
PH YSI CAL REVIEW VOLUME i 02, NUM HER 6 JUNE &8,

Nucleon Energy Levels in a Diffuse Potential*
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The level sequence and shell structure for the bound single-particle states of nucleons moving in the spheri-
cally symmetric potential V(r) = —Ve/I i+ expo (r —a) g have been examined. For protons, a Coulomb poten-
tial was added corresponding to a uniform charge distribution out to the "nuclear radius, "c, and the poten-
tial depth was increased to give sufhcient binding energy for the last proton level in the nucleus under
consideration. For o,=1.45X10+" cm ' (implying a surface layer of approximately 3X10 " cm, which is
constant for all A), a spin-orbit coupling 39.5 times the Thomas term and a=1.3A&&(10 cm, good shell
structure is obtained for both neutrons and protons. The level sequences obtained are in close agreement with
experiment except in the region of strong distortion from sphericity. For Vo ——42.8 Mev the neutron binding
energies are in reasonable agreement with experiment. With these parameters the 3s and 4s giant resonances
in the low-energy neutron scattering cross section occur at A =56 and 166 respectively. The neutron and
proton distributions in yeAu" are examined. With the values of n, ro, and X given above, the thickness of the
surface layer on the proton distribution is 1.92&(10 "cm and the radius is 6.77)&10 ' cm.

INTRODUCTION

'HE nuclear shell model, ' which is based on the
assumption that nucleons move independently

in some average potential and experience a strong spin-
orbit interaction, has had great success in predicting
many of the ground-state properties of nuclei. It has
generally been assumed that the collective nuclear
potential is either a square well or an infinite harmonic
oscillator, since for these potentials the wave equation is
readily solvable. However, it is well known that neither
a harmonic oscillator nor a finite square-well potential
yields a satisfactory structure and sequence of bound-
state neutron levels for the shell model. The harmonic
oscillator, with spin-orbit coupling, is in fact only useful
up to the twenty-nucleon shell. Thereafter the higher
angular momentum states are too lightly bound and
there is not even a shell at twenty-eight nucleons. The
heavier nuclei are better represented by a finite square
well with spin-orbit coupling, but, in contrast to the
harmonic oscillator, the states of high angular momen-
tum lie too low. It is possible to obtain shells every-
where except at 126, although the level sequence is far
from satisfactory. At 126, the 1i»f 2 level still lies below
the 3p&ts level even with a spin-orbit coupling forty
times as large as the Thomas term. Also at 82 neutrons
the shell is a little. indefinite because the 1hgf 2 level lies
too low. The shell structure cannot be improved by
increasing the spin-orbit coupling because for larger
values the level with j=l——,

' is shifted less than the
level with j=l+-,'since the lower level has a wave func-
tion with a larger value at the surface of the nucleus.
For example, the 1i~@2 level would encroach on the 82
shell before the 1il~~~ level is raised enough to create a
shell at 126.
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'M. G. Mayer, Phys. Rev. 75, 1969 (1949); Haxel, Jensen,
and Suess, Phys. Rev. 75, 1766 (1949).
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It has been pointed out by several authors' that the
true level sequence for the shell model should lie some-
where between that of the harmonic oscillator and the
square well; i.e., a disuse well might give reasonable
results. The structure and sequence of levels depends
on the size of the surface region. The aim of this in-
vestigation is to find a disuse potential and a magnitude
for the spin-orbit coupling which is in good agreement
with the experimentally determined nucleon level
sequence.

Recently Green and I.ee' have investigated an ap-
proximate solution of the potential V= —Vo for r~& a,
V= —Vv exp (a—r)/ba for r &~ a in an effort to determine
a potential with an improved level sequence. However,
their analysis was carried out neglecting spin-orbit
coupling so that definite conclusions about nuclear
shell structure could not be drawn. Green' has pointed
out that in order to obtain the general trend of binding
energies it must be assumed that 8 decreases with in-

creasing A (mass number). The fact that the "nuclear
radius, "a, is proportional to A' would indicate that the
thickness of the surface layer of the potential should be
approximately constant, in agreement with the recent
analysis carried out by the Stanford group. ' Although
only the proton charge distribution has been investi-
gated experimentally, it can be shown by %KB ap-
proximation that a constant surface layer for the
nucleon distribution implies a constant surface layer
for the potential. The surface layer, 6, is defined as
the distance from the point where the potential (or
nucleon distribution) has 90% of its maximum value
to the point where it has 10%.

