c=1 will be used. The summation convention is
used for all indices.

INTROD VCTION

'HE discovery in recent years of many new par-
ticles whose spins and moments have not yet

been measured has revived the interest in theories of
particles with spins greater than unity. Two types of
theories have been discussed extensively, those of
Dirac, Fierz, and Pauli' ' (hereafter referred to as
DFP) and those of Hhabha' though these by no means
exhaust all possibilities. The distinctive features of the
DFP half-integral spin equations are that the covariant
wave functions describing field-free particles transform
according to irreducible representations of the ortho-
chronous Lorentz group (group of four-dimensional
rotations and space inversions) and that each equation
describes a particle with only one spin state. In that
sense, the DFP half-integral spin equations may be
regarded as the simplest theories of such particles.

The principal purpose of this paper is to derive some
of the properties of half-integral spin DFP particles
by reducing the equations so as to eliminate the ex-
traneous components contained in the covariant wave
functions. In Sec. 1, the convenient form of the field-
free equations given by Rarita and Schwinger' is
derived and the interaction with the electromagnetic
Geld is introduced. In Sec. 2, a general method for
reducing these equations is described and is carried
out completely for the 6eld-free spin 3/2 and spin 5/2
equations. The reduced equations are quantized. In
Sec. 3, the reduction of the equations containing the
interaction with the electromagnetic field is carried out
in the nonrelativistic limit to obtain the magnetic

1. COVARIANT EQUATIONS

The Geld-free DFP equations for a particle of spin
n+1/2 are' '

~ ~
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where m is the mass of the particle and the component
wave functions A and B are each completely symmetric
in their dotted and undotted spinor indices. Pr is the
momentum operator written as a covariant spinor.
Since a spinor with one dotted and one undotted index
transforms like a four-vector'~ one can, by pairing
p; and e; replace n dotted and n undotted spinor
indices of both A and 8 by a n symmetric traceless
four-vector indices. For n=0, Eqs. (1.1) are equivalent
to the Dirac spin 1/2 equation and the two spinors
A ', B~ transform like a Dirac four-spinor. ' Therefore,
Eqs. (1.1) can be written as a Dirac equation whose
wave function has, besides the four-spinor index, e
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The fact that an antisymmetric dotted or undotted
second-rank spinor transforms like a scalar has been
used. Writing the functions 0'„6I as an (ts—1)th rank
spin-tensor one finds that Eqs. (1.3) require that the
function %s.i.s '„shall not contain an (e—1)th rank
spin tensor which in turn does not contain an (is—2) th
rank spin tensor and so on. Because of the tracelessness
of 4 it is suKcient to require that an (e—1)th rank
spin tensor shall vanish. This is satisfied only by the
condition

Pp % jllv2 ' ' 'vn Oo (1.4)

Equations (1.2) and (1.4) are the Rarita-Schwinger
equations for a particle of spin I+1/2. It is only
necessary to require that N by symmetric in all its
vector indices. The trace condition follows from Kqs.
(1.2) and (1.4). Another consequence of these equations
is

(cl/tie„)@',.s '.——0. (1.5)

Henceforth, the four-spinor indices will be dropped
and the notation ci„=8/Bx„will be used. The adjoints
of the Rarita-Schwinger equations can be written

where

1 2''' P ~+ 1 2''

pv2 ' vip —
M&

vlv2' ' 'vn ( +) ~ V1V2' ' 'vn74)

(1.6)

and r is the number of times the index 4 occurs in
V1V2' ' 'Vn

Equations (1.2) and (1.4) are derivable from any
one of a set of Lagrangians obtained from the densities

Z=e'. s '.[(y„&„+~)&.i,+A(vÃi+vi~. )
+ (sA'+A+ s)V.vÃpvi
—(3A'+3A+1)my„q), ]%vs" v„, (1.7)

AW —1/2,

where the parameter A may assume any real value
except —1/2. Equations (1.2), (1.4), and (1.5) are
obtained by varying @t and operating on the resulting
equation with p„and with 8,. It can easily be shown in
this way that (1.7) defines the only possible Lagrangians.

