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Compton Scattering and Bremsstrahlung of Spin-3/2 Particles
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The Fierz-Pauli theory of particles of spin--, in interaction with the electromagnetic Geld is used to
calculate the cross section in Born approximation for Compton scattering by such particles. The brems-
strahlung cross section is estimated by the method of virtual quanta. The magnitude of these cross sections
rules out the possibility that the mu meson is such a particle.

I. INTRODUCTION

THEORY of particles of arbitrary spin has been
developed by Dirac' and by Fierz. ' Fierz and

Pauli' have extended the theory to cover the interaction
of such particles with the electromagnetic 6eld, and
Gupta4 has pointed out that the theory for spin-~
particles can be put in a form which strongly resembles
the familiar Dirac theory for electrons, and that calcu-
lations can be made by the same techniques as are
available for problems involving photons and electrons.
In particular, Feynman's' rules for calculating matrix
elements in quantum electrodynamics still apply, with
a few obvious modifications.

In Part II of this paper, the Fierz-Pauli-Gupta theory
is brieQy reviewed. In Part III the analog of the Klein-
Nishina formula for Compton scattering is calculated.
Owing to the complexity of the problem, the cross
section is only calculated to highest order in the energy
of the incident photon. We have calculated exact
matrix elements, but a great deal of labor would be
involved in combining these into a cross section. In
Part IV the bremsstrahlung of spin-~ particles is esti-
mated by the Weizsacker-Williams method of virtual
quanta.

This work was motivated by the possibility that the
mu meson might have a spin of ~. In Part V it is
pointed out that the calculations of this paper make
such a possibility highly unlikely.

the form
ZQoVelp = nels/)

where V„—= (—V, c)/c)t) and the tr's are 16&& 16 matrices
given in reference 4, except that our nl, n2, n3 arei times
Gupta's matrices. Interaction with the electromagnetic
field is described in the usual way by replacing (1) by

n„(iV„—eA„)iP= ntiP,

where A„ is the electromagnetic potential four-vector:

A„=—(A, p).

Calculations of electromagnetic processes may be
made by Feynman's rules, except that the particle
propagator in momentum space is now

i(P—nt)
—'

where p—=p„n„, p„being the energy-momentum four-
vector of the virtual particle. By using the relation'

P (tr„cr„—5„„)tr~,=0,

where P means a summation over all permutations of
the indices p, v, o-, p, and 8„„ is the usual Kronecker
delta except that 51~ = 8~~=833= —1, we see that

p'= p'p' (p'= p p=E' u'), —

and from this it follows that

II. FIERZ-PAULI-GUPTA THEORY OF
SPIN-3/2 PARTICLES

In this paper we shall set A=c= I, and also use the
Feynman summation convention on repeated indices:

8 ' 5=CJ25P, =84t) 4 gl51 Cg52 8353

Gupta4 writes the spinor equations of reference 3 in

' P. A. M. Dirac, Proc. Roy. Soc. (London) A155, 447 (1936).
e M. Fierz, Helv. Phys. Acta 12, 3 (1939).' W. Pauli and M. Fierz, Helv. Phys. Acta 12, 297 (1939);

M. Fierz and W. Pauli, Proc. Roy. Soc. (London) A173, 211
(1939).' S. N. Gupta, Phys. Rev. 95, 1334 (1954).

e R. P. Feynman, Phys. Rev. 76, 749 (1949); Phys. Rev. 76,
769 (1949).

~ E. J. Williams, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 13, No. 4 (1935); C. F. V. Weizsacker, Z. Physik 88, 612
(1934).

(p nt) 1= s (p2+ nts ps) (p+ nt)/nt2 (p2 nt2) . (3)

Such a "rationalized" propagator, with no matrices
in the denominator, is of course needed for calculations.

A wave function describing free particle motion of
momentum p in the z-direction is

|P= tt expt i(Pz —Et)].

Since it follows from (1) and (2) that |P must satisfy
the Klein-Gordon equation

V„V„iP= —ntQ,

p and E in (4) must satisfy the familiar relation E'
=p'+rn'. We shall only be interested in positive energy
solutions, with

E=+(p'+nt') &.
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Nc:

N, i——x, N,9= —y, all other N„=O,
Ng

——y, Ng~4
———x, all other Np; ——0,

Q~3 y Q 5 ——~2, Q,ll ———x', Q,13
———yv2, all other

N„=O,
QJ2= —yv2, Q44 ———g', ud15=2eV2 Qe12=y', all other

N~;=0,

where N, ~, N, ~, , N, M denote the elements of the
column vector I, reading from top to bottom in
Gupta's representation, and x and y are de6ned by

x=+(E p)l/m', —y=+(E+p)~/m

(In the nonrelativistic limit, these four states have the
spin projections S,= —2, +2, +-', ,

——,', respectively. )
The normalization is

p=u(24Q= u*lz(24Q=2E/mfor Q, and Q5

=6E/ mfor Q, and Q4.

p is the fourth component of the current four-vector,
i.e., the particle density. u denotes the Hermitian
conjugate of I, and I is the "adjoint" of u, defined by

The matrix g is given in reference 2.