2 See for example, M. G. Mayer and J'. H. D. Jensen, Elementary
Theory of Nuclear Shell Structure (John Wiley and Sons, Inc. ,
New York, 1955); W. Heisenberg, Die I'hysik der Atomkerne
(Friedrich Vieweg und Sohn, Braunschweig, 1949).' Alex E. S. Green and Kiuck Lee, Phys. Rev. 99, 772 (1955).

Alex E. S. Green, Phys. Rev. 99, 1410 (1955).
~ Hahn, Ravenhall, and Hofstadter, Phys. Rev. 101, 1131

(1956).
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In the present work the bound states of the poten-
tial' V= —Vp/L1+expn (r—a)j have been studied.
If n is chosen to be constant, then the surface layer is
independent of A, in agreement with the electron
scattering experiments. Further, since the nuclear
radius is roughly proportional to 3:,we choose a= rpA~,

where rp is a constant. It is well known that in order to
get nuclear shell structure a strong spin-orbit interaction
is needed; this is taken to be the usual Thomas term'
multiplied by an appropriate constant. Therefore, in

dealing with neutrons the radial Schrodinger equation
which must be solved is

0,' 1 d ( dR) ( Vp„h' l(l+1) XA' nVp expIn(r —a)j
f IR=zR,

2m r' dr ( dr ) ( 1+expLn(r —a)j 2m r' 4m'c'{1+expLn(r —a) j)'r —(3+1) I )

where l is the orbital angular momentum of the particle.
Vp is the neutron well depth, X is the spin-orbit
coupling constant, and the operator e l in the spin-
orbit coupling has been replaced by / and —(/+1),
its eigenvalues when operating on a state with j=l+-,
and j= 3——,', respectively.

On the other hand, a proton in the nucleus moves not
only in the specifically nuclear potential, but also

experiences a strong Coulomb repulsion. For simplicity
it has been assumed that this repulsion is derivable
from a uniform charge distribution which extends to the
nuclear radius, a. Thus for a nucleus with Z protons, the
Coulomb repulsion exerted on a proton is derived from
the potential L(Z—1)/2aje'L3 —(r/a)'j for r&~a and
L(Z—1)/rjes for r&~a. Therefore, for protons the radial
wave equation to be solved is

0s l(l+1)As1dp dRy ) U,„
f

2m r'dr & dr ) & 1+expLn(r —a)j 2m r'

Xhs nUp~ expLn(r —a)j
I

7,

4m'c' {1+expI n (r—a)j)'r I
—(1+1)

Z—1 t'ry'- y+ "3 I-I IRzR
2a Ea) )

for r ~&a,

1 d ( dR l f Upy & l(1+1)
IP

2m r' dr E dr ) ( 1+expn(r a) 2m r—'

XAs nv „expLn(r —a)j f Z—1
+ e' IR=ER (2)

4m'c {1+expLn(r—a) j)'r —(1+1) r

for r~&a,

where Vp„ is the proton well depth. The spin-orbit
coupling parameter, X, is assumed the same for neutrons
and protons.

Although in an actual nucleus there are fewer protons
than neutrons, the Coulomb energy is so large that the
proton potential must be assumed to be stronger than
the neutron potential in order to avoid a large neutron
excess. For neutrons a value of Vp„can be chosen which

gives reasonable agreement with the experimental
binding energies in the region A =90 to 208. However,
for protons, Vp„must be adjusted for each nucleus
studied in order to give the observed (y,p) threshold.

' This potential has been used by various authors: R. D. Woods
and D. S. Saxon, Phys. Rev. 95, 577 (1954); R. M. Sternheimer,
Phys. Rev. 97, 1314 (1955); Yennie, Ravenhall, and Wilson,
Phys. Rev. 95, 500 (1954); D. G. Ravenhall and D. R. Yennie,
Phys. Rev. 98, 277 (1955); Hahn, Ravenhall, and Hofstadter,
reference 5.

