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Sommerfeld's bremsstrahlung formula is discussed by the method of angular momenta. The complete
correspondence in the classical limit to the work of Landau and Lifshitz is shown.

' 'N his discussion of nonrelativistic bremsstrahlung'
~ - Sommerfeld has given, for. the electric dipole case
without retardation, a quite remarkable formula, ' which
provides in closed form an exact result for the total
radiation loss. Subsequently, Landau and Lifshitz' gave
an equivalent classical result for the radiation from
particles travelling in Kepler orbits. Current considera-
tion of the closely related problems of proton brems-
strahlung4 and Coulomb excitation' has renewed interest
in these results of Sommerfeld and of Landau and
Lifshitz.

The methods by which Sommerfeld, and Landau and
Lifshitz arrived at their results are, however, quite
diferent: in the former case, parabolic coordinates are
employed (i.e., the "summed field" method as it is
frequently called), whereas in the lat ter case, an
averaging over orbit eccentricities (impact parameters)
is utilized. This latter method is a precise transcription,
in the classical limit, of the quantum mechanical angular
momentum method of partial waves. Now the circum-
stance that Coulomb excitation involves the irregular
operator, to which the "summed field" technique has so
far proved generally inapplicable, more or less forces one
to use angular momentum techniques, and such tech-
niques are useful also for the bremsstrahlung problem.
In particular, if one does treat dipole bremsstrahlung in
this way, the total energy loss so obtained is not at all
clearly related to Sommerfeld's answer. It is the purpose
of this note to give a straightforward proof of
Sommerfeld's formula directly from the method of
angular momenta. While this adds very little that is
new, it is satisfying that the present method shows
rather well the nature of the classical limit and its
relation to the work of Landau and Lifshitz. '

For the electric dipole case, the matrix elements of the
regular (r) and irregular (r/r') operators are essentially

'A. J. F. Sommerfeld, Atombal tend Spehtrallirtiert (Ungar,¹wYork, 1953), Vol. 2, Chap. 7.
~ See reference 1, p. 527, Eq. (12).'L. Landau and E. Lifshitz, Classica/ Theory of Fields (trans-

lated by M. Hamermesh) (Addison Wesley Press, Cambridge,
1951$, p. 200 ff.' C. Zupancic and T. Huus, Phys. Rev. 94, 205 (1954); S. Drell
and K. Huang, Phys. Rev. 99, 686 (1955).

t Biedenharn, McHale, and Thaler, Phys. Rev. 100, 376 (1955).
References to the extensive literature may be found here. See also
the forthcoming review article by Bohr et ul.

6 The corresponding problem of giving the classical analog to
Sommerfeld's method is straightforward and is obtained directly
from the classical limit. The result is even more immediate, how-
ever, if one uses the connection between the angle of deQection and
the eccentricity (i.e., sinss= e ').

equivalent, since

Pa, Lll, rj)= (Zzesks/m) (r/rs),

with H being the Hamiltonian containing the Coulomb
interaction. For this case, then, the Coulomb excitation
and bremsstrahlung results di6er only trivially. Utilizing
an expansion of the Coulomb "plane" wave, one
readily Ands that"
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where we have used the definitions that
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with k2, g2 de6ned similarly for e f' ].
The task now is to show directly that the sum for bo

can be done exactly. That this must be possible is, of
course, obvious from Sommerfeld's work. The (ere, se; l)
are, in general, Appell functions, and, as such, diKcult
to manipulate. Fortunately, however, the (&1, 2; l) are
reducible' to ordinary hypergeometric functions, namely,
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See reference 1, p. 138; Tables of Coulomb 5'ave Functions,
National Bureau of Standards, Applied Mathematics Series, No.
17 (U. S. Government Printing Once, Washington, D. C., 1952),
Vol. 1.

The result for the b0 is derived for Coulomb excitation in
reference 5. Bremsstrahlung actually leads to the integrals (&1,—1; 1) but by taking matrix elements of Eq. (1) for angular
momentum wave functions the relation to the (&1,2; 1) is im-
mediately obtained.' See reference 5, Eq. (64). The reducibility of (0,1;1) is due to
Sommerfeld.
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The sum can thus be put in the more tractable form
(note that k~rtr ——korto)
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Now the (0,1;l) obey a rather simple three-term
recursion formula":

Consider now the function Q(l):
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If we use the finite difference operator, EQ(l) —=Q(l+1)—Q(l), then by virtue of Eq. (6) it is easily shown that
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See reference 5, Eq. (63).
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Since the right-hand side of Eq. (8) is just the summand
of Eq. (5), it is clear that bo is exactly summable between
arbitrary limits (not merely for 1 to ee as might con-
ceivably be the case). We conclude that

bo= I (kP+ko'+2kroqP) (0,1;0)
—2krko I1+inr I l 1+iso I (0,1;0)g(0,1; 1). (9)

By using the properties of hypergeometric functions,
this can be put precisely in the form of Sommerfeld's
result, but for many purposes the present form is to be
preferred.

It remains only to show the complete analogy of these
results to the classical calculations of Landau and
Lifshitz. In particular, one finds that
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The classical limit (i.e., i't to —4) implies that l-+on,
rt
—+~, kr/ko= p—+1, and gq —

qo—«)=finit. In the nota-
tion of Landau-Lifschitz, one has $=ro/roo and e (the
eccentricity of the Kepler orbit) is given by e = (1+2/rP) &.

The integrals on the right-hand side of (10) are Bessel
functions, and one may write, in accord with Landau
and Lifshitz,

(0,1;l),iore- ~o~H;f(iep).

Similarly one finds from Eq. (4) that
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The sum for bo goes over into an integral in the classical
limit, lhl~2cde .'
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and the integrand, as a consequence of the Bessel
equation, is just the derivative of q—=xH, o(x)H;o'(x),
with x=iPe Here q is. clearly the analog to the classical
limit of Eq. (7). The correspondence between the
quantum and classical calculations is complete upon
noting that Eq. (6) in the classical limit becomes the
Bessel equation.
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