
ALIGNMENT OF HYDROGEN MOLECULES

may write

(&)"=L( f )-3W](-:&-+);—;),
where i; is the z-component of the operator e; in a
coordinate system which has the symmetry axis as
s-axis. Evidently for entirely free molecules in the state
J=O, which is well known to be isotropic, (cos'tl)»„= s
and hence

(3c')A, =0.
Consequently no resonance for the free rotating HD
molecule in its ground state can be expected and indeed
none has been found experimentally' in solid HD,

s F. Reif and E. M. Purcell, Phys. Rev. 91, 631 (1953).

another proof that in solid hydrogen the molecules are
rotating practically as freely as in the gaseous state.

Any ariisotropy which may be produced by com-

pression could, however, be traced by the appearance
of a radio-frequency resonance. The spectrum would be
given by the eigenvalues of

(K'/h)A„——(ss(cos'tl)A„—ts) &(43.7Q kc/sec,

where 0 has the eigenvalues —1, —', (1&%3). The fre-

quency observed measures directly the degree of devia-
tion from random orientation, that is the deviation of
(cosV)A„ from the value s.
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The behavior of the cross section for ionization by electron impact is investigated in the vicinity of
threshold by means of the quantum theory of inelastic scattering. A Coulomb-modified form of the Born
approximation is used to calculate the S-wave ionization cross sections for H+, He+, and He++. The electron-
nuclear interaction is included in the unperturbed Hamiltonian for the problem while the interaction between
the incident and atomic electrons is considered as the perturbation. It can be shown that the limiting law
for the ionization of a hydrogen atom has a linear dependence on the excess incident energy. The absolute
cross sections evaluated are in good agreement with experiment. Generalization of the excess energy de-
pendence of the threshold law to the case of multiple (a-fold) ionization is found to yield the forms E, "
for ionization by electron impact and E, " ' for photoionization.

I. INTRODUCTION
' 'N recent years the development of techniques for
~ ~ obtaining better ionization threshold curves' —' has
aroused interest in the theoretical side of this problem.
Most previous calculations4 ' of ionization cross sections
by electron impact have attempted to explain the gross
features of the ionization probability curve over a very
large electron energy range ( 300 volts). In those cases
the ordinary Born approximation was used to evaluate
the direct ionization amplitude. The exchange ampli-
tude was neglected since it is usually large only near
the threshold.

Wannier' has derived a threshold law for single
ionization which has the form of the 2.227th power of
the excess energy. He obtained this via an approximate
solution of the classical three-body problem coupled
with certain statistical-mechanical arguments. A disad-
vantage of Wannier's result from an experimental point

*This work was supported by the Bureau of Ordnance, De-
partment of the Navy, under NOrd 7386.' Foner, Kossiakoff, and McClure, Phys. Rev. 74, 1222 (1948).' Fox, Hickam, Kjeldaas, and Grove, Phys. Rev. 84, 859 (1951).' E. M. Clarke, Can. J. Phys. 32, 764 (1954).

'H. S. W. Massey and C. 3.O. Mohr, Proc. Roy. Soc. (London)
140, 613 (1933).' B. Yavorsky, Compt. rend. acad. sci. U.R.S.S. 49, 250 (1945).

s G. Wannier, Phys. Rev. 90, 817 (1953).

of view is that there is no way of knowing how far
above the threshold this power law is supposed to be
applicable. From a theoretical point of view, it appears
more desirable to approach this problem within the
conventional framework of the quantum theory of
inelastic collisions so that all approximations made may
be clearly delineated.

In the present calculation a modified form of the
Born approximation is employed to obtain both the
direct and exchange ionization (scattering) amplitudes.
One a priori reason for expecting meaningful results
from such a calculation is Wigner's~ proof that the
correct energy dependence of the cross section in the
neighborhood of the threshold of a two-particle reaction
is independent of the reaction mechanism but depends
only on the long-range interaction of the product par-
ticles. In the concluding section we shall further discuss
the justification for this procedure.

The method is here applied to the single ionization of
hydrogen (atomic) and helium and to the double ioniz-

ation of helium. Its formulation is described in detail
for the hydrogen case. Its extension to helium follows

in a parallel manner.