7L. H. Thomas, Nature 117, 514 (1926); D. R. Inglis, Phys.
Rev. 50, 783 (1936).

METHOD

Equations (1) and (2) are dificult to solve analyti-
cally. The differential analyzer at UCRL has therefore
been used to study the eigenvalue problem. The
machine can be programmed to generate the solutions
of Eqs. (1) and (2) for an arbitrary potential plotted
on the input table. The eigenvalue problem is solved
by setting boundary conditions corresponding to
diGerent binding energies into the machine and gener-
ating the solutions for these energies. The eigenvalue
is approximately equal to the energy for which the solu-
tion most closely satis6es the boundary condition at
large r.

Three initial conditions must be set into the machine:
the binding energy, the value of the wave function at
some point inside the potential, and the slope at the
same point. For s-states these conditions were set at
r=0 so that no approximations were involved. For
higher angular momentum states the potential curves
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Ze' t' t'r) ') A'k'
X —V„—Z+
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I
-
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where gE is the normalization factor of the wave
function. The number k is then chosen so that DER
vanishes. For small value of kr, j &(kr) can be replaced

9

(kr) '

7

1 3 (2t+1)

and when the indicated integration is performed, the
following equation for k is obtained:

2m 3Ze' Ze' (21+3)
Vs„+E— + b'

2a 2a' (2l+5)

where E(0.
The remaining error is identical to that obtained in the
neutron approximation and is of the order of 0.001 Mev.

The eigenvalues quoted are accurate to approximately
0.1 Mev. This error is primarily due to inherent inac-
curacies in setting the initial conditions into the
diGerential analyzer. The magnitude of this error was
determined empirically. Other errors arising from
improper functioning of the machine and from approxi-

Tables of Spherical Bessel Functions, National Bureau of
Standards (Columbia University Press, New York, 194/).

~ See for example, L. I. Schiff, Quantum Mechanics (McGraw-
Hill Book Company, Inc. , New York, j.955), second edition, p. 78.

cannot be plotted to r=0 since the centifugal and the
spin-orbit potentials are singular at the origin. It has
been assumed, therefore, that for small values of
r(r&~b) the solutions of the equation are spherical
Bessel functions (that is, the potential near the origin
is a square well of depth Vs„).The slope and value of the
Bessel function were calculated' at r=b and set into
the machine, which then solved the diGerential equation
for r&b. The radius, b, is chosen as small as possible
in order to minimize the error involved in this procedure
(b ranges from 2)&10 " cm for p states to 4&&10 "cm
for i states). The error introduced by this approximation
was estimated by first-order perturbation theory and
was found to be less than 0.001 Mev.

The same procedure is applied to find the energies of
the proton levels except that now the initial conditions
at r= b are more diS.cult to obtain since the solutions for
a square well with a uniform charge distribution are
not tabulated. The initial conditions were obtained by
assuming that the solution in the region 0&r~&b is
j&(kr), where k is as yet undetermined. The Coulomb
potential introduces a diGerence, DER, in energy from
the square well solution. This is estimated from first-
order perturbation theory, which gives

b

~Z.=X " jP(k,)

Vo'ro" ——Vot'0', ~'Vo'=&Vo, o,'~0'=o.ro,

ror'= ro'r, Eo'ro"= Eoro',
(5)

that is, if it is desired to maintain the same level
sequence, then the values n, X, Vo, and E depend on
rs in the above way. According to Eq. (5) the original
parameters become 0,=2.098)(10" cm ' ) = 28.51,
V0„=42.8 Mev under this transformation. The results
for the level orderings are shown in Fig. 1.

