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energy are emitted within the same solid angle and
are counted with equal efFiciency. However, the method
is applicable only to a source which has a simple
decay scheme in which the beta spectrum has an
allowed shape.

The values which we obtained are a~=0.025+0.005
and 0.1,

——0.012~0.002 in agreement with the results
of other investigators. ' An interpolation of the results
of Rose, Goertzel, and Swift, ' which include screening,
gives o.~=0.031 and ng ——0.012.

CONCLUSION

energies, are in agreement with the absolute gamma ray
measurement of Muller, Hoyt, Klein, and DuMond.
If one assumes their value for the gamma-ray energy,
then our results serve as a check on the absorption
edge energies and are in agreement to within our
quoted uncertainty.

The agreement between the experimental and
theoretical L subshell intensity ratios shows that the
theoretical results may be used with confidence at
least in the vicinity of Z=80, E=400 kev, and for an
E2 transition.
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Calculation of Electron-Deuteron Scattering Cross Sections*t
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Elastic and inelastic cross sections for electron-deuteron scattering with large momentum transfer have
been investigated. The calculation has been performed in the first Born approximation. The neutron-
proton interaction has been described by a phenomenological potential, and the nucleons have been repre-
sented by point charges and point magnetic moments. Finite size of nucleons causes major correction to
these results.

I. INTRODUCTION

'HE scattering of electrons with large momentum
transfer has yielded some new and quite definite

information about the charge distribution in a number
of heavy nuclei. Experimental accuracy is improving to
such an extent that this method holds promise of
yielding new information even when applied to a
relatively simple and well-understood nucleus, such as
the deuteron. Some measurements' have already been
made, in which the deuteron has been bombarded by
high-energy electrons and the energies of the electrons
scattered at large angles have been measured. A narrow
elastic peak has been obtained, and a wide inelastic peak,
corresponding to the breakup of the deuteron, has also
been observed.

A few calculations' intended mainly for small mo-
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mentum transfers have already been made. These
calculations of elastic cross sections still give quite
accurate results even at large momentum transfers. On
the other hand, in the calculations of inelastic cross
sections only the lowest electric and magnetic multipole
moments have been considered. These results cannot be
applied to the scattering with large momentum transfer
when the contribution of higher multipole moments is
quite important. Thus, it is necessary to perform a
calculation that accounts for all multipoles.

Since the interaction between electron and nucleus
is of electromagnetic nature, the matrix elements in-
volved are similar to those used in calculating the
photodisintegration of the deuteron. Calculations' and
experimental data are plentiful in this case. The results
cannot, however, be easily applied to our case, since in
the photoprocess we have only real (transverse)
photons, while in the electrodisintegration the main
contribution comes from the longitudinal part of the
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electromagnetic field. Moreover, the lowest order
process in photodisintegration is the absorption of the
photon, and a large momentum transfer is necessarily
accompanied by a large energy transfer. In electro-
disintegration, such a large momentum transfer usually
causes a much smaller transfer of energy.

In our calculation, therefore, we have treated the
deuteron nonrelativistically, while the electron may be
considered extremely relativistic. Also, since the charge
of the deuteron is small, we have treated the problem
in the first Born approximation. Thus the wave func-
tions for incident and scattered electrons have been
represented by plane waves and the deflection of the
electrons has generated Mgller potentials' g and A to
act upon the charge and current distributions in the
deuteron:

Q(r)= 47rea—p(q' AE—) ' exp(iq r),

A(r) =47rea(q' hE')—' exp(iq r), .

where q and AE'are the momentum and energy losses
of the electron; a and ao are the matrix elements of the
Dirac e and unit operators between initial and 6nal
electron states. Also, we have chosen the system of
units where 0= c=3II= 1 (M is the mass of the nucleon).
Assuming, in addition, that exchange currents can be
neglected and the nucleons can be represented by point
charges and point magnetic moments, the perturbation
upon the deuteron becomes equal to

—siepxoI, [V'yXA(rI, ))), (1)

where rI, is the position of the 0th nucleon, qI, is its
charge and pI, its magnetic moment in multiples of a
nuclear magneton. Thus, with the preceding assump-
tions the calculation of cross sections is reduced to the
calculation of the matrix element of (1) between initial
and final states of the deuteron.