Equations Containing the Electromagnetic
Interaction

The interaction with the electromagnetic field is now
introduced by writing Lagrangian densities with the
following properties: (a) They shall be relativistically
invariant and gauge invariant. (b) For vanishing fields

pi, ps, , p„and in ei, es, . e has been used. The
additional symmetry conditions required are

ctP1P2. ~ Pn P1~P2. ~ Pn P2- ~ Pn
&1&2 ~ &n &1&2 ~ ' ' &n &1&2' ' &n

(1 3)
P1P2' ' 'Pn P1P2' ' 'Pn PlP2' ' 'Pn
$4162' ' 6n 41/c2 ' '4n t'2

they shall reduce to (1.7). (c) The equations derived
from them shall contain as many subsidiary conditions
as are embodied in Eq. (1.4) in order that the wave
function shall have as many linearly independent
components as in the field-free case and shall hence
describe a particle with the same spin states. By a
subsidiary condition is here meant any equation which
is not an equation of motion for some component of +
(does not contain its time derivative) and which thus
permits the elimination of that component in terms of
others.

Conditions (a) and (b) are clearly satisfied by re-
placing in (1.7) the gradient operators cl„by the gauge-
invariant derivatives,

D„=8„—ieA„, (1.8)

2. REDUCTION OF THE FIELD-FREE EQUATIONS

The wave function 4'.i.s '„of Eqs. (1.2) and (1.4)
contains parts which under space rotations transform
according to the representations D&)(Dp, D&QD1,
D~XD2, , D;XD~1, D~)(Dn of the three-dimen-
sional rotation group. These parts correspond to the
traceless components +44" 4, %44 ~ ~ 4,.„, +44-- 4;

~ ~ ~, %4;2 . ;„,0;1;2. ;„,which will be denoted by their
angular momentum quantum numbers l, m&, ~, m~ as
follows: (00smi ~, (1mismi ~, (2mssrm~ ~, (Nm„rsmi

~

.
The irreducible parts of (lmi ', mi~ which -transform
according to Di+I and Di=; will be written (its l+ smi+I

~

and (l-,'l —-', mi i ~

. Also, (00-', m;
~

= (0-,'-', m;
~

.
Using the representation of the y matrices:

7'= P20', y4= P3, (2 1)
The fact that each representation occurs twice because of the

positive-negative energy degree of freedom of the four-spinor
index is unimportant here. This degree of freedom will be acted
upon only by the p matrices of Eq. (2.1).

and adding all possible invariant terms which contain
the electromagnetic field tensor explicitly. It can easily
be shown that all such additional terms lead to terms
in the resulting equations which make it impossible to
satisfy the requirement (c). The remaining Lagrangian
densities (1.7) with the substitution (1.8) satisfy the
requirements (a), (b), and (c) for all real values of A
except —1/2. The resulting possible equations and
subsidiary conditions for a particle of spin v+1/2
interacting with the electromagnetic field are

$(y„D„+m)o„i+AB„pi+', (A+1)y.ypDpy-i
—(-',A+ 1)my„yg]%,.s '„——0, (1.9)

3 (A +s )w pg%xvs ~ vz

=i eely„F„)+,'Ay„F„pppv„fe-i;s ".„, (1.10)

where F„„=—(i/e)[D„,D.] is the electromagnetic field
tensor. It should be noted that since + no longer satis-
fies Eq. (1.4) the spinor representation of the wave
function is no longer that of Eq. (1.1) but there are
lower rank spinors present. These are the auxiliary
spinors of Fierz and Pauli. '
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where the 0; acting on &lm~-', m~
~

are twice the angular
momentum 1/2 matrices and p~, p~, p~ is a set of Pauli
matrices, Eq. (1.4) can be written

The remaining Eq. (2.4) is now used to express

(n —1-,e—2m„y~ in terms of (e'en —-', m y~. Equation
(2.10) becomes then

%4v2 ~ v~ =gp]0'gC gv2 ~ v~.