III. CALCULATION OF CROSS SECTION
FOR COMPTON SCATTERING

We shall assume our particle to be initially at rest,
and choose the s-axis along the direction of particle
recoil after collision. (See Fig. 1.) The four-momenta
of the incident photon, scattered photon, initial particle
and recoil particle are given by

ql ——MIQ4 MI sln81al+(ol cos81a3,

g2=(8~4 (02 Sln820l]. 2 cos92O!3)

%i=m+4,

k2= E(24 p(23, —

respectively. Conservation of energy and momentum
implies that

kl+ ql ——k2+ q2.

If we denote incident and 6nal photon polarizations
by e& and e&, there are four possibilities:

(21 COS81+(23 Sln81)

t(22
e2=

t o,'i cos82 —0.3 S1I102.

However, it is well known (and can be demonstrated
either directly or by gauge-invariance arguments) that
we may replace e; by e~+aq(, where (I is an arbitrary

Substituting (4) into (1), we see that the constant
column vector I must satisfy the equation

(E(24- p(23- m)Q= O.

Four linearly independent solutions are

/
GJ) g
/

/

/
FIG. 1. Coordinate system and angles used in calculations.

constant, without changing our results. If we use this
fact and employ the polarizations

ei=
ei

and e2 ——

e2
where

e1' ——(23cuz+(34(41 cos81 and e2 — (13M2+Q4(02 COS82,

S is the product of the normalizations used in the wave
functions, and it must also include a factor (—el' el')
=(dl' sin'8l if el ——el', and a factor (—e2' e2') =cv2' sin'82

if e2 ——e2'. p (E) is the usual density of states for Compton
scattering. The matrix M is the sum of two contribu-
tions, one from each diagram for the process. (See
Fig. 2.) Applying the usual Feynman rules, we have

where

M'= —42r2e2 (Ml+Mlz),

Mz=&2(kz+ql —m) '&I,

Mzz = 81(kl—q2 m) 82. —

Making use of (3), we write

2m'(MIMI e, ((kl+ q——,)'+m(k, +ql)'
—2suol

(klan

ql) —2m'M I)el
=e2/zei,

—2m'(d2MII e1((kl q2)'+m(kl —q2)'

+2nuu2 (kl —q2)+2m'&v 2)e2
= eg/zze2,

7 I am indebted to R. P. Feynman for making this suggestion.

a considerable amount of algebra is avoided, a linear
combination of 0.3 and n4 being easier to handle than a
linear combination of 0.3 and ni. ~

The cross section for Compton scattering in the Born
approximation is

da =22r)& 3+ P-~ (ugMQ, ) )21V 'p(E).
4;Ius c2uf
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The total cross section computed from (5) is

o = (2~/27) (e'/411)'(tot/m)'.

FiG. 2. Feynman
diagrams involved in
Compton scattering.

Corresponding quantities for spin-~ electrons are
obtained from the well-known Klein-Nishina formula:

(A) do = ', (e-'/m)'(m/col) csc'(8/2)dQ,

(B) do = 2 (e'/m)'(E'+ 2E+2) (E+ 1) IdQ
(7)

o.=s.(e'/m)'(4N/tot) in(24o 1/m). (g)

The important feature of (5) and (6) is the rapid
increase of cross section with increasing photon energy
at high energies, especially when compared with the
Iaein-Nishina results in (7) and (8).

g,

where we have used the relations

(~1+$1)' (~1+$1) 411 +21144oly

(kl —q2) (k,—q2) = m' —2nuog.

At this point the 64 quantities (ulel¹e144,) and the
64 quantities (u~el¹lel44;) were calculated. A great
deal of labor would have been involved in combining
these directly into a cross section, so the assumption
~&»m was made, and only the leading terms in each
transition amplitude were retained. In order to facilitate
comparison with the usual formulas for the Compton
effect, angles 8 and q, defined by

8—=81+8'—lr, y =n.—81

X(to) =
0 fOr rM &E*/ol,

(9)
(Z'e'/lr') (tor') ' for rM (E*/ld.

