NARROW COMPONENTS

raised. The observed fractional transfer into the narrow
component at ~15 kilogauss, namely 0.03 in poly-
ethylene, 0.04 in Teflon (and a like figure for fused
quartz), is about what one would calculate on the basis
of the known values of 7, and the singlet-triplet energy
difference for free 1-S positronium, assuming, for the
sake of argument, that one-third of 0.29 of the total
annihilation events are transferable.

Current experiments designed to measure the
narrowness » [defined in Sec. II (3)] as a function
of magnetic field, with temperature as a parameter,
are expected to yield information on positron-electron
overlap and/or whether more than one-third (the
m=0 fraction) of the supposed triplet states are avail-
able for quenching.

All that can be said about the diffusion experiments
at this time has been stated in Sec. IT (4).

An experiment under way is to test for narrow
component enhancement in gases known to form
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positronium, since free and thermalized positronium
should yield a rather narrow correlation in contrast
to bound positronium. Here again, the field dependence
of any effect should be of interest.

It would seem worthwhile to look for a Doppler-free
component in the energy spectrum? of the annihilation
photons. Plans have been made for a nuclear resonance
fluorescence experiment.
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Wigner has calculated the ground-state energy of the hydrogen atom with second-order perturbation
theory, the whole electrostatic potential being considered as the perturbation. Though his result is finite,
it does not agree with the known energy for hydrogen. A fact implicit in the literature, but not usually
appreciated in this connection, is pointed out—that if part of the electrostatic energy is retained in the
zero-order problem, a correct result is obtained, even if the part of the energy retained is given a zero magni-
tude after the calculation is carried out. It is also shown that if the calculation is carried out in an Einstein
hypersphere, the entire “electrostatic potential” can be regarded as the perturbation and the correct result
is obtained. Perturbation theory leads to the exact energy eigenvalue in all approximations higher than the
first, but the expansion of the eigenfunction converges slowly if the perturbation is made large.

I. INTRODUCTION

IGNER! has recently pointed out a failure of
second-order perturbation theory to give a
meaningful result when applied to the hydrogen atom.
Considering the whole electrostatic potential as a per-
turbation, he has calculated the ground-state energy
and found it finite, but grossly incorrect numerically.
It would be very simple to carry out perturbation
calculations if the solutions of the field-free Schrédinger
equation could be used as a starting point, but the
results of I show that this cannot be done. The present
investigation is part of an effort to find a modification
that will give the correct result without introducing too
much additional complication.
In the type of problem considered, the exact solution

*On leave from the National Bureau of Standards, Wash-
ington, D. C.

LE. P. Wigner, Phys. Rev. 94, 77 (1954); referred to as I in
this paper.

of the Schrédinger equation is assumed already known,
or at least obtained to a high degree of accuracy with
variational methods. In the simplest case, the Hamil-
tonian depends linearly on a single parameter A which
has a continuous range of values. The energy eigenvalue
of the Hamiltonian H(\) will be some known function
E(\). The parameter A is then regarded as a sum of two
parameters, say A=MA;+As. The eigenfunctions and
eigenvalues of H () are then obtained with perturbation
theory,? starting from zero-order solutions of H(\1).
This procedure defines the energy as a series in in-
creasing powers of X, If the correct energy, E(\)
= E(A\1+)\2), has an expansion in increasing powers of
A2 that agrees with the perturbation series to a given
order, then the energy calculated with the perturbation
theory is considered correct to that order. Usually per-
turbation theory can be correct only when A;<Ay, as

2E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, London, 1935).
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for example in the case of the harmonic oscillator where
E()) is proportional to 4/A.

For the hydrogen atom, the parameter A may be
taken as the atomic number Z, and with \o= (Z—Z),
the correct energy has the form

1 met
EQ2)=—-—2*
2 #?

1 met :
=*5‘%;[(21)24‘221(2—21)‘!‘(Z*Zl)zj- 1)

We point out in Sec. IT that the perturbation calcula-
tion with nonzero value for Z; is correct to second order,
and gives in this case the exact energy eigenvalue no
matter how much smaller Z; is than (Z—Z,). Unfortu-
nately this calculation seems to have no extension that
makes it applicable to the limiting case of most interest,
when Z; is assumed zero. As long as Z; is nonzero both
an infinite set of discrete states and a continuum are
utilized in the perturbation calculation, so it is not
surprising that this mixed spectrum cannot be corre-
lated to the simpler spectrum of the field-free problem.
From another viewpoint, it may be explained that
though the second-order perturbation theory gives the
energy correctly, even when Z;=0, there is no con-
vergent expansion of the eigenfunction in powers of
(Z—Z,) unless (Z—Z;) is less than Z;.