II. ELASTIC CROSS SECTION

Our calculation has been performed in the laboratory
system, so that the deuteron is at rest initially. Taking
(1) as a perturbation and eliminating the coordinate
of the mass center of the deuteron, we obtain the elastic
cross section:

do, =-',e'[pp' sin'(-', 8)j '[1+pp sin'(-'8)$ 'dD

X I(fI [ap ', V' a+ '—,ip—„a, (q-xa)fe'*"'&'

+li~-~- (i1Xa)s ""Io)I', (2)

where -,'r is the position of the proton with respect to
the mass center; po is the momentum of the incident
electron; p is the momentum of the scattered electrons;
dQ„ is the element of solid angle into which the electron

4 C. Mgller, Z. Physik 70, 786 (1931);W. Heitler, The Quantum
Theory of Radiation (Oxford University Press, Oxford, 1954),
third edition, p. 231.

where x is a triplet spin function and S„~ is the con-
ventional tensor operator:

Substituting this wave function into the matrix element
of (2), averaging over initial directions of spin of the
deuteron and the electron of positive energy, and
summing over final directions (since the spins are not
determined experimentally), we obtain the following
for the elastic cross section:

d~.=4s' cos'(-'e) Lpo' »n'(se) j '

where
X[1+Ps sin'(-', 8)$ 'dQ Fs (3)

F'= ' (I'+w') jp(-,'qr)dr

+ i "2w(N —8-'*w)js(-,'qr)dr
J

+ s (kq)'[(2/cos'(ltl) )—13

X,"([(p„+y„)(m'+w') —s (p„+p„——,')w'j jp (-,'qr)

+2 'w[(p~+li„)(m+2 '*w)+3X8 rwgj &(,qr))dr-
(4)

The first term here comes from the spherically sym-

metric part of the charge distribution in the deuteron,
the second is a "quadrupole term, " and the last is a
"magnetic moment term. " The 6rst two terms in this
expression have been given previously by SchiR.'

YVe can estimate the quadrupole term rather easily
since we know the values of the functions I and zv

outside the range of nuclear forces. I is determined

quite accurately by the experimental value of triplet
effective range, and m is known roughly from the
quadrupole moment of the deuteron. ' In this way it
can be shown that the quadrupole term is approximately
equal to (8/9)(srq)'Q' (where Q=0.274X10 " cm' is
the quadrupole moment of the deuteron) for small

recoil momenta; it rapidly reaches a maximum value
=0.002 and remains of this order of magnitude for
moderate recoil momenta (q(3X10" cm '). Thus,

' J. M. Blatt and V. F. Weisskopf, Theoretical 1Vuclear Physics
(John Wiley and Sons, Inc. , New York, 1952l, p. 106.

has been scattered; 8 is the scattering angle, cos8
=yp p/ppp. For the elastic scattering, the initial state

I 0) and final state
I f) of the deuteron are ground states.

The wave functions for the ground state in the presence
of tensor forces can be written in the form

p = (4s.)
—lr '[N(r)+8—'*S„„w(r))x„,rN=O, &1,
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Fro. 1. The square of the Fourier transform of the charge
distribution in the deuteron f~ if neutron-proton interaction is
described by (a) a Hnlthen potential corresponding to triplet
effective range r~=1.7)(10 " cm; (b) a Hulthen potential cor-
responding to rg=1.8&(10 ' cm; (c) a Hulthen potential outside
the hard core of radius 0.65X10 "cm, r~=1.7X10 "cm.

f= (I'+~')jo(-:m)«

is the Fourier transform of the charge distribution in.

the deuteron. Since to' accounts only for about 4%% of
the charge distribution and its Fourier transform is not
likely to become negative, we can disregard the 'D part
in the charge distribution without incurring an error
larger than 4%%. The tail of I' is determined by the
eGective range and binding energy and we are uncertain
about the behavior of the charge distribution n' only
within the range of nuclear forces. Since j&(—,qr) is a
decreasing function within the range of nuclear forces,
we decrease the form factor f' by pushing the charge
distribution outward. Thus the experimental form
factor can be expected to fall between the extremes that
correspond to a smooth charge distribution such as is
caused by the Hulthen potential, and to a pushed-out
charge distribution caused by a potential with a large
hard core of radius =0.7X10 "cm. Such form factors
have been illustrated in Fig. 1.