This equation has components of the type

N. ~iyi2 ~ e ~ g) ]44 ~ o o4= pp~o'p &iyi2 o ~ ~ &~ y4 ~ ~ ~ 4

(2.2)

(2.3)

i8((n-,'n —-,'m„;
~

= (n ',—m-„;
~
p~H;p~ ~

n ',—m—„)
X(n-,'e—-,'m (2.11)

ia g(lm$gm; [
= (m; [ Hy [ m)')(lmggm (2.5)

where
H&= pro"' p+pgm

Decomposing (2.5) into its irreducible parts, one obtains

ia, &i-', i+-,'m;
~

= (i-', i+-;m„,
~
H, ~i-,'iy-,'m„,,')(i-,'i+-,'m~,, '~

+ (l,'l+ ,'m~$
~
-H)

~
l-,'l ,'m) $)-(l ',—l -,'m$; ~-,

—(—2.6)

i8 g(l-', l——,'m(;
~

=(l,'l 2m( )~H)~-l ,'—i+-',m~;)&i ', l-+ ,'m-~)~--
+(l,'l ,'m~)~H;-~l ,—'l —2m( )(P-l —',—m)--

i=1, 2, 3 . , m,

iB&(0-'—'m, [=(0-'-',m, [H)~0-', ', m )( 0-',-', my'~. -

(2.7)

(2 8)

Equations (2.4), (2.6), (2.7), and &2.8) can now be used
to eliminate all functions except (n2~n+2~m~i~. The
latter is then found to satisfy an equation of the form

i8)(n2n+2m~)
~

= (n+-,'m~y
~ H~y ~

n+-,'m~y')(n-, 'n+2m~~' ~, (2.9)

which is the reduced spin n+1/2 equation.
The reduction is most conveniently carried out suc-

cessively for spin 3/2, 5/2, 7/2, and so on. Having
obtained H ~„one 6nds II„+~ in the following way.
Equations (2.4) through (2.8) for l(n are identical to
the corresponding spin n —1/2 equations. They can
therefore be replaced by

i~~(n -12n g m )~
=.—(n-—2-m~ )~H~y~n —-', m. )

X(n—1-',e—-',m„y'j . (2.10)

Considering only the part which is traceless in ij,
i2, i~~, the left-hand side contains the functions

(l 1~~ l——~~m~ ~
~

and (l 1~~l——3/2m~1
~

. Hence also the
right hand side can contain only parts transforming
according to D~g and D~ ~. But 0;;~i2;~~4 4 con-
tains only the function (l~~l ——',m~i

~
which transforms

according to D~;. One concludes therefore that
0 j% j'$ '2' ' ' J ]4' ' '4 is proportional to (l2l sm~—; ~

as can
be verified by comparing the matrices 0; with the
Wigner coeKcients (l-', l—2m~y

~

lm&-', m;). Equation (1.4)
has then the following consequence (where Cq is a
nonvanishing constant):

(l 1-'l 'm—(
—~

~

-=ipgC)(Pl 'm( —~ ~-2 2 r 2 2 r 1

(2 4)l=1, 2, 3, -, e.

According to Eq. (1.2), each function (lm&~ ~m~

satisfies the Dirac equation

Subtracting (2.11) from Eq. (2.7) for l=e, one obtains

((n ,'—m-)
~ p)H„)pg ~

n ',—m„—)
—(e-', e——,'m„)

~
H;

~

n-', n —-,'m„)}(n-',n ——,'m„)'(
= (n2e —2m„—'*

I H) I
eke+-'2m~, )( n-', n+ 2m~' I

(2 12)

The operator on the left-hand side can be diagonalized

by multiplying the equation by a proper operator. One

obtains then a partial differential equation with con-

stant coeKcients which may be solved for (e2e —2m„ i
~

by the Fourier transform method. Using this solution
to eliminate (n-,'n ——,'m;~ from Eq. (2.6) for l=e, one
obtains the reduced spin n+1/2 equation. This pro-

cedure will now be illustrated for the case of spin 3/2.
The results for spin 5/2 will then be stated.

Spin 3/2

For e=1, Eq. (2.12) becomes

((2m) [pgH~pg (2m)') —(1-,'-,'m;
( Hg ( 12 2m(')} (12,'m)')-

= (12-',mg [H) [1-,'-', ma)(122m)]. (2.13)

Introducing the expression &2.5) for Hi this becomes

&~m)~ (4/3)p o p —2p,m ~-,'m )(122m''~

=(122m~1»~ pl 1)km~)(122m~I (2 14)

This equation is now multiplied by the operator on the
left-hand side, and one obtains

L( / )P'+ '1( -'l:
I

(4 ', m—,, l p,~ -&+2p,mI 12-2m, ')-
X(1-',-', m

~
pi~ p~122m-;)(122m)~. (2.15)