' E. P. Wigner, Phys. Rev. 73, 1002 (1948).
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+(rt, rs) =e'"'*'ll'o(&s)+
I Z+ I

p-(rr)ter-(rs) (2a)

II. FORMULATION OF METHOD

The Schrodinger equation for two electrons (incident
and bound) in the 6eld of a fixed proton is

{Vr'+Vs' —U(rr) —U(rs)+ U(rrs)+h')8'(rr, rs) =0, (1)

where k'=(2srt/ttt') times the total energy and U(r)
= (2stt/A') ( e'—/r) Ex.panding' the total wave function
in terms of hydrogen atom eigenfunctions f„,

unperturbed Hamiltonian of the scattered electron by
including this term on the left-hand side of (3). No
"post-prior discrepancy" arises here since. we have a
symmetrical electron-electron interaction as the pertur-
bation. This formulation of the problem was first ap-
plied to atomic scattering processes by Borowitz" in a
calculation on the elastic scattering of electrons by
hydrogen.

We expand the right-hand sides of (3a) and (3b) in
spherical harmonics (suppressing the subscripts identi-
fying the electrons):

e(rr, rs) =
I P+ ~G„(rs)P„(rr),
(

)
— P„*(r')U(

~
r—r'

~
)4'(r, r') dr'

multiplying by continuum wave function P„* (which
corresponds to ionization), and integrating over one of
the position vectors gives the following two integro-
differential equations (corresponding to direct and
exchange ionization):

{V&2 U(&&)+$2 xs)P (rl)

{Vs'—U(rs)+k' «'} G(r )s—

4.*(rr) U(r&s)+(r& rs) dr& (3b)

l=o m=l
A p(r)Pt~(cose)et~9 (&a)

—
J P.*(r') U(~ r —r'~)@(r', r)dr'

l=O m=l
Ct™(r)Pt (cos8)e'"& (4b)

p (r) =p p g ~(r)p ~(cose)e'~o (5a)
l=O m=—l

where the polar axis is taken in the positive Z-direction,
the direction of the incident beam. If we similarly
expand F„(r) and G„(r),

where x'=(2m/ttt') times the energy of the ejected
electron.

In the problem of excitation and in past treatments' '
of the ionization problem, the interaction potential
appearing in the right of (3a, b) was taken as U(rr „s)
—U(rrs) and a plane wave operator appeared on the
left. The use of an interaction potential which is asym-
metrical in the two electrons has led in the past to the
so-called "post-prior discrepancy'" in the case of
exchange scattering. Several authors'~" have recently
shown that the discrepancy vanishes when exact bound
state wave functions are used but the situation is still
unclear for the case of continuum states. "In the present
case of ionization near threshold, the scattered electron
as well as the ejected electron is under the inQuence of
the Coulomb Geld of the ion core at all distances. Thus,
the ion-electron interaction is regarded as part of the

s N. F. Mott and H. S. W. Massey, The Theory of Atomic Col
leslorts (Oxford University Press, New York, 1949),second edition,
pp. 136, 140.' Bates, Fundaminsky, and Massey, Trans. Roy. Soc. (London)
243, 93 (1950).I S. Borowitz and B. Friedman, Phys. Rev. 89, 441 (1953).

» S. Altshuler, Phys. Rev. 91, 1167 (1953).
's S. Borowitz, Phys. Rev. 96, 1523 (1954)."E. Corinaldesi and L. Trainor, Nuovo cimento 9, 940 (1952).
14 Rote added in proof.—I am indebted to Dr. S. Borowitz for

bringing to my attention the fact that the "post-prior discrep-
ancy" also vanishes for continuum states when exact atomic wave
functions are used. See A. Dalgarno, Phys. Rev. 91, 198 (1953);
S. Borowitz and B. Friedman, Phys Rev. .93, 251 (1954).

