PHYSICAL REVIEW

VOLUME 102,

NUMBER 1 APRIL 1, 1956

Rearrangement Collisions

B. A. LIPPMANN
Microwave Research Institute, Polytechnic Institute of Brooklyn, Brooklyn, New York

(Received December 12, 1955)

We discuss the quantum-mechanical theory of rearrangement collisions. In particular, we consider:
(a) the transformation of the state vector from the original basis to the basis of the rearranged system;
(b) the conditions for the equivalence of the “post” and “prior” interactions when computing matrix
elements; and, (c) the extension of Schwinger’s variational principle to rearrangement collisions.

1. INTRODUCTION

ARIATIONAL principles for scattering processes

have been devised by Schwinger, and have been

discussed, for direct collisions, previously.! In this paper,
we wish to treat rearrangement collisions.

The distinction between the two is as follows. In a
direct collision, the scattered and the incident particles
are the same; only their states may change. In a re-
arrangement collision, the particles scattered differ from
those incident, either in identity, as in an exchange
collision, or in intrinsic structure, as in a stripping or
pickup reaction.?

Borowitz and Friedman have already described a
variational principle for rearrangement scattering.® In
form, this variational principle is rather unexpected.
For, although it is an essential feature of Schwinger’s
variational principle—as formulated for direct scatter-
ing—that the initial and final states appear symmetric-
ally, in the expression given by Borowitz and Friedman
this is not so; the original and the rearranged systems
enter quite unsymmetrically.

The same variational principle is derived here, but in
a context that clearly shows it to be one of a pair of
dissymmetrical stationary expressions. In the present
treatment, the other member of the pair is exhibited,
and the two expressions are then averaged; the result
is a variational principle that is symmetrical in the
original and rearranged systems.

In the course of the preliminary development, it is
necessary to examine the transformation of the state
vector from the original basis to the basis of the re-
arranged system, a question which has also been con-
sidered in the recent literature.** Here, our formalism
permits a concise, and at the same time rather general,
derivation of the essential results.®

1B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
References to this paper will be preceded by I.

2 Stripping or pick-up reactions appear as exchange processes
relative to the particle that is stripped-off or picked-up.

3S. Borowitz and B. Freidman, Phys. Rev. 91, 398 (1953). A
slight error appears in this paper. Although the kernels en-
countered here are not self-adjoint, the variational principle is
discussed in the form appropriate for a self-adjoint kernel. The
correction involves replacing the kernels appearing in Eqgs. (15b),
(19), and (31) by their adjoints.

4T. Y. Wu, Phys. Rev. 87, 1010 (1952); L. E. H. Trainor and
T. Y. Wu, Phys. Rev. 89, 273 (1953).

5H. E. Moses, Phys. Rev. 91, 185 (1953); S. Altschuler, Phys.
Rev. 91, 1167 (1953); 92, 1157 (1953).

The “post-prior” discrepancy is also discussed briefly.
We remark, first, that the vanishing of the discrepancy
for the exact wave functions implies that it also vanishes
in the Born approximation, and conversely. Second,
we note that the discrepancy vanishes if the “post” and
“prior” unperturbed Hamiltonians are Hermitian be-
tween the initial and final states. Thus, the elimination
of the “post-prior” discrepancy imposes a restriction
only on the formal representation used for the wave
functions: for the continuum states it may be necessary
to use wave packets, or an analytical equivalent.

Our method, and notation, differ somewhat from I.!
To explain them most simply, we first review the
familiar case of direct scattering.

2. DIRECT COLLISIONS
We limit ourselves, in this section, to collisions in
which the scattered particles are the same as those
incident. That is, in both the initial and final states,
the two separated parts of the system are characterized

by the unperturbed Hamiltonian Hy, and their inter-
action by the operator V':

H=H+V. (2.1)

Let N be a complex number, the imaginary part of
which is arbitrarily small and positive:

A=E-+ie; -0t (2.2)

Then, since both Hy and H are Hermitian, A— H, and
A—H are nonsingular operators. Their inverses, the
operator Green’s functions,®

Go(\) =1/ (\— Ho) =Go(\ ™)1, (2.3)
G =1/A—H)=G\", (2.4)

6In a coordinate representation, G(\) and G(A*) become the
Green’s functions satisfying an outgoing and an incoming wave
condition, respectively. For example, in one dimension, let
= —d2/dx?, and A= E+ie= (x+ia)%. Then,

1 o Jk ; !
= Tt i) (a—0).
Similarly,
1 e o
=eXP[i(—K+ia)|x—x’|:[ (@)
2(—x-Fia) a0).
Observing that A*= (—x+-ia)?, we see that (2.4) is satisfied.
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therefore exist, and, as shown, are unaffected by Her-
mitian conjugation, provided A is also replaced by its
complex conjugate. This latter property is frequently
of use in deducing or checking equations.