Since a box of radius R is used as an intermediary in
the perturbation calculation of I (eventually R—),
it is interesting to consider a Schrédinger equation
which depends on an additional parameter R (as well
as Z), and that has the same energy eigenvalues as the
hydrogen atom when R becomes infinite. Schrodinger’s
equation for the hydrogen atom in an Einstein hyper-
sphere of radius R has this form,® and the main point of
the present paper is that a correct second-order per-
turbation calculation can be carried out with the solu-
tions of the field-free equation in this case, as is shown
in Sec. III. Though the perturbation calculation of
Sec. III is even simpler than the calculation of I, this
is because only s-electron wave functions are used in
the hydrogen-atom problem, and in both calculations
these wave functions are effectively the same. Calcu-
lations involving electrons with higher orbital mo-
mentum would probably be only slightly more compli-
cated in the hypersphere than in ordinary space.

The possibility of defining a potential for the inter-
action between two electrons in a hypersphere, and so
setting up a Schrodinger equation for the helium-type
atom, has not been explored, but it must be admitted
that it is questionable whether a simple perturbation
calculation of the type considered is possible. One
limitation may be pointed out at the start, since

3 E. Schrédinger, Commentationes Pontif. Acad. 2, 321 (1938);
Proc. Roy. Irish Acad. 46, 9 (1940). See also L. Infeld and T. E.
Hull, Revs. Modern Phys. 23, 21 (1951); and A. F. Stevenson,
Phys. Rev. 59, 842 (1941).
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Hylleraas* has obtained a formula for the energy of
helium-type atoms which is correct to fourth order:

E=-—27%41.25Z-0.31488
. 0.01980 0.01004

+ —

Z

(Rydbergs). (2)

If the zero-order Hamiltonian has no dependence on €2,
while the perturbation is proportional to e?, then the
second-order perturbation must be the complete answer,
since the only quantity that can be formed with the
dimension of energy must be proportional to e It
follows that, at best, such a calculation can give only
the first three terms of the expansion (2).

II. THE PERTURBATION CALCULATION WITH
HYDROGENIC FUNCTIONS

The potential for the hydrogen-type atom has the
form —Ze?/r, and the energy of the ground state is
given by the first equation of (1). A perturbation calcu-
lation can be made using zero-order solutions of the
Schrodinger equation with a potential —Ze?/7, and
regarding the remainder of the potential, — (Z—Z;)e%/r,
as the perturbation. It is easily seen that the zero-order
energy and the first-order perturbation energy are the
first and second terms, respectively, of the second equa-
tion of Eq. (1), so that only the second-order effect—
corresponding to the last term—need be considered.
The second-order perturbation due to discrete states is®

ém o 13 (n—1)23
Ey(discrete) = ——(Z—21)?32 3, ————
#2 n2 (n41)2+

3)

4,

e*m
=—0.169(Z—Z)? —,
h2

4 E. A. Hylleraas, Z. Physik 65, 209 (1930); S. Chandrasekhar,
Revs. Modern Phys. 16, 301 (1944). The first three terms of this
formula are the zero-, first-, and second-order effects, respectively.
Hylleraas evaluated the second-order effect with a variational
method, however, so that contributions from different angular
parts of the wave function were not separated. D. Layzer [Ph.D.
thesis, Harvard, 1950 (unpublished)] has given a “preliminary
calculation” of the second-order energy of helium using hydrogenic
wave functions and has obtained the value —0.4735 as compared
to the value —0.31488 given by the third term of the Hylleraas
formula; in getting this result, he used a difference of first-order
energies in the denominators of his second-order perturbation,
so the two values do not really correspond. The amount of work
involved in this calculation is naturally very great. J. M. Ger-
hauser and F. A. Matsen have also used hydrogenic functions
and have summed ‘“‘the first five terms” of the second-order per-
turbation to obtain a constant term —0.2514 as compared to
the value —0.31488 in formula (2) [J. Chem. Phys. 23, 1359
(1955)]. P. Kessler has tried to evaluate the entire second-order
perturbation by explicitly considering only the interactions with
the first six terms of the 1s#s1S sequence; he obtains a value
—0.38 for the constant term [Compt. rend. 240, 1314 (1955)].