G„(r)=g P Dt"(r)pt" (cos8)e' & (5b)
l=o m=—l

substitute these expansions into (3a) and (3b) and inte-

grate over angle, the following radial equations result:

1 d ( d) l(l+1)
rs—I+& s—U(.)— pm —A m (6a)

rsdr( dr) r2

1 d t d) i(i+1)——
~

r' ~+h,'—U(r) Dt"—=Ct (6b)
rsdr& dr) r2

Dlm= —k Ll IIlCl r2dr —k Bl LlCl r2dr,q Q J
(7b)

where L& is the solution of the homogeneous equation
in (6) which vanishes at the origin and Ht is the solution
which is purely outgoing at infinity. The regular and

where h =h' —x'= (2stt/ttt') times the energy of the
scattered electron. The Green's function solutions of
these equations which vanish at the origin and are
purely outgoing at infinity are

~
00

Bp= —h Lt HtAt r dr lt Ht ' 1tAt y dr (7a—)q g J 0
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irregular solutions" '6 of the Coulomb radial equation
have the following asymptotic forms, respectively:

Lq (k,r) ' sin(k, r—a~ ln2k, r—~l7r+ri~),

K~ (k,r) ' cos(k,r—n, ln2k, r—2rhr+riq),

where n, = Zme'—/A'k„ri& ——argI'(i+1+in, ), and Z is
the charge of the ion core. The linear combination

H~ Kq+——iL~ (k,r) ' exp[i(k, r n, —ln2k, r——',br+a~) 5

has the desired outgoing form at infinity. Upon sub-
stituting into (7), the asymptotic forms of the desired
solutions to Eqs. (6a) and (6b) are

8 ~
r' exp[—i(k,r—n, ln2k, r 2l7—r+ ri~) 5

X LgAg r'dr, (Sa)

D~ ~ r' exp[i—(k,r—n, ln2k, r ——,'hr+riq)5

X LQPr'dr. (Sb)

The direct and exchange ionization amplitudes are
defined as the amplitudes at infinity of the outgoing
scattered wave, that is,

F„(r)~—r ' exp[i(k, r rr, ln2k, r—)5f„(8,y), (9a)

G„(r) r' exp[i(k—,r—n, ln2k, r) 5g„(8,io). (9b)

Combining (5), (S), and (9), we have the following for
the amplitudes:

l=0 m—l

responding to diferent values of the orbital angular
momentum. No great mathematical difFiculties are
encountered in the calculation of each partial cross
section. In what follows, the calculations are carried
through for the 5 partial cross section. Since we are
interested only in the threshold behavior, it is certainly
physically reasonable that the primary contribution to
the total cross section will come from the 5 partial
wave.

III. HYDROGEN

The total ionization cross section for hydrogen is

t
&max

dK dQ de pal f—„g„I'+—~ I f„+g„I'}, (11)
k„40

sink„r
1l"*(r')U(l r —r'I) A(r') dr'

k„r

=P A ~ioi (r)P~(cos8), (12a)
l=o

where the two angular integrations refer to the angles
of the ejected and scattered electrons and the z inte-
gration goes over all energies of the ejected electron
consistent with energy conservation. The above com-
bination of direct and exchange amplitudes is that
required by the Pauli principle" for an incident beam of
unpolarized electrons.

In the S-wave Born approximation the general
spherical harmonic expansions of the preceding section
may be specialized to the expansions in Legendre poly-
nomials,

g (8~)=Z 2 exp[i( —2l~+n~)5
l=p m=—l

00

X t L~Cg r'dr P~ (cos8)e' r

0

(10b)

=P C~&'&(r)P~(cos8), (12b)
l=o

where the polar axis is now taken to be directed along x.
The superscript in parentheses refers to the angular
momentum of the incident partial wave. The ampli-
tudes, when found by the method of Part II, are

The Born approximation is introduced by putting
for the true solution, 4'(r, r'), in (4a) and (4b) the initial
state, e'"~Q (r').oIn order to avoid confusing the present
method with the conventional Born approximation
(asymmetrical perturbation and plane wave Green's
function), we shall refer to it as the Coulomb-modiimd
Born approximation. With this approximation, the
evaluation of Al and Cl still remains mathematically
intractable. This difBculty may be overcome by decom-
posing the incident wave into its partial waves cor-

'~ See reference 8, pp. 52, 111.
"W. Gordon, Z. Physik 48, 180 (1928).

f„"'(8)=P exp[i( —-', i~+a&)5
l=-0

g„io&(8)=P exp[i( ,'hr+rl()5——
lM

aJ 0

'7 See reference 8, p. 143.