For example, simple operator algebra applied to
(2.3) and (2.4) shows that

G =GN[1+VG(N)]
=[1+GMNVIG.(),

where the last equation may be deduced directly or by
hermitian conjugation plus A—A* applied to the first

equation.
We shall also need the operators

TO)=V+VGON)V=TO\*t

(2.5)

(2.6)
and
UN=14+GN)V. 2.7)

The latter equation, according to (2.5), may also be
written:

[1-GoMVIUN)=1. (2.8)
Comparing the last three equations, we see that
TAN)=VUN)=UNHV
N=VTMN=U0) 29)

=UMILV—=VGMNVIUN).

We turn now to the physical interpretation. The
initial and final states of the system are described by
the eigenvectors of Hy:

H®o=E®,. (2 10)

As the two parts of the system approach one another,
during the collision, the interaction becomes effective
and induces transitions from the given initial state to
those final states that are accessible to the system. In
particular, if the system is initially in the state ®,, the
probability of ultimately finding it in the state &, in-
creases with time at the rate [ (I-1.68) to (I-1.72)7:

2T
wba=;l (@5, V¥D)|%(Ea—Ey),  (2.11)

where, according to (I-1.61),

1
U, F=P,4 Vi, &), (2.12)
E.,:l:ie-—H 0
The delta function in (2.11) insures that transitions
only occur between states of equal energy, while the
plus (minus) sign in (2.12) corresponds to the choice of
outgoing (incoming) scattered waves.
From (2.8) and (2.12),

W, =U (E,t1e)®,, (2.13)

thereby establishing the connection between the theory
of I and the operators introduced here.

For example, if E is the energy common to states a
and b, it follows from (2.9) and (2.11) that the matrix
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element required to compute the transition rate a—b is

Toa(E+tie)= (®s, T(E+ie)®)=[T(E—1i€)t Jps. (2.14)
This is the familiar result (I-1.63):
(B2, VD)= (T, O, VD,). (2.15)

Using (2.9), we may now write the variational
principle (I-1.78) in operator form:

T =VUN+UN)TY

—UMNLV—=VGMNVIUN). (2.16)
The variation of U(\) in this expression leads to
BT\ = {1—[1=GoQAH)VIU M) }VSU(N)
FUMHV{1—-[1-G N VIUN)}. (2.17)

As expected, this is zero, and therefore (2.16) is station-
ary, for variations about the solution of (2.8).

Finally, according to (2.9), the stationary value of
‘T'(A\) is T(\). Thus, (2.16) is the Schwinger variational
principle’ for the operator T'(A).

This completes our review of the theory of direct
scattering.

3. REARRANGEMENT COLLISIONS

We now assume that the separated parts of the
system can exist, in the initial and final states, in two
different arrangements (‘“‘channels”) corresponding to
the “original” and “‘rearranged” systems.

For the original system,

H=H/+V’, CAY
while for the rearranged system,
H=H,"+V". (3.2)

If we stay in the same channel initially and finally,
the discussion of Sec. 2 requires only the addition of
primes or double primes. Thus, for direct scattering
among the states of the original system, we introduce

G\ = =Go' ()T, (3.3)

!
- 0
and

[1—-G/ WV U’ (\)=1. (3.4)

Direct scattering in the original system is then described
by (2.11) with the matrix element replaced by

(q)b,)V,\I’a(+)l)7 (35)
where
Hy/®,/=E,/3,, (3.6)
and
V, =8, + —— V", E, 3.7
EJ/+ie— HY
Using (3.4), the last equation implies that
Y, =U'(E,/xie)®, . (3.8)

7 The relation of (2.16) to the more conventional forms of the
Schwinger variational principle is discussed in the Appendix.
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For the discussion of direct scattering in the re-
arranged system, all the equations above hold with the
primes replaced by double primes. The variational
principle (2.16) may also be transcribed to hold in
either the original (") or the rearranged (") system.

For rearrangement scattering, from the original to the
rearranged system, or conversely, an additional dis-
cussion is required. We now consider these transitions.