III. DEUTERON BREAKUP

Since the deuteron is a weakly bound structure, the
impact of a high-energy electron is likely to break it up.
The energy distribution of electrons scattered at large
angles shows not only an elastic peak, but also a con-
siderable inelastic peak. In analogy with (2), the ex-

neglecting this and other small terms, we have

F'= &1+ l(lV)'(p +~-)'[(2/cos'(l8) )—1j}f' (5)
where

pression for the inelastic cross section is

do;„= (4rr) se4[Pp' sin4(~s8))
—'kdPdQ, dQ„

X ((f) [as i—& a+. ,'iy-rr (qXa)]e&'&'

+sinai„o„(qXa)e '*' [0) ~s, (6)

where, in addition to previous notation, k represents
the Anal momentum of the proton with respect to the
mass center of the recoiling deuteron, so that the wave
function for the final state is e'"'+ the incoming wave.

Using this expression later on, we shall compute the
energy spectrum of the electrons scattered at a given
angle. We shall find that the inelastic peak is fairly
narrow. Therefore, over the energy range from which
the bulk of the contribution to the cross section comes,
the recoil momentum q does not vary much. Considering
q constant, the interaction in (6) does not depend
explicitly upon the disintegration energy k', and we can
quickly estimate the total cross section to be expected,
using the closure property for the final wave functions
of the deuteron. The total (elastic plus all inelastic)
cross section is found to be nearly independent of the
wave function of the deuteron in the ground state.
Subtracting the value of the elastic cross section [(3)
and (5)g from the value of the total cross section com-
puted in this way, we obtain the total inelastic cross
section, which is approximately

do;„=-',e'cos'(-', 8)[ps' sin'(-', 8)$ '[1+ps sin'(-', 8)j 'dQ„

X{(1—f')+ (-'C)'[(2/cos'(-'8)) —1j(~'+p ')) (7)

for large values of the recoil momentum. For small
values of recoil momentum (q(n= sr X10"cm ', where
rr ' is the "size" of the deuteron), the terms retained in
(7) become about as small as the terms neglected.
Comparison of our expressions for the elastic and
inelastic cross sections shows that as the recoil mo-
mentum increases, the inelastic cross section increases
at the expense of the elastic, and the magnetic spin
terms assume more importance in the inelastic cross
section than in the elastic. Using the approximation
that leads to Eq. (7), we can also estimate the portion
of the inelastic cross section that is caused by transitions
from the ground state (considered spherically sym-
metric) to all final states of given angular momentum
and spin. The result is independent of the particular
complete set of radial wave functions chosen and
depends only upon the wave function of the ground
state and the magnitude of q. The calculation shows
that states of high angular momentum contribute
appreciably to the total cross section.

Thus, in calculating the energy spectrum for the
inelastically scattered electrons, we start by taking a
plane wave for the 6nal nucleon wave function (neg-
lecting incoming waves), and later correct for the
neutron-proton interaction in the sates of successively
increasing angular momentum. To simplify the calcu-
lation, we assume that the ground state has the Hulthen
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farm:
y„= (4a.)-ir-'(2n)1(1 —nr, )-iccg7t„,

4x l0 ~a

E = l90 MEV

where N, =e "—e &", and p is determined by the triplet
effective range r&. Taking plane waves for the 6nal state
makes the calculation of the inelastic cross section (6)
straightforward. We perform the integrals involved, do
the spin sums, and then integrate over the directions of
disintegration (dQ~) to obtain

do;„= (4a) 'e' cos'(-', 8)(pp sin'(-', 8)) '2n (1—mr~)
'

Xq 'k 'dpdD„O' (9)
where
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Fio. 2. Energy spectrum of 190-Mev electrons scattered in-
elastically at 7'O'. The total inelastic cross section is plotted, and
the contributions to this cross section from the transitions to 6nal
S states are also indicated. The size of the elastic cross section
(=29.7)&10 '~ ctnm/steradian for the Hnlthen potential) at 178.1
Mev is not indicated.

s1 &1+s
+—, — Leo(s) —Qo(sr)]»k'

z' —i zg' —1 zg —z

where

Agric&=q N~(s& Jo(pe)sad'r

2sst
p z —

p zy

1
2+ +-

z 1 z$ 1 z] ' z

Xk'{-,' $ (2/cos'(-', 8) )—1—s'k') —s'k'}

(sr —s)'
pz pzy

srS(st+s)

X (—-'p,p.) (-,'q)'5 (2/cos'(-,'8) )—1—s'k'), (10) V(r) =
cosh'(lir —8')

(12)

In previous calculation of these parts we have effectively
used the unperturbed S wave function sin(kr) instead
of the correct I&(,). The "correct" wave functions have
been obtained assuming that the neutron-proton po-
tential is an Eckart potential of the type'

2A,'

where Qo(s)=coth 's is a Legendre function of the
Th h f

second kind, and z and z~ are the abbreviations for

s=Ln'+ (-,'q)'+k']/qk,

s =Ly'+ (-', q)'+k']/qk.