Lg q
"~r'dr Pg(cos8),

LqC~&"r'dr P~(cos8).
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When the integration is performed over all angles, we
have

"dQ) dooI f„(')+g„(')Is

16m' P ~~ Lt(A &(o) ~C&(o))rod
&~21+1 "o

)( ( n )1 ei-
Z (2f+1)(—i)'

2w Ee' —1) I'(1+in) ~o

Xe'«L((s, r)F((cose). (13)

We now also expand the interaction potential in
Legendre polynomials:

where

21M
U(I r—r'I) = —— P F„(cosy)h„(r,r'), (14)

jP n=o

h„(r,r') =
r's/r~+t

r~/r ~+&

and y is the angle between the vectors r and r'. The
regular Coulomb function" which has the required
asymptotic behavior is

Ir(chili~, ) I

L((ko,r) = e 1~ &— (2k,r)'e'"~"
(2l+1)!

X&F&(in,ii+1; 2l+2; 2ik, r) (15—).
Using (12), (13), (14), and (15), one obtains

F00

L((A&")+Cr('))r'dr
~o

( P q 1 e~&s«2" (—i) ts'"(=4;., p-
I (1—e ' ~) F(1 i/p) f(2—l+1)!j'

xp'p, 'I 1'(&+1 i/p) I I
1'(i+-1 i/p, ) I

& '(p, p—,), (16)

where

's A. Sommerfeld, Ann. Physik 11, 257 (1931)."See reference 8, p. 53.

The properly normalized continuum functions for
hydrogen were given by Sommerfeld" in an integral
representation as

eider +ao

y.*(r)=—
I I

! I'-e--
2s (e" —1& r(1+in) "o

XJo(2fisfu ji)dry,

where a= —Zme/fs's and g=r(1+cos8). This can also
be expressed as the expansion in Legendre polynomials,

with

2S/ —1
X As(+3(2'&)+— A, (+4(21p )

5 2l+4

i 5l+1( )i As(+s(21pi)
5 (2l+4) (2l+5)

A„(x)= 1„(x).
(~/2)"

This exPansion" is convergent for orPlP'~& 1 and, for the
low energies involved, the important contribution to
the integrals in S~+ come from well within the con-
vergence radius of p. With the use of the low-energy
expansion for 4, S&+ may be written as

f (21+1) '1s
(1a1)Sg— (P'aPos)(15&

3V2

(P'~P')&+0(P'P. '), (17)
3

where Q, ~, ~, and Cg are coefBcients which are inde-
pendent of p and p, but which do depend on the slowly
varying incident energy parameter, p~:

e(—— pi sinp, pJ,(+r (2'&)
0

00

X ~ p'ie &'h((p, p')Js(~t(2''i)dp' dp,
0

"J.G. Beckerley, Phys. Rev. 67, 11 (1945).
s' M. Abramowits, J. Math. Phys. 33, 111 (1954).
~ J. G. Beckerley, Ph.D. thesis, Stanford University, 1944

(unpublished).

St+=
~

p'+' sinpsp C'&(p„p)
' p"+'e o'hg(p, p')

0 ~v'
p

F00

XC t(P,p')&p'+@((P,p) p"+'
0

xe 'h-((p, p')& &(p„p')(fp' &p,

and
i

C ((P,p) =e&' tF tI -i—l+1; 2l+2; 2iPp I.
p

' j
The new dimensionless variable p is related to r by
&(r=pp and p= —1/(r. While (r and a, are large and
negative near threshold, p and p, are small and positive.

To further reduce (16) we employ the low-energy
expansion of the Coulomb function in powers of the
energy which was erst developed by Beckerley" ":

psp2

C'((P,p) =As~&(2&pi)— As(+s(2'p')
3(2l+2)

l p4p4

+ As(+s(2&pi) +
2l+3 18(21+2)(21+3)
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f00 F00

$1= pi sinp„pf 21+1(2''*) P"e 'h1(P P')
section,

(&./& ){-'.If.—g. l'+-'Ig. I'}, (2o)

where the 6rst term refers to the singlet-singlet transi-
P )+

1 h
'~3( ) ' tion and second term the singlet-triplet transition. The

preservation of individual spins throughout the collision
requires that the singlet-triplet transition be possible
only through electron exchange.