In particular, we consider the Compton scattering of
one of these photons u~ through an angle 0 by the
particle ns. The following relations are easily obtained:

IV. VIRTUAL-QUANTA ESTIMATE OF
BREMSSTRAHLUNG

%'e wish to estimate the bremsstrahlung cross section
for a spin--', particle of mass m, charge e, and total
energy E&&vs, encountering a stationary nucleus of
mass M and charge Ze, to produce a photon of energy
between eE and (e+de)E Since .it is the fast, light
particle which will produce most of the radiation, we
will consider the Lorentz system in which the particle
m is at rest while the nucleus M is moving past with

energy E*= (M/4N)E. The highly flattened Coulomb
field of the nucleus will contain, at a radial distance r,
a flux of E(to)dto photons per second per cm' of energies
betWeen to and 4o+dto, Where

were introduced. (See Fig. 3.)
From the well-known relation

to2= (1 e)tot~

1—COS8= em/to2 ——(m/tol) (1—e) 'de,

dQ=2s.d(cos8) =2m-(ec/to )(1—e) 'de

we see that when ~~)&no two cases must be distin- Then the bremsstrah]ung cross section will be
guished:

(10)

(A) 1—cos8))m/to, ,
(B) 1—COS8 m/&pl.

Cross sections valid in each region were found to be

(A) do = (1/162) (e'/414)'(to /lol) Lcsc'(8/2)

+9 csc4(8/2)+9 csc'(8/2) jdQ,

(B) d =(4/ )(&'+2&+ )(&+ ) ' ( )
X (e'/m)'(tot/m)4dQ,

E= (1—COS8)tot/tll. —

As has been emphasized before, only leading terms in

tot/4N are given. It will be noted that (B), with E
and (A), with 8~0, give the sa,me cross section.

~dQ) compton

]my (Z'e') ) 1 )x 2~I —
1
(1—e)-'«x

I l I l
~

E4o,) E m' ) &to,r')

The limits on the radial integral are easily specided:
r;„=r„, the nuclear radius ( lol '); for r&r„, the
assumption of a Coulomb field is certainly not valid,
and virtual photons (if any) in this region are ignored.

rm, „= E/4mol, since for r&E/olltol, E(4ol) =0 by (9).
The limits on the integration over co~ were chosen as

follows. If

oil�

&E/r„m, then X(4ol) =0. Therefore
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for co„we obtain roughly co& & 25nz. We shall take A =25;
we believe this to be a quite conservative estimate.

From (10), (cat); )sorts(1 —e) '. If e&0.8, however,
—',sm(1 —c) '&2trt. Since our formulas (5) are not ex-
pected to retain much validity at such low energies,
we choose (tdi);„ thus

—',crt(1 —e) ' if e)0.8,
1 min

frrt if e &0.8,

(cot),„&E/r„m. However, because of the extreme
energy dependence of our Compton cross sections, it
was decided to ignore virtual photons of energy greater
than Am; for high energies oii the cross sections (5)
become so large that the Born approximation is cer-
tainly no longer valid. To arrive at a reasonable cut-oG
parameter A, ' we observe that in the coordinate
system in which the total momentum is zero, the
angular dependence of the Compton cross section is no
longer so sharply peaked in the forward direction, but
is fairly smooth. Therefore it appears that only low
values of angular momentum (or low multipole orders)
contribute, so that the total cross section should be of
the order of orX,s, where X,=—to, ' is (2or) ' times the
wavelength of the radiation in the "center of momen-
tum" system. We shall impose on co& the restriction

a. (cot) &or/td, '.

Using (6) for a (tat) and the relation

&a.= (trttei/2) &

FIG, 3. Compton scattering in lab system.

The cross section for production of bremmstrahlung
photons eE with 0.2&&&0.8 is

ld =e3.5&&10')& oo[ln(E/10" ev)+sg. (11)
0.2 (de)

For spin-~~ particles at high energy, Christy and
Kusaka" give

ada s) )2E1—e 1 q

l
=-', ge '(3e' —4e+4) 21nI =

l

—1
(de) f Em e r rtt)

from which we find, approximately,

~o.s (dao)
l
de=5.4q [ln(E/10" ev)+4.3]. (12)

&, , Ed. );
For energies E=10"ev, (11) is about 5 times as large

For (do/dQ)co ot,„we shall take the second equation as (12) . for 1011 ev the ratio is about 25
of (5), since for E))1 the cross section is very small
anyway. Furthermore, we approximate this expression
by V. DISCUSSION

This is exact at e=O, good to 5% at e=0.2, good to
50% at e=0.6, and is an underestimate for all eWO.

We then find, for &&0.8,

da& )32' f (E 1 q

I o (1—e)'I A'»I
de E 243) E &Am r„m)

fE 1q fs)
+—f l-I

&fr~ r.m) 3 )
= (32/243)AsP(1 —e) [ln(E/10'o ev)+s) E) 10M ev

where oo, as in Heitler, ' is defined by tt
=—Z'e'(e /ttt)

and we have set r„m=4.

The following estimate of A was suggested by R. F. Christy.
W. Heitler, Qttarttttet Theory af Radhateoe (Oxford University

Press, New York, 1954).