It may be seen from Fig. 1 that the situation is
considerably improved from that in the square well.
In order to demonstrate the shift of the levels as a
function of the potential slope alone the square wells
have the same depth as the diGuse potential, Vo„.
This value is somewhat deeper than the one which
would give the proper binding energy of the top level
in the square well. A shell is now obtained at X=126
and the one at X=82 is improved. The states of higher
angular momentum have been raised relative to those
of lower angular momentum as demonstrated, for
example, by the fact that the 1i&@2 level is now less
bound than the 2f7/s level. However, the high angular
momentum states are still too low. From single-
particle assignments deduced from experimentally
observed ground-state spins and parities, " the last
level in the X=20 shell should be 1d@2 rather than
2s~f2. The first level appearing beyond E=28 should be
2ps/s, not 1fs/s, and the first level beyond %=50
should be 2dsf~, not 1g7/2 The last level before %=82
should be 2d@2, not 3s~~2, and the first level after
X=82 should be 2fr/s not 1ks/s.

In order to see whether the experimental level
sequence could be obtained, both n and X were varied.

's R. D. Lawson, Phys. Rev. 101,311 (1956).
~ M. G. Mayer and J.H. D. Jensen, reference 2, pp. 74-81.

mations made in the boundary conditions are small
compared to this.

RESULTS

Neutrons

The top levels of various nuclei were first investigated
with n=2.02)&10+"cm ' ) =30.74, r0=1.35)&10 "cm,
and Vo„——39.7 Mev. As pointed out by one of us,"
this value of n (which corresponds roughly to a surface
layer of 2.18X10 " cm) is similar to one which gives
the low-energy giant s-wave resonances in the neutron
scattering cross section at A = 63 and 183. The value of
X corresponds to a spin-orbit splitting which has
appeared, in the course of other calculations, to give
the best over-all fit in the case of the finite square well
of this radius. The well depth was chosen to give
roughly the right binding energy for the 3pi level in
Pb"'. Since all subsequent work was carried out
using a radius of 1.3A'*X10 " cm, the results have
been presented as if the radius were 1.33&)(10 " cm.
This is easily done by noting that Eq. (1) is invariant
under the transformation
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FIG. 1. Top neutron levels in nuclei with E=20, 50, 82, and 126. The diffuse well levels have been calculated for V0=42.8 Mev,
X=28.51, +=2.098)&10"cm ', and r0=1.3)(10 "cm. The square well levels have been determined for the same Vo, X, and ro. The
level shifts shown in this figure are less pronounced than those obtained with the smaller value of n in Fig. 4. The dotted lines indicate
un611ed levels. Notice that the un611ed lzll/s level in Pb"' is actually below the top (3pf/s) neutron level in the square well, a defect
which is corrected by sloping the potential.

Some idea of the manner in which different states
shift with varying surface layer, 6, may be obtained
from Fig. 2. First-order perturbations calculations,
which treat the sloping of the side as a perturbation
from the square well (but do not take into account the
diffusity of the spin-orbit term), are inadequate to
estimate the positions of the levels. The magnitude of
the error depends on the angular momentum, the
thickness of the surface layer and on the binding energy
in question. For example, in Ce'" with +=2.098X10"
cm ) X 28 51

p tp 1.3)(10 ' cm, and Pp= 42.8 Mev
perturbation theory underestimated the shift of the
2f&/s level by 40%, the 1hs/s by about 9% and the 2ds/s

by about 12%. For small n (large surface layer, 6,)
perturbation theory overestimates the shif t. Both
effects may be understood by noting that the diGuse-
well eigenfunctions (some examples of which are given
in Pig. 3) tend to extend out further than those in
the square well. Thus for large e the state tends to
be bound more loosely than the perturbation estimate,
since the wave function increases more in the interior
region than the exterior region. On the other hand, for
small o, the state is more tightly bound, since the

increase of the wave function in the exterior region
becomes more important.