The solution of Eq. (2.15) may be indicated formally by

1-,2m) =—11
(4/9) '+m'

X(152m)I (p~ p+2p~m)I'sp~& pI124ml)'
X(1-,'-', mg ~, (2.16)

where the projection operator I'~ is used to indicate

summation over the (1-',-,'m
~

states.
Equation (2.6) becomes, for e=1,

iB,(1~~m; )
= (1-',—,'m,*)Hy 1 12)m )(1~2m''(

+(1-',—;m,.)H., (
1-;—;m,)(1-;—;m,, ). (2.17)
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Using Eq. (2.16) to eliminate (1~~—', m; I, one obtains

zB,(1-,,m—aI —(1-,—,mII p,zr p+psm

Pr&'PI '(Pr&-'Iz+sPsm) kP&& 1'
I1-,'-,'m &

(4/9) p'+ m'
y(1ssm;I. (2.18)

where D(x x—', 3—I') is the invariant D function. '
Equation (2.23) can be shown to agree with the co-
varient spinor relations of Fierz. '

Spin 5/2

For s=5/2, one obtains

i8 t%'~ =Hying,

1 t'35 115 50~=-
I

—p4+ msps+ —~4
I

E3 4 3 )ia,e;=H;e;,

The operator on the right-hand side is the spin 3/2
Hamiltonian. The angular momentum operators occur- Hg= prX'~' p(1+M[P' —(Xsj' p)s])
ing in it can all be expressed in terms of the angular
momentum 3/2 matrices J;**. Denoting the function +psm{1+1V[P' (X—'I' p)' j),
(1-,'—,sm;I by 4;, one obtains

P' —(X' I)'
H~=prXl p 1+

(4/9) p'+ m'

1 p' —(X' I)'
+psm 1+—

2 (4/9) p'+m'

(2.19)

17—25I p'+ —m' I(X'" p)s,
12

1 (23 135 25
p4+ —msp'+ m4 I—

X E4 4 2 )

(2.24)

where
Z -'= —J.'.i 3

This result can be checked by observing that (H;)'
=p'+m'. It is interesting to note that with the sub-
stitution X' —+ e one obtains II;~ H;.

Equation (2.19) can now easily be quantized. From
(1.7) the charge density is found to be A t„y4%'„.
Eliminating the extraneous components of 0' by means
of (2.4) and (2.16), one obtains for the total charge

C;= e ~ds$%'I ps+I,

25 ( 13
I

5ps+—~s I(Xs&s. lz)s
12k 2

64 484
X=—P'+ msP4+40m4P'+25m'

25 25
y .5/2 gJ .5/2

Again it can be veri6ed that (H;)'= p'+ms. The sub-
stitution X'/ —+ e again gives H. —+ Q~, but X5/2 —+ g3/2

does not give H; —+ B;.
The charge is found to be

E;= ~d $%;H;PA;. (2.21)

(2.20)
1 p' —(X' I)'

ps=g ——
2 (4/9) p'+m'

which is positive definite for mAO. The energy is

C»=8 ' d X%»pA»)

[S+T(Xs~z p)z][pz —(Xs&z ~ p)zj
p =1

288hz[(4/9) P'+m'$

S=—,
' (4096p"+62948m'p"+394468m'p'

+1435521m'p'+ 2754280m'p'

+2548750m"p'+900000m")

(2.25)

Requiring cj,%' =z[E„+ ], where n indicates the eight
degrees of freedom of the field operator 0';, the anti-
commutation relations satis6ed by 0'; are found to be

(+-*(~'),+P(*)}= (41P-;-'I )~(~'—*),

T= ', (4096p"+14468m—'p'+151748m'p

+505001msP'+619000m'P'+258750m")

and the energy is

P' —(X' I)'
P; '=1+

2m2

(2.22) d S'2» H»p»@'». (2.26)

The anticommutation relations satisfied by the field
and all other anticommutators vanish. The time de- operators are

endent anticommutation relations arep
&+-*(*')PP(*))=(&IP; 'I )~(*'—*), (2 27)

(p.*(x',&'),p&(x, z) j ~ G. Wentzel, Qnmstnm Theory of Fields (Interscience Pub-
=(PI Bg zH; p; In)D x—x—, &