Expanding the total wave function in terms of helium

00 l
p' sing, p 121+2(2&pi)+ 721+3(2&p&)

0 (2p)'

+(rr, rs, rs)
I Q+ IG (13)p„(rs,rr),

J

the three-electron Schrodinger equation may be put in
the following form:

dps(e sqie 1)—1(e 2q /—pq —
1)

—1

x(p((p', pq') {4I &r I'+4
I
s1+I'}) (1&)

I p+ ' I{vs'+As—k„'—2U(r1)+ U(r12)+ U(r13) }
~ j

where (P1(ps,pqs) represents the polynomial

cq atom eigenfunctions' . ''" """"'"""""'" ~(""")='"~.(",")+I'Z+ "'IF.( )~.(","),
Converting the 1( integration into a ps integration, we (21a)

obtain the following for the cross section:
24l

a. (o) = 2562rs(332P 3 P
1=o 21+1 I (2l+1) lj4

+p 4
1

81($1+61)+—(1+1)(2l+1)8, 12

342 6

L{1+P&'}{1+(f—1)'P'} {1+02})
XL{1+PP }{1+($—])2P 2}. . ~ {1+P2}]

with (Po(P2,$32) = 1. Since P and (9q are positive and «1,
(e ' 'p 1) '(—e ' ~eq —1) '—1 to a very good approxi-
mation. This leaves the integrand of (18) as a series of
terms in ascending powers of Ps and Pqs. Using energy
conservation, P,„s=P2+Pqs, and performing the simple
integration over Ps, one obtains a series in powers of
P, ', or the energy above threshold. Retaining terms
up to order P,„4, the 5 ionization cross section for
hydrogen is

00

o. (ol =642rs(sospv ' Q p 28, 12

1=o 2f+1

Xlt ~(rs, rs)I F„(rr)+b oe'~*'j=0, (22a)

I p+ I{V32+ks—k„s—2U(rs)+U(r13)+U(rss)}
(
E. vj

Xp„(rs,rs)G„(rs) =0. (22b)

At this point we begin to proceed in diGerent ways for
the cases of single and double ionization.

A. Single Ionization

We represent the final state of the helium atom by the
approximate product function, vo(rs)24„(rs), where I„ is
a hydrogenic continuum function for Z=1 (identical
to the P„used for hydrogen) and vo is the hydrogenic
ground state function for Z=2. This permits one to
write the integro-diGerential equations for the scattered
waves as

+o(~- ') . (») V1+k —2U(r1)+ U(r12)vo'(rs)drs F„(r1)

The coeKcient sol(l+1) (2t+ 1) is used to denote the sum
of the squares of the 6rst / integers.

IV. HELIUM

The ((3) single or (b) double ionization of helium may
be treated by the present method if we regard the
process as excitation to a state having ((3) one con-
tinuum electron (Z=1) and one bound hydrogenic
electron (Z= 2), or (b) two continuum electrons (Z= 2).
Excitation will take place from the singlet ground state
of helium to singlet and triplet 6nal states. Application
of the Pauli principle' "yields, for the diGerential cross

"L. I. SchiB, Qssaqssqsm Meehaqsqes (McGraw-Hill Book Com-
pany, Inc. , Nt;w York, 1949), erst edj, tion, p. 23$,

U(rls)lP (rs, rs)+(r1 r2 rs)drsdrs (23a)

Vs'+f33 2U(rs)+ U(—rss)vo'(rs)drs G„(rs)

I U(r13)P„*(rs,rr)@(rr, rs, rs)drrdrs. (23b)

For all values of r except the region very close to the
nucleus, the ion core will. appear as a point charge to
the outgoing electrons. This is equivalent to the ap-
proximation in the left-and sides of (23a, b) that



176 SYDNEY GELTNt AN

0.08

0.05
NO
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'

INCIDENT ENERGY ( E&EI)

1.04 l.05

are obtained from a simple rearrangement of (22a)
and (22b). We use the same approximation for 4
here as in Sec. A and the final state is taken as
t/„(rs)t/„(rs)8(x/x+x'/x'). The delta function is used
symbolically to require the two ejected electrons to take
asymptotic directions just opposite to each other as a
result of their mutual repulsion. The right-hand sides of
Eqs. (24a) and (24b) then become

(st x') sink„ri-—
f&I

—+—
I

"t„.*(rs)Ne(rs)drs
EK K ) ky'fl

FIG. 1. Comparison of the calculated 5-wave cross section with
a linear extrapolation of the experimental curve for the ionization
of hydrogen.