The calculations of Christy and Kusaka" show that
the observed frequency of cosmic-ray burst production
at sea level is accounted for quite satisfactorily by
bremsstrahlung and knock-on electrons from spin- —',

mesons of energies 10'—10" ev, provided we use the
modern value of the mu-meson mass. The bremsstrahl-

ung cross section obtained in Part IV of this paper
exceeds the corresponding spin- —,'cross section by a
factor of at least 3 throughout most of the photon
spectrum at X=10" ev. At X=10" ev, the ratio is
well over 10 throughout most of the spectrum, and the
rise with energy continues rapidly. Since the spin--,

bremsstrahlung in this energy range accounts for nearly
'

all (=95%) of the bursts, the observations are clearly
not in accord with the mu meson's being a spin-~~

particle of the type discussed in this paper. Such
mesons, arriving at sea level with the observed mu-

meson Qux would produce far too many bursts. There-

'o R. F. Christy and S. Knsaka, Phys. Rev. 59, 405 (1941).
"R.F. Christy and S. Kusaka, Phys. Rev. 59, 414 (1941).
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fore the possibility that the mu meson is a spin-~ The self-m»»s
Particle describable by the Fierz-Pauli-GuPta theory of ~~—(g/yg) (4~a~/j) (tese) i(2~) '4

such particles must be ruled out.

d'kc(k)'k -'(un, (P—Jt—m) 'n„se),
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APPENDIX

This investigation originated in a conjecture of
Professor Feynman that the masses of particles might
arise entirely from virtual interactions with other
fields. This might easily be the case for the particles
with strong interactions, but the muon has no such
interactions. Since ordinary spin--, theory appears to
be unable to account for a large electromagnetic self-
mass, it was felt that a spin--,' theory should be investi-
gated in connection with the muon.

(sou) = 2E/ssr.

Since the integral diverges quadratically, we choose
the convergence factor C(k') to be

C(k') = f—h'/(k' —hs))'

The result, retaining only terms in )', is

Ayers = (5e'/18sr) (h/m)'rrs

Feynman has suggested" that this result, rewritten
in the form

~(~') = (5/9~) esh',

remains valid even if no=0. The entire muon mass could
then be accounted for electromagnetically, if the cutoG
X were given a value equal to several proton masses.

'2 In the case of spin zero, the analogous formula can be shown
to remain valid when m= 0.
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Quantized Field Theory in the Hamilton-Jacobi Fornialism*
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Newark College of Erigineer&sg, Newark, New Jersey

{Received October 18, 1955)

A method is developed, and applied to the free Klein-Gordon Geld, for modifying the author's Hamilton-
Jacobi formalism for classical Geld theory in such a way as to describe Geld quantization. Although the
modified Hamilton-Jacobi equations, as well as the explicit, modified, nonlinear field equations do not con-
tain functionals of the Geld variables on a space-like surface, but only functions of the Geld variables at a
space-time point, they are implicitly tied to families of space-like surfaces through a normal vector Geld
which cannot be eliminated. Furthermore, the modified Hamilton-Jacobi equations in each case can be
found only from the Schrodinger equation for the quantized Geld system, not directly by a uniform method of
generalizing the classical equations. The consistency of the present method with the usual formalism of
Geld quantization is shown by means of a continuity equation, but no explicit solutions, which would exhibit
the presence of particle-like quanta, are given. Problems peculiar to fermions are not discussed.

INTRODUCTION

A POSSIBLE description of the eGects of field
quantization by a classical field theory is

presented. This is done by modifying the Hamilton-
Jacobi formalism for classical field theory, ' previously
developed by the author, in a manner analogous to that
used by Bohm' to obtain, from the Schrodinger equation
for a particle, a modified Hamilton-Jacobi equation

*Read at the New York meeting of the American Physical
Society, January 30 to Februrary 4, 1956 LBull. Am. Phys. Soc.
Ser. II, 1, 47 (1956)g

'H. Freistadt, Phys. 97, 1158 (1955), hereafter quoted as
CFHJ. The notation of CFHJ is used throughout. Equations are
quoted as CFHJ (1), CFHJ (2), ~ ~ ~ .' D. Bohm, Phys. Rev, SS, 166 (1952).

which in principle describes the motion of the particle
in the sense of classical mechanics. A preliminary
application to field theory was already given by Bohm'
in the case of the electromagnetic 6eld. Bohm's treat-
ment is not relativistic, but could be made so by rather
trivial generalizations. A more serious point is that his
Hamilton-Jacobi function S characterizes the entire
field system at a time t (relativistically: on a space like
surface o). It is thus not a function of the field variables
at a single space-time point, but rather, a functional
of the field variables on a space-like surface. Bohm's
5-function for fields satisfies functional rather than
field equations. It was shown in CFHJ that the basic

' D. Bohm, Phys. Rev. 85, 180 (1952).