—&, 2 23 hshers, Inc. , New York, 1949).
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and with s=n+1/2

ia, (sm, i
= (s—-', -', sm.

i eqp+ pio" II+psm
=(pi (Bi—iH~)pI 'in)D(x —x', & &')—. (2.28)

1

3. NONRELATIVISTIC LIMITS + psa" IIP, ie II is—,—',sm, ')(sm, 'i,
2m

(3.2)

Equations (1.9) and (1.10) for a DFP particle in an
electromagnetic field cannot be reduced in closed form
for arbitrary fields because the equations corresponding
to (2.12) are differential equations containing the field
vectors as coefhcients. Their solution can be obtained
only for special cases such as a constant magnetic field.
It is, however, possible to expand the equations in
powers of 1/m and by retaining terms of a given order
one can obtain the reduced equations in the nonrela-
tivistic limit. In this way the moments of the particles
may be found. The expansion has been carried out to
order 1/m for arbitrary half-integral spin particles
yielding the magnetic moments of these particles. For
the cases of spin 3/2 and spin 5/2, the expansion has
been carried to order (1/m)' and the electric quadrupole
moments of these particles have been obtained.

where the projection operator P, & is

P, i (s——',———e l)/2s, (3.3)

S—z&sm, 0; S—~~$1S,

1
=-(m,

i
J im, ')—= (m, iZ im, '), (3.4)

where the J are the angular momentum s matrices,
Eq. (3.2) becomes

and the f; are the angular momentum s—1/2 matrices.
With the help of this operator and the easily verified
relation

where y is the electrostatic potential and II;= —ia;
is the gauge invariant momentum operator. For II
in (2.12), one now uses the expansion of the spin
n 1/2 Hamilton—ian in powers of 1/m. This expansion
starts with the term p3m which can be seen by inspect-
ing the equations in the zeroth order in. 1/m. To that
order, the right hand side of Eq. (2.12) for n=i
vanishes and hence only the first term on the right hand
side of Eq. (2.6) contributes to the zeroth order Ha

which consequently starts with the term p3m. Con-

tinuing, one finds that the right-hand side of (2.12)
also vanishes for v=2 in the zeroth order and hence
also JI; starts with p3m and so on.

Therefore, Eq. (2.12) becomes, to order 1/m,

11~Pl ~m7I

Zp2
(e-', e—-',m; i

e II
i
n-', n+-', m~;)2'

X (n-', e+-,'m~; i . (3.1)

Substituting this into Eq. (2.6) for l,=e, one obtains

' The results of this section were previously reported at the
1954 Detroit meeting of the American Physical Society by K. M.
Case, Phys. Rev. 94, 1442(A) (1954).

Magnetic Moments"

To terms of order 1/m, Eq. (1.10) is identical to
Eq. (1.4). Applying (1.4) to (1.9), one obtains Eq.
(1.2) with B„replaced by D„. It is clear that the pa-
rameter 2 does not appear in these equations and
hence the magnetic moments cannot depend on A.
Again, Eqs. (2.4) through (2.12) hold with

H;=eq+pie II+psm

iBg+,= etp+piX'II+ psm

p3
+ LII'+sX'IIXII —(X'Il)'$

2m

+higher order terms %„(3.5)

where 4, is the 2(2s+1) component spin s wave func-
tion. Noting that IIXII=seH where H is the magnetic
field vector, and diagonalizing Eq. (3.S) with respect
to positive and negative energy states by means of a
Foldy-Wouthuysen transformation, ""one obtains

s8]%',=H,%', )

II'
H, =ep+ps m+ — X'H

2' 2m

+higher order terms. (3.6)

With the definition (3.4) of X', the magnetic moment of
a DFP particle of half-integral spin s is seen to be
(1/s) (eA/2mc) in conventional units.