In (3.4), U’'(\) is defined in terms of the operator
Green’s function of the original system, Go’(A). This
has the consequence, when used in (3.8), that the
scattered wave is expanded most naturally in the basis
of the original system. For scattering from the original
to the rearranged system, however, it is preferable to
express the scattered wave in the basis of the rearranged
system. (3.4) should therefore be rewritten so that
Gy’ is replaced by Gy’.

To do this, we multiply (3.4) on the left, first by
A—H{', then by Go'’(A). This yields, first

A—H)U' N)=AN—H/=\—H,"+{V'=V"),
and then

[1=G" MW V7IU' M) =Go" N (A= H)
=14+G" W\ (V'=V"). (3.10)

If this is used in (3.8), the state vector becomes

3.9)

&1
SR A
E)/+ie—Hy"
1

W AT
EJ/+ie—H,"

(3.11)

In (3.7), the direct scattering was explicit. Since
rearrangement scattering also occurs, this possibility
was contained implicitly in (3.7). By the transformation
to (3.11), the presence of a scattered wave belonging
to the rearranged system has been exhibited more
directly.

For example, if (3.11) is expanded in terms of the
eigenvectors of Hy', (defined by (3.6) with '—'’),

i +iedy (@, @)
* 5 B — Ey'ie
‘I’b’,(‘l’bu,vl’q’a(i)/)
b E,,’—Eb":i:ie

(3.12)

It is clear that the second term provides a natural de-
scription of rearrangement scattering. The first term
will also contribute to the rearrangement scattering,
unless it vanishes asymptotically. We therefore must
examine the asymptotic form of this term. Only those
states for which E"” is in the continuum need be con-
sidered, since discrete values of E;" correspond to
states that vanish asymptotically.

In the first term of (3.12), as e—0, the e-dependent
factor approaches zero for E”s4E,’ and unity for
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Ey'=E,. Thus, in this term, the state &, is first ex-
panded in terms of the eigenstates ®,”’; the e-dependent
factor then acts as a projection operator that limits the
b states to those states, say “b”, on the energy shell
Ey’=E,. That is, if we split the sum over & into an
integral over the energy E;” and a sum over states
“b” of equal energy, E;”, the first term of (3.12)
becomes

Eq'+e
lim
0

AEY" Y p(EJ)® (8, ®.), (3.13)
Nb"

Eq'—e

where p(E,") is the number of states of type “b”’ per
unit energy range. Since the integral is over a vanish-
ingly small interval, (3.13) is zero unless the integrand
contains a delta function in energy.

To analyze (3.13) further, let us consider an exchange
collision. We suppose two independent particles, 1 and
2, collide. In state a, the energies are Ei and E;'; in
state b, they are E,” and E,”. In the transition a—b,
energy is conserved.

Because 1 and 2 are uncoupled in both states ¢ and b,
the scalar product in (3.13) factors into a scalar product
of the wave vectors of 1 times a similar product of the
wave vectors of 2. (A similar factorization occurs for
the integration over E;” and the sum over states of
equal energy, “b”.) Now, the scalar product of the
1 vectors is independent of the variables of 2, in
particular of Ey’ and E,”. It follows, that if an energy-
dependent delta function results from this factor, it
must be §(E,/'—Ey’). Similarly, if the scalar product
of the state vectors of particle 2 produces a delta func-
tion in energy, it must be §(E,”"—E,’). We conclude
that (3.13) vanishes unless particles 1 and 2 individually
have the same energy in state b that they have in state a.

If, for example, E,’ and E,” are in the (positive)
continuum, (3.13) vanishes if E;” and E, take on
(negative) discrete values. Or, (3.13) is different from
zero only if, in going from @ to b, neither particle changes
from an unbound, or continuum, state to a bound state,
or conversely.

Ordinarily, this requirement is not satisfied in re-
arrangement scattering. The customary exchange situa-
tion corresponds to the particle that is bound in state
a becoming free in state b, while the other particle
behaves oppositely. The first term of (3.12) then re-
duces, asymptotically, to zero.

We shall limit ourselves to such cases. When using
(3.11) to expand ¥,®’ asymptotically in terms of
eigenvectors of Hy/, the first term of (3.11) therefore
may be ignored. In an exact expression, however, this
term is essential: it relates ¥,®’ to its source. Only
when this term is retained, may (3.7) be derived
unambiguously from (3.11).