X U(rls)t/. *(rs)t&e(rs)drs, (25a)

2U(r)+ J—'U(I r—r'I)t/ss(r')dr'= U(r). —The right-
hand sides of (23a, b) reduce to exactly the same quan-
tities which enter for hydrogen, (12a, b), w'hen we put
for 4'(rt, rs, rs) the approximate initial state function

(s

inky&ri/kyar

1)vs (r2)so (rs) .
Since Eqs. (23a) and (23b) become identical to the

corresponding equations for hydrogen, the principal dif-
ference in the ionization cross sections for the two atoms
is expected to be due to the effect of the Pauli principle
in prescribing how t.„he amplitudes are to be combined,
i.e., whether by (11) or by (20). The expression for the
cross section in (18) is directly applicable to helium if
the last bracket is replaced by s I

5&
I + 4 I

—,'(5&+—5& ) I
'.

The 6nal result for the cross section surprisingly comes
out to be identical to (19) with the exception of an
additional factor of 4. This fortuitous situation exists
because (1) I

f„&"—g„&'& I' does not contribute at all to
terms up to order p, 4 in the cross section, and (2) the
coefficients of P, ' and P, ' introduced by Ig„&e& I'
are equal to those introduced by I f.&'&+g„&'& I' to within

a constant factor. The coefficients of p . ' and higher

powers of the excess energy will be diferent for helium

and hydrogen.

B. Double Ionization

The equations appropriate to the double ionization of
helium,

X U(res)t&„*(rs)t/e(rs)dr, . (25b)

24l00

o "&=4&rap'p~ 'Q
&=&& 21/1 L(2k+1)!]4

t Pmax + P&max~

eJ 0

(e
—2w//& 1)—1(e—sm. //&q 1)

—1(p (p2 p 2)

XI.:IyP't' y.2 i I'+-4
I y.T&'—I'I dP"dP' (26)

which, after making the low-energy expansion and

Oo020—

%Chen the direct and exchange amplitudes are found
and combined according to (20), the integration over
the direction of ejection of the two electrons gives only
kr because of the correlation represented by the delta
function.

By means of a procedure very similar to that found
in Part III, we arrive at the following expression for
the cross section:

IV't'+k, '—2 U(ri) )F„(ri)

= —"I:U(r»)+ U(&») j4"*(rs rs)

XV(r&,rs, rs)dr, drs, (24a)

{V'ss+k, s—2U(rs) )G„(rs)

~o O.OI5

R
O
~+ O.OIO-
LU
f/0

Ch
O
& 0.005—

EXTRAPOLATION OF

0
1.00 I.OI I.02 I.03

INCIDENT ENERGY (E/EI)
I.OSI.04

J LU(r»)+ U(r»)3
FIG. 2. Comparison of the calculated S-wave cross section with

a hnear extrapolation of the experimental curve for the single
XtP~ rs, ri + ri, rs, ra dridrs& 2'4 ) ionization of helium.
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integrating over the allowed energies of the two ejected
electrons, yields

eo

0 (&) =—gasp
—3 p g 4X

2 &=s 21+1

+pm~s{&&+st(t+1)(2l+1)X()+O(p .„')j. (2/)

The definitions of the quantities introduced in (26) and
(2&) are listed in Appendix I. It must be remembered
that p' is the energy in units of one Rydberg for the
cases of single ionization while it is the energy in units
of four Rydbergs for the case of double ionizatiol).

V. RESULTS AND DISCUSSION

I.5

os cs
D I,Q—

O

O
.1Li
lA

CA
CAo o5—
K
C3

0
0

H
++

(Bleakney a

2
INCIDENT ENERGY tE&Ej)

mith)

0.006

0.005—
~so

D

&g 0.004—
R
I-
& o.ooa—
UJ

~ 0.002—
tO
OI:u 0.00l—

I

He

EXTRAPOLATION OF

0
I.OO I.OI

I I

L02. I.05
INCIDENT ENERGY (K/KI)

I.04 I.O5,

Fn. 3. Comparison of the calculated S-wave cross section with
a quadratic extrapolation of the experimental curve for the double
ionization of helium

s' J. T. Tate and P. T. Smith, Phys. Rev. 39,"2'70 (1932).
's P. T. Smith, Phys. Rev. 36, 1293 (1930)."W. Bieakney and L. G; Smith, Phys. Rev. 49, 402 (1936).