5 After obtaining these expressions, it was discovered that
Y. Suguira had already given them as part of a check on his
perturbation calculation for the energy of excited states of helium
[Z. Physik 44, 190 (1927)7].
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while the contribution of the continuum is

E:(continuum)
e‘m ©  exp(4n tan—'n)nddn
= (Z—Z1)32 f
#? o (m2+1)[exp(2rn)—1]

4)

e‘m

=—0.329(Z—Z1)* —.
hZ

The continuum contributes almost twice as much as
the discrete states. The coefficients were evaluated
numerically, which accounts for the sum being slightly
less than %; it seems fairly certain that if these ex-
pressions were evaluated rigorously, their sum would be
exactly the third term of the second equation of Eq. (1).

An exact expansion of the wave function would have

the form
Ry, (Z) = SnCnsRns (Zl), (5)

where the sum on the right-hand side includes an
integration over the continuum. The coefficients ¢,, are
rather complicated functions of Z; and (Z—Z;) which
we have evaluated explicitly for the discrete states only.
They are, of course, proportional to (Z—Z;) (when
n7#%1), but they have no convergent expansion in in-
creasing powers of (Z—Z;) unless |(Z—2Z1)|<Z:
When the condition is satisfied, the series is infinite,
so that the first-order wave function is not the exact
wave function even though it gives the exact energy
in second order. As a result of this it might not seem
likely that higher order perturbations would vanish
for the hydrogen atom, because one could assume
Z1<|(Z—Z,)| and the wave function would be getting
worse while still giving the exact energy. However, it
does not seem to be possible to either prove or rule out
the vanishing of higher order perturbations by an
appeal to the variational principle, since a perturbation
function that gives the energy correct to a given order
will also give parts of higher order effects if used in a
variational calculation, and these additional parts can
insure that the energy is not less than the true energy.
For instance, the first-order wave function could be
considered in the limit where Z;<K|(Z—Z1)|, so that
effectively the total energy is given entirely (and
exactly) by the second-order perturbation. A varia-
tional calculation with this function would introduce
terms of order (Z—Z;)%, and since the sign of (Z—Z,)
can be positive or negative it might seem that these
third-order effects would have to vanish to avoid an
energy less than the true energy. However, this con-
clusion does not follow since positive fourth-order terms
would also appear and these would bear the ratio
| (Z—Z1)/Z1| (>1) to the third-order effects, so there
seems to be no simple way of showing anything definite
about the higher order perturbations.®

8 An interesting possibility of summing second- and higher

order perturbations rather easily is suggested by the method of
A. Dalgarno and J. T. Lewis [Proc. Roy. Soc. (London) A233,
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III. THE PERTURBATION CALCULATION
IN A HYPERSPHERE

The radial part of the Schrédinger wave equation for

" the hydrogen atom in an Einstein hypersphere of

radius R has the following form?:
#? 1 d ay I0+1)
o h
2mL R? sin%x dx dx/ RZ?sin%x

Ze?
—— cotay=FEy. (6)
R

The independent variable x in this equation (0L %< )
corresponds to the ratio r/R, where r is the radius
vector of ordinary space. Replacing sinx by this ratio,
and cosx by unity reduces (6) to the usual equation
for the hydrogen atom. The energy eigenvalues of this

equation are
nt 7% e'm
= ™

E,=#n*—1) .
2mR? 2n® h?

For large R and small enough #, these energies approach
the eigenvalues of the discrete states of the Schrodinger
equation for the hydrogen atom in ordinary space. In
contrast to the latter equation, however, the spectrum
of (6) is completely discrete, even for positive energies.
The eigenfunctions all remain good eigenfunctions when
Z is made identically zero; there is no disappearance of
an infinite set of discrete eigenfunctions for this par-
ticular value of Z, which occurs for the atom in ordinary
space. The explicit form of the eigenfunctions of (6) can
be determined with the factorization method.? They
are normalized so that

f R,*R,; sin2xda=1. (8)
1]

When Z=0, the eigenfunctions for s-states have a
particularly simple form which makes them equivalent
to the functions used in I.

R..= (2/7)¥ sin(nx)/sinx ]. 9)

Even when Z=0; however, the solutions for higher
orbital angular momentum are somewhat more com-
plicated than the solutions for a free particle in ordinary
space (the form of the function depends on both » and !
whereas in ordinary space the form of the solution is
defined by [ alone, as the spherical Bessel function of
order /). However, a simplifying compensation is that
they are composed of purely trigonometric functions,
which can lead to more elementary integrations.