The possible changes in n and A. can be seen by bearing
in mind that an increase in surface layer raises levels

by an amount roughly proportional to the orbital
angular momentum. "On the other hand, increasing the
spin-orbit coupling will shift levels by amounts again
roughly proportional to the orbital angular momentum
but will lower levels with j=3+, and raise —levels with
j=/ ——,'. It should also be remembered that the magni-
tude of the spin-orbit splitting for a level of given
orbital angular momentum / depends not only on /

and the number of nodes, but also, as in the square
well, upon the binding energy of the level, and decreases
as the binding becomes tighter. Thus a knowledge of
the separation and even the sequence of a group of
tightly bound levels gives no more than a crude idea
of their behavior when they are the top levels in a
nucleus. A comparison of the neutron levels shown in

~ It is interesting to note that the binding energy is not always
decreased for increasing surface layer since a suKciently lightly
bound state feels an increase in binding energy because a large
proportion of its wave function lies outside the nuclear radius.
The Mgg level in Pb~' in Fig. 4 is an example of this.
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Fig. 4 with those for neutrons in Au" shown in Fig. 5
illustrates this point clearly.

In the square well the "center of gravity" of two
levels with the same orbital angular momentum, /,
and diGerent total angular momentum, j, shifts down-
wards as the spin-orbit coupling is increased. For
example, in Ce'" for r0=1.3)(10 "cm, V0=42.8 Mev,
and X=28.51, the splitting of the h-states is 4.24 Mev
and the center of gravity of the split levels has descended
0.48 Mev from its position when 'A=O. If ) =39.5, the
splitting is proportionally increased to 5.96 Mev and
the center of gravity has now descended an additional
0.43 Mev. However, in the diGuse well with the same
parameters, except that 6=2.1, the splitting of the
h-states is 4.70 for 'A=28. 51, and for ) =39.5 the
splitting is proportionally 6.5 Mev but the center of
gravity is now shifted down only by an additional
0.01 Mev. This means that in a disuse well (for 3,=2—3
&(10 "cm) it is easy to estimate the effect of changing
X when one set of solutions is known. However, since
the square-well center of gravity descends, it also implies

8
Bs,~,

Ce'"
PERTURBATION

ESTIMATE——REAL VALUE

that curves such as those shown in Fig. 2 will be diGerent
for two diGerent X's.

Although the absolute shift in a level is not linear in
6, in the interesting region of 6 it is as good and much
quicker to estimate the relative shifts of neighboring
levels on a linear basis, rather than to perform a
perturbation calculation. This is especially true if the
levels also have angular momenta which are close.
Actually the curves showing the shift of levels as the
surface layer is increased show the following general
form: the derivative is zero at 6=0, the curve becomes
gently concave upwards, then passes through a turning
point and gradually flattens oG. In addition, for smaller
binding energies, lower angular momenta, or larger
number of nodes, the Rat region is reached sooner.
Making rough allowances for this, it is not dificult to
make a reasonably good guess of relative level shifts
when solutions are known for some value of n and ) in
the region of interest.

If one requires that in Ce'~ the 2d@2 level be the last
bound state and that the 1h~~~2 level lie between it and
the 3s~~2, at the same time keeping X as small as possible,
then there is little choice but to take values close to
o.= 1.45&(10" (6=3&&10 "cm) and X=39.5. The results
with these parameters and V0=42.8 Mev are shown in
Fig. 4. It is noticeable that all the desired crossovers of
levels have now occurred. In fact, the only region which
now does not exhibit close agreement with level
sequences deduced from single-particle assignments is
the middle of the %=82—126@shell. This might be
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FIG. 2. The energy shift of three representative levels as the
surface layer of the potential is ir, creased. The solid curves show
the shifts estimated from erst-order perturbation theory, and the
dotted lines show the actual level shifts obtained with the diA'er-
ential analyzer.

FIG. 3. Wave functions for a dittuse (n= 1.465 X10"cm ') and
square potential for the 3s&&2 and the 1h9&2 states in Ce"'. In each
case, the wave function in the disuse potential has a larger ampli-
tude outside the nucleus. The diGuse-potential wave functions
were taken directly from curves generated «by. 7the di6'erential
analyzer.
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Pro. 4. Top neutron levels with X=20, 28, 50, 82, and 126. The diffuse well levels have been calculated for V0=42.8 Mev, X=39.5,
0.=1.45&(10"cm, and r0=1.3&(10 "cm. The dotted lines indicate unfilled levels.

expected, since it is the region of strong distortion"
where a spherically symmetric potential should bear
little resemblance to reality.