The 8's, 's, and 6's are evaluated by numerical
integration in the region p=0 to 10. The integration
from 10 to ~ is performed by semianalytic means. The
sums over / turn out to converge suKciently rapidly to
make necessary the inclusion of only the l=0, 1, and 2
terms. The S-wave cross sections are evaluated for an
energy range above threshold equal to 5% of the
ionization potential. This amounts to 0.68, 1.23, and
3.95 electron volts for H+, He+, and He++, respec-
tively. The resulting curves appear in Pigs. 1, 2, and 3.

Absolute cross sections have been measured for the
production of H2+ by Tate and Smith, '4 for He+ by
Smith, "and for He~ by Bleakney and Smith. "These
experimental curves are reproduced in Fig. 4 from their
original sources. The observed ionization probability
for He++ has a small background of H2+ near threshold
which we have subtracted out with the use of the
ionization probability curve 4 for H2+. In Fig. 5 a plot
of the square root of the He++ ionization curve shows
that the cross section tends to go quadratically with the
excess energy as threshold is approached. For the
purpose of comparison with our calculated cross sections,

FIG. 4. Reproduction of experimental data on the absolute cross
section for the single ionization of H2 and He and the double
ionization of He by electron impact.

the experimental curves are extrapolated to the
threshold, linearly for H2+ and He+ and quadratically
for He++.

The agreement between experiment and theory is
surprisingly good. It can be shown that all higher
partial cross sections have the same limiting dependence
on the excess energy as does the S cross section. This is
so because the Coulomb interaction will predominate
over the centrifugal barrier at large distances for all
values of the angular momentum. Hence, the higher
partial cross sections will contribute to filling in the gap
between experiment and the S partial cross section. For
hydrogen we use the exact initial and final atomic wave
functions so that our only source of error is the use of
an approximate %(r,r'). If we guess that the cross
section for ionization of H2 is about 1.5 times that for
ionization of H, this wouM leave an error of the order
of 10% that may be attributable to use of the Coulomb-
modiied Born approximation. An experimental deter-
mination of the absolute cross section for ionization of
hydrogen atoms near threshold, a dificult project,
would be very useful in this connection. The contribu-
tion of the I' partial wave is presently being inves-
tigated. In the calculation of the S cross sections for
helium, we had to assume reasonable initial and final
atomic wave functions. The agreement with experiment
in these cases indicates that the assumed functions are
not too bad.

The error introduced in (4a) and (4b) comes about
because e's&Qs(r') differs aPPreciably from the true 4
for small values of r, that is, in the so-called reaction
zone. We may visualize the radius of the reaction zone
as varying inversely with the energy of the incident
electron. This leads to a vanishingly small reaction zone
in the high-energy limit, accounting for the applicability
of the Born approximation there. In the present case in-
volving energies near ionization threshold, the reaction
zone radius is inite and of the order of uo. However, the
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function 4 will depend on only k„as a parameter; hence,
its variation will be smooth through the ionization
limit. The explicit steps in separating the ~ dependence
from the k„dependence are given in Appendix II.

There is one additional generalization that may be
made in treating the case of multiple ionization. If we
represent the outgoing part of the final state of an
e-ionized atom by a product of e continuum wave
functions, the cross section near threshold will be of the
form

FIG. 5. Plot of the square root of the experimental cross
section for the double ionization of He.

contribution to the integral in (4) which arises from the
reaction zone will be relatively small since the con-
tinuum function P„* is spread out over all space. In
contrast, an excited state function which falls oG ex-
ponentially will lead to a larger relative contribution to
the integral from the reaction zone. Hence, our approxi-
mation might be expected to be less severe for the case
of ionization than for elastic scattering or excitation.

There are very few experimental points lying in the
small region near threshold in which the calculations
are applicable. As a result we do not have adequate
experimental verification of the exact shape of the
ionization probability curve in this region. The experi-
mental situation here is very dificult because the
thermal spread of electron energies obscures the ioniza-
tion probability variation which is sought. Recent
results of Hickam, Fox, and Kjeldaas'~ show a linear
ionization probability for He+ down to about 0.2 ev
above threshold. On the other hand, they also obtain a
linear ionization probability curve for Xe++, which is
very hard to understand. Clarke' Gnds a quadratic
initial curve for Xe++, which agrees with the 6ndings
of this paper. Clearly, additional experimental work on
the limiting shapes of ionization probability curves
would be most helpful.