In the light of these remarks, the probability that a
system, originally in state &,’, will finally be found in
state ®,” may be obtained by considering only the
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second term of (3.12):
@7
(Ed—Ey)+é

| (@00, [*= (3.14)

The transition rate for rearrangement scattering,
wp, ™, follows by taking the time derivative of (3.14).
To do this, we note that (3.7) implies that ¥, has
the complex energy E,'47¢, and therefore that the time
dependence exp[i(E,'+1i¢)t/%] must be associated with
this stationary state. That is, (3.14) has the time
dependence exp[ (—2ef)/#] and?®

a
wba(r)=5_t| ("W, |2

2w
=;L—|(¢I>,,”,V"\I/,l(+)’)|26(Ea’—-Eb"), (3.15)
where we have used (I-1.58):

(3.16)

lei_r'rox f 2_:_xzf(x)dx=1rf(0).

Clearly, (3.15) plays the same role in rearrangement
scattering that (2.11) does in direct scattering. The
matrix element required, according to (3.8) and
(3.15), is

(‘bb“, VII\I,a(+)I) —_ (q)bl/’ VII UI (Ea,+i€)¢’a/),

where E,/=E;/.
We have already remarked that U’(\) and U”(\)
follow by putting primes and double primes on (2.7):
UN=14+GN\)V’, (3.18)
U’'n=14+GM\V". (3.19)
In fact, (3.4) follows from (3.18) and (3.3). A similar

equation holds for U””(\) if we replace primes by
double primes:

[1—G WV ]U" (\)=1.

(3.17)

(3.20)

In the same way, the substitution """ in (3.10) leads to .

[1=G/ WV JU" N =G’ W) A= H,")

=14+G/A)(V"=V"). (3.21)
From (3.18) and (3.19) we infer that
V'[U'(\)—1]=[U"(*—1]tV". (3.22)
Taking matrix elements as in (3.17), we have
(@0, V" WD) = (1", V'®,)
= @[V V' ]8)
=(®",[H/—Hy" @), (3.23)

8 Equations (3.15) and (3.25) have previously been derived by
M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398 (1953).
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where we have used (3.1), (3.2), and the analog of (3.8):
W, =U"(Ey +1ie)®;". (3.24)

We now wish to impose the condition that Hy' and
H,"" are Hermitian over the domain of states @ and b.
For the case to which we have restricted ourselves—
where one particle is bound in ®,’, and the other is
bound in ®;'—the Hermitian condition is already
satisfied. For other pairs of states, involving only con-
tinuum states of both particles, Hy' and Ho"” may be
made Hermitian by the use of wave packets or an
analytical equivalent.

Assuming, then, that the Hermitian condition holds,
(3.23) is zero on the energy shell. That is, either of the
two matrix elements on the left of (3.23) may be used?
in computing w,™ :

@, V"0, )= (T, V'®,)); B =EJ. (3.25)

We also note from (3.23) that whenever (3.25) holds for
the exact state vectors, it also holds in the Born
approximation:

(@bll’vllq)al) — (@b“,V’@a,) ; Ebl,zEaI- (3.26)

Equations (3.23)-(3.26) confirm the remarks, made in
the Introduction, regarding the ‘‘post-prior” dis-
crepancy: If Hy and Hy’ are both hermitian, the
discrepancy vanishes when either the exact wave func-
tions or their Born approximations are used in the
matrix elements.

If we put V'=V"=V in these equations, (3.25)
reduces to (2.15) while (3.26) becomes an empty
identity.

We turn now to the consideration of variational
principles for rearrangement scattering. The first one,
involving Go”’(\) only, is based on (3.20) and (3.10).
These equations imply that

UV~ VG 0V ILU (M) —1]
_ U/I (A*)T VIIGOII (A) VI
=V"[U'(\)—1].

It therefore follows that the expression

\F1/= U’I (A*)TVIIGO,, (x) V/+ ‘VII[UI (A) — 1]

=U"\HILV"=V"G" WV"LU'N)—1] (3.28)
is stationary for arbitrary variations of U’ (\) and

U’'(\) about the solutions of (3.20) and (3.10),

respectively:

6\Fll —_ BU” ()\*)1‘ VII{GOII ()\) VI

—[1=G"MV"ILU'N)—11}
(=[G IV IU" (V)
XV"[U'(\)—1]  (3.29)

The exact value of ‘Fy’ is given by either side of (3.22).
This is the variational principle given by Borowitz and
Friedman.? It is clearly unsymmetrical in the prime
and double prime quantities.