Quadrupole Moments

Spin 3/2

Equations (1.9) and (1.10) will now be reduced for
s=3/2 (n=1) and terms of order (1/m)' will be re-
tained. By means of Eq. (1.10) and the time part
(a=4) of Eq. (1.9), one can eliminate the function 44
from the space part (x=i=1, 2, 3) of Eq. (1.9). The

"L.L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950)."K.M. Case, Phys. Rev. 95, 1323 (1954).
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latter becomes then, to order (1/m)s,

(1mi-', mi I
PiD4 ip—ie D+ (1+Pi)psm+P;i pi(tt+21) D

e A+1—P;—(e+21) psH+2(A+1)psE
m A+-',

e A+1
+P:— (~+1) (p H+p E)

m A+-',

e ( A A+2q
+ I +Pi ILD (ip HyE)

Bm' EA+-', A+-', )
—1 Dl (ipiH+E)+il DX(ipiH+E)]I 1mi'smi')

X(1mi'-', m
I
=0) (3.7)

where P~ and P~ are the projection operators for the
angular momentum 3/2 and 1/2 states and the l; are
the angular momentum unity matrices. The part of
Eq. (3.7) which transforms according to D~ is

The gradient operator V' operates here only on the
electric 6eld vector E which follows it and not on the
wave function. The first term in (3.11) is analogous to
the Darwin term of the spin 1/2 theory but it has here
the opposite sign. The third term is the quadrupole
moment interaction. From it the electric quadrupole
moment (as defined by Ramsey" ) of the spin 3/2 DFP
particle is found to be

Qi=+(5/3) (~/me)'

Spits 5/2

(3.12)

Equations (1.9) and (1.10) for tt= 2 differ from the
n=1 equations only in that the wave function has an
additional vector index which is symmetrical with the
first. The time components of this spin-tensor can be
eliminated exactly as in the spin 3/2 case, and one
obtains an equation identical to (3.7) except that the
wave function now transforms according to D~)&D~XD;
and must therefore be written

D4(1ssm:I =(1ssm;I &Ilssm )(4smi'I
+(1', ', m;I 8I 1-', -', mi-)-(1-', -', miI, (3.8)

(1milmism-: I. (3.13)

where the operator 8 contains those terms of (3.7)
which are not preceded by Pi. The part of (3.7) which
transforms according to D~ does not contain any time
derivatives and is therefore not an equation of motion.
It can be solved for (1-,'-,'miI, and the result to order
(1/m)' is

P2
(1-,'-', m;I =(1-',—',m;

I (1—e) D'3m
2 e A+1

+ (e+21) D(1—e) D+ (I—e)
9m' 6m' A+-,'

' (H ipiE) 11s' ssmi)(1'-sam~
I (3 9)

Eliminating (1-,'-', m*,
I

from (3.8) by means of (3.9),
one obtains Eq. (3.5) for s=3/2 with the additional
terms

ie
Ljl E+i~' ~XE—r.—: nx-:. E]

2nz2

+pi/ms terms+higher order terms. (3.10)

The parameter A has notably again disappeared. The
pi/m' terms do not contribute terms of order (1/m)'
to the diagonalized Hamiltonian. The Foldy-Wouthuy-
sen diagonalization yields the Hamiltonian (3.6) for
s=3/2 with the additional terms

e 11 z——v E—x~ vXE
m' 72 8

5 1 5——-(z;~z ~+z '*z i) —-s,, v,z
8 2 9

z z 1
+-E rr —-x~ Exi rr+—x~ Exn . (3.11)

2 2 12

The operator of (3.7) does not act on mi. The sym-
metry of the vector indices of it means that the function
(3.13) does not contain a part which transforms accord-
ing to D~XDy and hence one must require that

(111mi I 1mitmi)(1mi1mi-', m'*
I
=o (3.14)

where (liimiI1milmi) is the Wigner coefficient which
picks out the DiXDi part of (3.13). With this new
wave function and the requirement (3.14), Eqs. (3.8)
and (3.9) again hold. The latter can be used to eliminate
all but the D; function. The result is Eq. (3.5) for
s=5/2 with the additional terms

ie ( 1 A

2m' ( 12 A+-', )
xLxx. E+ix»'Ilx E—x»'nx»' E]

+pi/m' terms+higher order terms. (3.15)

The parameter A no longer drops out. Diagonalization
gives the Hamiltonian (3.6) for s=5/2 with the addi-
tional terms

e 1(5 2 A ) i(3 1 A
Iv E+-I —— Ix't'~XE

ms 6 E4 15 A+-,') 2 i4 15 A+-,')
1 A i 1 7

—(g»sg sts+g stsg sts) ——h" it'g.
84 3A+') 2 15

i( 1 A y 1t' 1 A
+-I 1— IE II+-I 1—— I~»'EXD

2 E 12 A+-', ) 4 ( 10 A+-', )
it' 1 A—

I
1— Ix't'Ex»'1I . (3.16)