The total Coulomb potential in the hypersphere,
— (Ze*/R) cotx, is regarded now as the perturbation
and the energy calculated with the zero-order solu-

70 (1955)7]. Unfortunately the method fails in this problem, as
the function f defined by their Eq. (13) diverges too strongly at
the origin.
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tions (9). For the 1s ground state, (7) shows that the
zero-order energy vanishes, and the ground state is a
constant according to (9). From the matrix elements,

T ZeZ
f R ( —_—— cotx)Rl8 sin?xdx=0
0 R

47Ze*n

———— (=
TR(n?—1)

2} 4') 6) o ')’

it follows that the first-order energy also vanishes. The
nonzero elements (10) are then squared, divided by
their corresponding zero-order energy given by (7)
(with Z=0), and summed to give the second-order
energy.

e‘m 32 n?
Ey=—2%—— —
h2 7r2 neven (%2— 1)3
(11)
VAR S
2 A2

This is the correct energy of the ground state as given
by (7), and the same as the value for the hydrogen
atom in ordinary space.

In this case also, perturbation theory gives the exact
energy eigenvalue in second order, but the first-order
wave function is not the exact wave function. The
latter has a series expansion in increasing powers of Z
which is infinite, but convergent for all Z. Arguments
based on the variational principle can be applied in
this case to show that the third-order perturbation
must vanish. Actually all the odd-order perturbations
must vanish, since the Schrédinger equation (6) has the
strange property of having the same eigenvalues and
eigenfunctions whether the ‘“Coulomb potential” is
attractive or repulsive; i.e., if the sign of Z is changed
the original equation can be recovered by introducing
(r—=) as a new independent variable. More explicitly,
the third-order perturbation is

E Z’ Vananml V Z' Vannl
3= )
o (Bi—En) (Bi—En) 7 (Ea—Ey)?

(12)

where the elements V,, are given by (10), and Vo, is
a similar expression with Ry, replaced by Rus. The Vin
are evidently zero if m and #» are either both odd or
both even, and from this it follows that E; vanishes, as
already concluded. The form of the fourth-order per-
turbation is found to be’

"The perturbation formulas given in The Theory of Atomic
Spectra (reference 2) seem to give a formula for E, that differs
from (13) by an additional factor of one-half in the last sum.
Formula (13) agrees with the one given by K. A. Brueckner
[Phys. Rev. 100, 36 (1955)]; Brueckner’s formulation of Rayleigh-
Schrodinger perturbation theory is very convenient to use in
getting explicit forms for these perturbations.
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’

VieVam Vs V1
s (Ba— En) (By— Ey) (Er— E)
ViaVaeVar
ns (Ey—E,)?(Ei—Ey)
ViV asVir
ns (Ey—E,) (Ei—E,)?

Vannl
2 .
n (Er—Ey)?

Vln an

n (Ex—E,)?

(13)

In this case, only the first and last sums give nonzero
contributions; the sums over # and s are over even
integers starting with two, while # is summed over odd
integers starting with three. It follows from (10) and
(11) that the last sum of (13) has the value

22 e'm\ [ Z%*m*R?
o

2 B 1272
The factor in square brackets is the sum of the squares
of the amplitudes of the first-order perturbations of the
wave function; it may be regarded as the ratio of the
two contributions to the energy (7) for an effective
n-value of about 1.5. If the hypersphere radius R is
made large enough so that the first term is only a small
percent of the second, then the zero-order wave function
Ry, becomes a correspondingly small percent of the
first-order perturbation wave function and the eigen-
function converges poorly. It is easy to evaluate the
first sum in (13) if the summations over # and s are
carried out before the integrals V,. are evaluated by
making use of the relations

(13a)

sin (ny) sin (nx) =1[ cosn(x—vy) —cosn(x+v) ],
and

0<i<w

=3}—1rsint

=I+lrsing w<i<2m.

After making these summations and then carrying out
the integrations, the first sum of (13) reduces to

824 mPR? m?
- 2 (13b)

hﬁ m odd (m2_ 1)3.

This is just the negative of (13a) and the fourth-order
perturbation therefore vanishes. It seems quite likely
that perturbations of all higher orders will also vanish.
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