Examination of this expression shows that the terms
coming entirely from the convection current (a V) are
fairly small for moderate values of the disintegration
energy O'. The cross term between the convection
current and the electric charge (ae) becomes small
because of the averaging over the directions of the
nucleons, since a q= —AEQp.

However, in calculating 0' in (10) with unperturbed
6nal nucleon wave functions we have committed a large
error. Since the neutron-proton interaction is felt very
strongly in the 6nal S states, we have to replace the
erroneously calculated S contributions to 0' in (10) by
the contributions obtained using the correct final S
wave functions. Neglecting the convection current
(a V), the 'S contribution towards 0' is

{1+l(lq)'( + -)'L(2/ o '(l8))—1—'k']}A. ',

and the 'S part is

s ('q)'(I —u )'L(2/cos'(k8)) —1—s'k']A"',

N,(r) = (k'+X' tanh'8') & (k'+7%.') &

X{[(k'—X' tanh8') sin(kr)+ (1+tanh8')B, cos(kr)]
—XL1—tanh(Xr —8'))L—X tanh8' sin(kr)+k cos(kr))},

and the phase shifts satisfy the "shape-independent
approximation" formula' exactly for all energy values.
The wave function for the bound state is (8,')0)

I,= exp( —X tanh8~'r){1 —(1+tanh8&') '

X L1—tanh (lI, ~r —8~')]}.
The parameters ), 8' have been adjusted to yield the
experimental scattering lengths and effective ranges
for triplet and singlet scattering, and the integrals A«
and A„have been performed with the help of an addi-
tional approximation,

1—tanh (Xr—8') = (1+tanh8') L1+(1+tanh8') Xr]e '"".

The corresponding contributions ('S and 'S) towards
the inelastic cross section are illustrated in Figs. 2 and
3 for two combinations of incident electron energy Ep

' V. Bargmann, Revs. Modern Phys. 21, 488 t,'1949); C. Eckart,
Phys. Rev. 34, 1303 (1930).

7 J. M. Blatt and V. F. Keisskopf, reference 5, p. 62.
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in momentum space. The wave function for the final
state in the Born approximation is

Then the matrix element
FIG. 3. Energy spectrum of 350-Mev electrons scattered inelas-

tically at 60'. The total inelastic cross section is plotted, and the
contributions to this cross section from the transitions to the final
S states are also indicated. The size of the elastic cross section
(=6.'7'7X10 "cm /steradian for the Hnlthen potential) at 320.2
Mev is not indicated.

V (r) = er 'exp( —Pr), ——
(13)

of such strength and range' that it would yield the
experimental scattering length and eGective range if
acting in the 'S states. The calculation has been per-
formed in momentum space so that to the wave function

For notation see J. M. Blatt and L. C. Biedenharn, Phys. Rev.
86, 399 (1954).' J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949l.

and scattering angle 0. The total cross section indicated
in each of these figures is the cross section calculated
by (9) and (10) after the correction for the interaction
in S states has been made.

The Eckart potential (12) is, of course, only a special
case of a potential consistent with the information
derived from neutron-proton scattering at low energies.
For this reason the electric monopole part ('8) has been
checked by recalculating it for a potential with a hard
core. Also, the effect of tensor forces has been investi-
gated by computing the matrix element for the tran-
sition to 6nal 1n states and comparing it with the
matrix element for the transitions to the 'S states
calculated previously. In both cases the change in the
electric monopole cross section is small for small dis-
integration energy, since the wave functions then are
adequately described by the shape-independent ap-
proximation. The change increases percentagewise for
larger disintegration energies, but is still unimportant
in computing the total cross section since the S part
itself then becomes negligible.

The e8ect of neutron-proton interaction in the final
states of higher angular momentum (1)0) is considera-
bly smaller than in the S states, since the interaction
is shielded by the centrifugal potential l(l+1)r '. Thus
we have estimated it using the Born approximation to
obtain the final wave functions and representing the
neutron-proton interaction by a Yukawa potential,

M = qk ye (r)el'&'Ps (r)drj4s.