2 E 12 A+ —,']
'3 N. F. Ramsey, Ngclear Moments (John Wiley and Sons, Inc. ,¹wYork, 1953).
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From the third term the electric quadrupole moment of
the spin 5/2 DFP particle is found to be

28 1 1
t

hy'
Qi=+ —+—;I

—
I (317)

15 15 A+-', (mc3

As a function of A it is seen that Q» is singular at the
forbidden value A= —1/2 but approaches the value
+ (28/15) (A/mc)' quite rapidly as one moves away from
that value.

CONCLUSIONS

It has been shown that the magnetic moment of a
DFP particle of half-integral spin s)1/2 is uniquely
determined to be (1/s) (eh/2mc). In general, the values

of higher moments must be expected to depend on the
parameter A. The spin 3/2 quadrupole moment has

however the unique value +(5/3)(h/nsc)'. The spin

5/2 quadrupole moment depends on the choice of A.
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N-V Potential in the Lee Model
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An investigation is made of states in the Lee model representing a "physical" V-particle bound to an
N-particle. It is found that the energy eigenvalue problem can be reduced to a single transcendental equa-
tion involving the parity, energy, renormalized coupling, and E-V separation. Only states of odd parity are
considered. For such states this equation leads to a single-valued real potential if the renormalized coupling
constant is less than the critical value for the appearance of the so-called "ghost" states of the free physical
V-particle. For stronger couplings the potential becomes many-valued with half its real branches corre-
sponding to the presence of "normal" V's, and half to "ghost" V's. For still stronger coupling no real
energies exist. It is shown that complex energies appear, at least in the case where the virtual 8 particles are
assumed nonrelativistic and the 1V'-V separation is suKciently small. A possible reason for the appearance
of these difBculties is suggested.

I. INTRODUCTION
' 'N a recent paper, Lee' has presented an extremely

interesting example of a quantum field theory in
which mass and coupling-constant renormalization can
be carried out exactly, i.e., without the use of perturba-
tion theory. In the Lee model there are three 6ctitious,
chargeless, spinless particles: E and V are heavy
fermions and 8 is a light boson. The Hamiltonian' for
the model is

X=BCp+ K'+5K,

where gs is the unrenormalized coupling-constant, f(k)
a high-momentum cut-off function, &o=cv(k) the energy
of a free e of momentum k. The field operators Pv,f~,a
obey the usual commutation (anticommutation) rela-
tions for boson (fermion) unrenormalized field operators
in a Schrodinger representation. The mass of the Ã and
of the "physical" V is m; m —bm is the mass of the
"bare" V; and p, is the mass of 8. There is no distinction
between "bare" and "physical" Ã's, 0's, or vacuum.
We use units with A=c=p=1.

In performing the renormalization, one obtains the
relationsf

5('o=m d'tv'(p)4v(p)

+m d'pP&*(p)l(s (p)+~"dskceue(k)u(k), where

I v/vs I
=1—(v/v. )

5m= —sv/1 —(v/v, ),

vs=(gs/2~)' v=(g/2~)'

(2)

(3)

5&= —
5m~ d'pit v*(p)l(v(p),

X'= —gp(2m)
—

& dspd'p'dskb(p'+k —p)

Xf(k) (2~)-'Lk.*(p)4 (p') ~( )

+S.(p)a *(p').*(k)l, (1)
' T. D. Lee, Phys. Rev. 95, 1329 (1954).
~ G. Eall' and W. Pauli, Kgl. Danske Videnskab Selskab Mat. -

fys. Medd. 30, No. 7 (1955). (The notation of this paper will be
adhered to as closely as possible. )

(g being the renormalized coupling constant), and

r" k'f'(k)dk ~" k'f'(k)dk
pc

—1 S=
Ca) Jp

(.
d'puv*(p)&v(p) I (v~v )

(v&v.)

Now (2) leads to a contradiction if v& v, . The introduc-
tion of an inde6nite metric with metric operator