(3.27)
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A dissymmetrical variational principle may be de-
rived from (3.28) by the transformations <" and
Ae\* followed by Hermitian conjugation:

\F/=V"G/ N V'U' N)+[U"A*)—1]V’
—[U"\—=1JTV'=V'G/MVIU'(N). (3.30)

Equations (3.4) and (3.21) bear the same relation to
(3.30) that (3.10) and (3.20) do to (3.28). That is,
‘Fy' is stationary for independent variations of U’())
and U’ (\) about the solutions of (3.4) and (3.21). The
stationary value of ‘Fy is the same as that of ‘Fy,
namely (3.22).

Since (3.4) is equivalent to (3.10), and (3.21) to
(3.20), the independent variations of U’ and U” that
leave ‘Fy’ stationary also leave ‘Fy’ stationary. We may
therefore construct a symmetrical variational principle
by averaging ‘Fy’ and ‘Fy':

‘Fi'=3[\F/+F,"], (3.31)

where the stationary value of ‘F3’ is given by (3.22).
Another symmetrical variational principle, actually
another form of ‘Fy/, is

2B =20" (V427" U () — U (W)t
X [1_ V"Go”()\)][V”U' ()\)__*_ (V’— V//):l
[0 = (V' =V") [1=G/ NV IU' ).

Vary U’ and U” independently; the result is

26\F/=8U" WV 1— (1— G/ W) V") U' ) ]+ V"
—(1—- V//GOH()\))[VIIU/()\)_*_ (Vl_ 'VII)]}
(1= (=G V)" O T
VLU O = (V= 7")]
XA=G/MN)VNHU' M), (3.33)
or, ‘Fy is stationary if U’ and U” are varied inde-

pendently about the solutions of (3.4) and (3.20),
provided that we also have

Vl= [1_ VIIGOII ()\)][VHU/ (A)+ (VI__ V”)]
V'=[U" W)V = (V' =V")J[1-G/\)V"].

When (3.4) and (3.20) apply, however, the last two
equations, if multiplied on the left by U”(A*)' and on
the right by U’(A), respectively, reduce to (3.22). The
latter, of course, may be derived from (3.4) and (3.20).
Therefore, ‘F4 is stationary for independent variations
of U’ and U” about the solutions of (3.4) and (3.20).

sing (3.4) and (3.20), we find the exact value of

(3.32)

(3.34)

\F4I
[\FII,]exact: %{ u” ()\*)T V,+ v'u’ ()\)} . (335)

Or, according to (3.25), the matrix elements of ‘F//,
formed by using the state vectors ®,” and ®;", are
precisely the matrix elements required in w;q”.

B. A. LIPPMANN

‘Fy' and ‘F are related by
\Fo/="F/—1(V'+V"). (3.36)

IfV'=V"=V, F reduces directly to ‘T'(\)’, as given
by (2.16), while ‘F,’ and ‘Fy’ each become ‘T'(A\)’'— V.
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APPENDIX

The operator variational principle, (2.16), may be
related to the more customary expressions as follows.

Taking matrix elements of (2.16) between two states,
a and b, of equal energy, E, leads to (I-1.78):
‘Tba(E+ie),= (‘I’b("),VCPa)-l- (‘I’b,V‘I’aH'))

— (VO AV —VGo(E+ie)VITD). (A-1)
This is the bilinear form of the Schwinger variational
principle. Another form, which appears more frequently
in the literature, is obtained by putting
U, = AV,

W, =By, (a-2)

in (A-1) and varying the amplitudes 4 and B, subject
to the requirement that ‘7’ be stationary. This leads
to the best choice of amplitudes for the wave functions:
A, AV —VGo(E+ie) V)T, D)
. = (‘I’b(‘)',V‘:I’a),

BT, {V—VGo(EFie)V}¥, D)

= (&5, VT,P'). (A-3)
Using (A-2) and (A-3) in (A-1), and dropping primes,
produces the fractional form of the Schwinger variational
principle:

(\I/b(—),Vq)a) (@b,V‘I’a("'))
\Too(Etie) =

(T, (V= VGo(E4ie)V}T,P)

(A-4)

Thus, the fractional form, (A-4), is independent of the
amplitudes of the wave functions because the ampli-
tudes have been adjusted to their most favorable
values, (A-3).

For numerical calculations, the fractional form is
preferable, since it is unaffected by the normalization
of the trial functions. For theoretical discussions, the
bilinear form is usually more convenient, since the
functional dependence on the quantities of interest,
trial functions, potential, etc., is simpler.

9 G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952);
K. M. Watson, Phys. Rev. 89, 575 (1953).