=qk f*(x)Ps(x—-', q) dr j4s,

C t'+ dh(

+— — . Q~(ss') I Q~(s') —Q~(st')) (14)
2'" „s'—lP —ie

0.4a IO 3~.

0.2.
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FIG. 4. Additive corrections to the inelastic cross section caused
by neutron-proton interaction in the 6nal states of angular
momenta l &1,when the same potential is effective in states of all
angular momenta (Wigner), and when the potential acts only in
states of even angular momenta (Serber). (a) Correction to the
total cross section of Fig. 1; (b) Correction to the total cross sec-
tion of Fig. 2.

'0 E. W. Hobson, The Theory of Spherical aid Ellipsoidal
Harmoar'cs (Cambridge University Press, Cambridge, 1931l, p.
58.

can be expanded in spherical harmonics, corresponding
to transitions into the states of appropriate angular
momentum. Using the relation"

1/(s —cos8) =Qq(2l+1)P~(cosk)Q~(s),

we see that

M=gi(2l+1)Pt(cos8) X LQ&(s) —Qi(sr) j
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where cos8=k q/kq, s and sr are abbreviations (11),and

s'=
I
~'+ (sq)'+~j/q»,

»'= 5'+ (lq)'+ "1/q»,

[P2+ks+»2 j/2 k».

The integral in (14) has been transformed into a proper
integral over a finite range by introducing a new variable
of integration:

=k/» for i»i )k.
The quadratures were then performed numerically. The
resulting corrections to the inelastic cross section de-
crease very rapidly with increasing angular momentum,
so that the calculation has been performed only for
1= j., 2, 3; the magnitude of the correction to be ex-
pected from neutron-proton interaction in these final
states is indicated in Fig. 4. Two possibilities have been
considered: when the same potential (13) acts in states
of all angular momenta /=1, 2, 3 (Wigner force); when
it acts only in the state of even angular momentum /= 2

(Serber force). The results obtained here are only
approximate, since the Born approximation has been
used and only the Vukawa-type interaction has been
considered.

IV. DISCUSSION

In the preceding calculation we have shown that the
elastic cross section is somewhat sensitive to the
presence or absence of the hard core in the interaction
and that the inelastic cross section is somewhat sensi-
tive to the presence or absence of the neutron-proton
interaction in the final 'I' state. However, the calcu-
lation has been made using bare nucleons to represent
the proton and the neutron. Actually, since the wave-

length associated with our recoil momentum is of the
order of the meson Compton wavelength, the finite size

of the nucleons should be felt. Since the deuteron is a
weakly bound structure, the proton and neutron spend
most of the time outside the range of nuclear forces,
and we can roughly describe the charge and current
distributions around each nucleon as if they were free.
In this approximation previous expressions for the
matrix elements remain unchanged except that the
nominal values for the charges and magnetic moments
have to be replaced by eR'ective charges and effective
magnetic moments that depend upon the recoil mo-

mentum q. Then numerical values for the cross sections

can easily be obtained if the form factors for the proton
and neutron are known separately. Assuming, as an
example, that the e6'ective charge of the neutron
vanishes and the charge of the proton has an rms radius
0.7)&10 " cm, as favored by present experimental .

evidence, " and that the form factors for the magnetic
moments are the same as the form factor for the proton
charge, we find that both elastic and inelastic cross
sections are to be multiplied by the factor L1—

s (q)&0.7
)&10 "cm)'+ ]'.This factor lowers the elastic cross
section more than does the introduction of a hard core.

However, spreading out the charges and magnetic
moments of the nucleons accounts only for one-particle
terms in Foldy's phenomenological theory. "The charge
and current distribution terms that depend on the
coordinates of both particles are significant only within
the range of the nuclear forces, and some idea about the
contribution of these terms can be obtained by ex-
panding the exponential exp(iti r') in power series of

q and taking only the lowest nonvanishing terms. Of
these, the exchange moment operators, which contribute
to the magnetic moments of nuclei, have been investi-
gated in more detail. "They are not important for the
elastic cross section, since their contribution to the
magnetic moment of the deuteron is very small. '4 The
contribution of exchange moments to the inelastic cross
section has been evaluated following Berger, ' and has
been found to be small for the moderate disintegration
energy considered.
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