The requirement that the 1h&~~2 level lie between the
2d@2 and 3s~g2 levels is possibly too stringent, since
presumably two nucleons in this level have a large
pairing energy. If this condition is relaxed, then either
the spin-orbit coupling can be decreased somewhat or
the slope can be increased without impairing the
sequence elsewhere.

The well depth, Vo„, was chosen to be 42.8 Mev from
consideration of the (y,e) threshold" in Pbsss. Since
the top state in this nucleus is a low /state, 3pt/s, -

presumably the pairing energy is small. "The binding
energy of the 2d312 particle in Ce'" is then approximately
8.95 Mev, in agreement with the experimental value of
(9.05&0.2) Mev. For the lighter elements, the calculated
binding energies are smaller than the (y,e) thresholds.
However, in Zr" the top state is 1gef2 and in Vs' the

"A,. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd. 27, No. 16 (1933l.

'4 See for example, Sher, Halpern, and Mann, Phys. Rev. S4,
387 (1951), and the references quoted in their paper.

'~ One can perhaps get some idea of the magnitude of the pairing
energy in this state by comparing the (p,n) threshold in Pb~
and Pb~'. The threshold in Pb~ is approximately 0.6 Mev
greater than in Pb~7, so that one might argue that the well depth
chosen was approximately 0.6 Mev too deep.

top neutron is in a 1f7/9 level, so that perhaps pairing
energy becomes more important. However, if pairing
energy is neglected, then the potential well depth for
neutrons increases for light nuclei. This would improve
the spacing of the 2ps/s and 1fs/z levels in Vs' by
bringing them closer together, since both would then
experience less spin-orbit splitting because of their
tighter binding.

For o.= 1.45)&10" cm ', ro= 1.3X10 " cm, and
V0=42.8 Mev, the 3s and 4s giant resonances in the
low-energy neutron scattering cross section occur at
A=56 and A=166, respectively, in good accord with
experiment. "If n is further decreased, these resonances
will occur for smaller A.

Protons

For protons it was assumed that o., X, and ro had the
same values and in addition that the Coulomb repulsion
was derivable from a uniform charge distribution
extending out to the nuclear radius, u. The required
well depths are, however, somewhat larger than for
neutrons. Since the (7,p) thresholds are somewhat

more uncertain than the (y,e) thresholds, the values

"Feshbach, Porter, and Weisskopf, Phys. Rev. 90, 166 (1953),
and 96, 448 (1954).
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FIG. 5. Proton and neutron levels in Au"'. The proton levels
have been calculated assuming a uniform charge distribution out
to the nuclear radius. The values of ), n, and ro used are the same
for both wells P.='39;5, a=1.45X10 ~ cm and ra=1.3&(10 U

cm). The different potential well depths necessary to give the
proper neutron and proton binding energies are shown in the
drawing.

protons
I4.(r) I', p-(r)= 2 Ia-(r) I',

neutrons

where lf „„is the shell-model wave function neglecting
interparticle interactions, and assuming that all
nucleons in the nucleus move in the same potential. In
view of the recent electron scattering experiments, it
was felt that it would be interesting to examine the
charge distribution obtained for Au"~, the case for
which the most theoretical work has been carried out.
The neutron potential depth was chosen to be 43,8 Mev,
which yields a binding energy of 7.9—8 Mev for the top

of Vo~ chosen for the various nuclei are not significant.
The only well depth which was chosen to agree with
the (y,p) threshold was in Pb"' which gave a binding
energy of 7.3—7.4 Mev, in agreement with the expert-
mental results of %'einstock and Halpern. '~ The level
sequences obtained are illustrated in Fig. 6. In contrast
to the neutron levels, it is noticeable that the last level
at the Z=82 shell is 3s~~2, in agreement with the
assignment for the ground state of TP", and that the
next level is 1h9~2, in agreement with the ground state
of Bi"'. In general, close agreement is again obtained
with experiment except in the middle of the Z=50
to Z=82 shell, which, for protons, is the region of
large distortion.