One may question whether the presently derived
result of a limiting linear threshold law for the ionization
of the hydrogen atom follows only as a consequence of
using a form of the Born approximation, or whether
this is a general law. The answer to this is that it is
indeed a general limiting law and that the use of the
exact value of 4'(r, r') in (12a) and (12b) would merely
result in the alteration of the 8, , and 6 coe%cients in
the final expression for the cross section but would not
affect the P,„' dependence. The P,„' dependence
comes about entirely from the expansions of 1.~(k„re
and I.q(s,r) for small values of k, and s. The total wav)

'~ Hickam, Fox, and Kjeldaas, Phys. Rev. 96, 63 (1934).

If we carry out this integration making use of energy
conservation, we obtain a power series in p with a
lead term proportional to P '".In other words, the lim-
iting law for n-fold ionization by electron impact is the
eth power of the excess energy. The experimental veri-
fication of this is dificult"" in many-electron atoms
owing to the onset of alternate modes of ionization very
close to the threshold. The most clear-cut experiment
to verify an E.„"power law would be on an n-electron
atom. We have seen this for He++ in Fig. 5. A feasible
future experiment would perhaps be the measurement
of the threshold behavior for Li ' ' ' which has its onset
at about 200 volts.

The process of photoionization leads to the case of
only one electron moving away from an oppositely
charged ion core. This situation corresponds to n=0
above because there are no integrations over P'; the
energy of the ejected electron is uniquely determined by
the amount by which hv exceeds the ionization energy.
This leads to the appearance of a finite cross section at
threshold as is commonly observed in photoionization
measurements. It should be noted that the process of
photoionization (single) is an example of the two-
particle reaction discussed by Wigner~ in which the
reaction products have a Coulomb attraction between
them. The generalization of our present results to the
case of e-fold ionization by photon impact would yield
a threshold curve varying as the (I—1)th power of the
excess energy. We have not been able to find any ex-
periments in the literature which measure cross sections
for multiple photoionization.
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APPENDIX I
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FIG. 6. Coordinate system for Appendix II.
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APPENDIX II

For small K, the integral in Eq. (4a) may be written as

el(K)
J

r LI l(r ) K Al(r )+ ' ' ']Pl(cos8 )
l 0

X U(~ r—r'~)+(r, r')dr'.

Using the addition theorem for Legendre polynomials
on P&(cos8"), multiplying by Pz&(cos8)e '&& sin8d8dp,
and integrating over the angular part of r leads to the
following p, p' integration:

oo

b, = p' sinP3, P-J3(2&p&)dp.
+21I f2X

(2—& o)
40 Jp

e ' cosmic'U(~ r —r'~)%(r, r')dqdoo'

0

p e h&(p p ) J3~+3(2'p')

+, Joi+3(2'p') )dp' dp
(2P')'

1830= p'e "' J3$+3(2&p&)+ J33+3(2'p&)
l (2p) &

The Q, 3r, Sf, and 6~r are identical to the 8,~, $~, and
t'l of Part III.

geo
p~e "J33+~(2~p~)

40

p'e "h~(p p') Jo~~(2'p')dp' dp,
0

Sp= r p&e '"J33+g(2&p&)
Jp

40
dr r"+'t'I', (r') "a,(r')+—

fQ%
Iso%X, sin8d8 si 8'd8n'Pq(cos8)

o ~o
XP((cos8') U(

~

r—r'~ )+(r,r').

We carry ou, t this integration by rotating the triangle
having the sides r, r', and

~

r—r'~ about the Z axis. (See
Fig. 6.) In this operation U% will remain unchanged,
giving for the integral kr28„0b 0U+. Thus the only prop-
erty of 0' we have invoked is its azimuthal symmetry
about the Z axis. The resulting expression for the radially
dependent coeKcient in (4a) is

() —p)!
A&,"(r)=s (2K+1) p Og(K)P~(cos+)

(g+p)! t 0=

Oo

p'&e &'133(p,p')J33+~(2&p'&)dp' dp, The limiting K dependence here is independent of the
0 functional form of 4.