Nucleon Densities

In order to gain some idea of the self-consistency of
this potential, the density of neutrons and of protons
was calculated assuming
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Fro. 6. Top proton levels in nuclei with Z=19, 28, 50, and 82. The ordering of the top three levels in Pb~' (Z 82) is changed from
the ordering of the top three neutron levels in Ce'+ {N=82) (see Fig. 4). The low angular momentum levels (3sf/Q and 2d, q~) are raised
with respect to the j.h~~g2 level because of the additional Coulomb potential.

"E.V. Weinstock and J. Halpern, Phys. Rev. 94, 1651 (1954).
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neutron, in agreement with work of Nathans and
Halpern. "For protons the depth was taken as 55.1 Mev,
which implies the last proton is bound by 5.8 Mev, in
agreement with Weinstock and Halpern. "

The proton and neutron densities are shown in Fig. 7.
The proton distribution as derived from p„,~». ~lt„~'
has a decided hole at r= 0. This eGect is due to at least
two causes: 6rst, the Coulomb repulsion at the center
of the nucleus tends to push particles away from r=0;
second, for the gold nucleus, the 3s&~2 state is not yet
bound. Since only the s-state wave functions have a
value diGerent from zero at r=0, this will cause a dip
in the distribution. The proton and neutron surface
layers, deined in the usual way in terms of the edge
peak value, are 1.92&(10 " cm and 2.20&(10 " cm,
respectively. The radius of the proton distribution is
6.77X10 "cm (corresponding to an rs of $6.77/(197) &j

X 10-' = 1.16X10 "cm), and for the neutron distribu-
tion, 6.98)&10 ' cm (re ——1.2&&10 " cm). According
to the latest Stanford calculations' the electron-scatter-
ing results can be best explained by a proton distribution
which has a dip in the center (although not as pro-
nounced as the one found here), a radius of (1.07&0.2)

's R. Nathans and J.Halpern, Phys. Rev. 93, 43/ (1954).
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FIG. 7. Proton and neutron density distributions in Au' ' ob-
tained by the WKB approximation and by actually summing the
squares of all particle wave functions. The potentials used to
compute these distributions are also displayed.

&(10 " A& cm and a surface layer of approximately
2.4)&10-" cm. It therefore appears that the radius
we have chosen for our potential, 1.3&(10-")&A&,is too
large to give a change distribution in agreement with
experiment and should be decreased by approximately
8%. The radius of the Coulomb potential should also
be taken, for greater consistency, as less than the radius
of the potential. On the other hand, the surface layer
on the charge distribution is too small and consequently
a smaller value of rr must be chosen (n=1)&10"cm ')
to agree with electron-scattering results. Although the
differential equation describing the proton, Eq. (2),
does not have the same invariance properties as Zq. (1),
the eGect of changing ro will be to modify only slightly
the energy level sequence and thus the density.

The fact that the neutron distribution lies outside
the proton distribution is in agreement with the predic-
tion of Johnson and Teller. " The effect, however, is
somewhat smaller than they estimated, for two reasons:
first, the last proton in gold is bound approximately
2 Mev less tightly than the last neutron, whereas in
Johnson and Teller's estimate the neutron and proton
had the same binding energy; second, their nuclear
potential was assumed to be the same for neutrons and
protons, whereas in this work the proton potential is
considerably deeper. However, the neutron distribution
does have a considerably longer tail than the proton
distribution. This is because the neutron wave functions
are not damped out by the Coulomb barrier.

The proton and neutron distributions have also been
calculated using the WEB approximation (also shown
in Fig. 7). For protons the radius is 6.87&(10 " cm
and the surface layer is 1.71X10 " cm, whereas for
neutrons the radius is 6.98&(10 " cm and the surface
layer 2.38)&10 "cm. Both these results are in reasonable
agreement with the exact calculation, so that the
qualitative features at least of the surface region can be
obtained from WEB approximation. The neutron and
proton potential have also been plotted on the same
diagram to show the relationship between the nucleon
density and the potential. It will be noted that the
nucleon density follows reasonably well the form of the
potential.
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