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Multiple Elastic Scattering in Electron Diffraction by Crystals*
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In the case of electron diffraction by crystals containing heavy atoms, it is possible to improve the usual
kinematical theory by formulating a pseudokinematical theory, which is expressed in terms of rigorous
atomic scattering amplitudes rather than their Born-approximation values. A corresponding improvement
can be made in the treatment of the problem by the dynamical theory, and consists in taking into account
the coupling of a given diSracted beam with not only the incident beam (as is usually done in first approxi-
mation) but also with other diffracted beams. The pseudokinematical and dynamical theories are compared
for very thin crystals and the conditions under which both give identical results are discussed. In particular,
both predict a failure of Friedel's law in the case of acentric crystals.

I. INTRODUCTION
' 'N a previous paper, ' elastic scattering of electrons
~ - by gas molecules has been described in terms of a
pseudokinematical theory' (PKT), in which it is as-
sumed that each atom in the molecule scatters under
the inQuence of the incident beam only, contrary to the
usual kinematical theory (KT), in which it is assumed
that each in6nitesimal volume element in the molecule
scatters under the inhuence of the incident beam only.
In other words, the Born approximation is made in
the PKT to evaluate the total scattering from the
contributions of the various atoms, but rigorous
solutions to each single-atom scattering problem are
used. The total scattering can be interpreted in terms
of various paths taken by the incident electrons in the
scatterer, every path involving a number of successive
collisions. Whereas the KT takes into account only
paths involving a single collision, the PKT also includes
paths involving multiple collisions, provided that they
all take place on the same atom. The paths neglected in
both theories, involving multiple collisions on different
atoms, are unimportant in the case of molecules or
very small crystals. For larger crystals, however, they
become predominant, since the number of such paths
increases more rapidly than the number of atoms
present. Use must then be made of the rigorous dynam-
ical theory'4 (DT) where the full interaction between
the various waves traveling in the crystal is taken into
account.

It has usually been assumed in the past that the DT
~ This work was supported in part by the Once of Naval

Research. Reproduction in whole or in part is permitted for any
purpose of the U. S. Government.

f Contribution No. 2056.' J. A. Hoerni, preceding paper LPhys. Rev. 102, 1530 (1956)j.
~ The elimination of the potential from the equations of scatter-

ing and its replacement by a function which characterizes the
scattering properties of the individual scatterer is discussed by
H. Fkstein, Phys. Rev. 83, 721 (1951); 87, 31 (1952); 89, 490
(1953).Other recent discussions of multiple scattering in crystals,
with special emphasis on neutron scattering problems, have been
given by M. L. Goldberger and F. Seitz, Phys. Rev. 71, 294
(1947) M. Lax, Revs. Modern Phys. 23, 287 (1951);Phys. Rev.
85, 621 (1952). See these papers for references to earlier work.' H Bethe, Ann. P.hysik 87, 55 (1928).

'Z. G. Pinsker, Etectrors DiffractioN (Butterworths Publica-
tions, London, 1953),Chap. 8.
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and KT results become identical for small enough
crystals. 4 Since it has been recently established, however,
that the scattering from molecules containing heavy
atoms must be described in terms of the PKT, it is to
be expected that the same will be true for very small
crystals containing heavy atoms. Corresponding to
the refinement of the KT into the PKT (obtained by
replacing the Born-approximation values of the atomic
scattering amplitudes by their rigorous values), an
equivalent refinement must be made in the DT, so as
to bring it into agreement with the PKT in the limiting
case of very small crystals. It will be shown in the
present paper that this can be done by taking into
account in the study of a given diffracted beam not only
the inQuence of the incident beam, but also interactions
with other diffracted beams. The reason, however, why
agreement between the DT and the PKT is not always
reached will be discussed on the basis of several
examples.

A short account of the three theories will erst be
presented. The diffraction from thin crystal plates of
in6nite lateral extent will be considered, as only then
are calculations straightforward in the DT. Effects
irrelevant to the comparisons of the various theories,
namely absorption and thermal vibrations will be
neglected.

II. KINEMATICAL AND PSEUDOKINEMATICAL
THEORIES

For simplicity, we consider a crystal where the three
unit cell vectors a~, a2, and a3 are orthogonal, and
assume that the crystal is a parallelepiped of edges
X&a&, X2a&, and Xaa3. In the KT the intensity scattered
at distance r by this crystal under the inhuence of the
incident wave exp(ik r) is

I=r 'l~'(b) I'Gi(qi)Gs(qs)Gs(qs), (&)
where b= qtb&+qsbs+qsbs is the reciprocal vector
corresponding to the direction of observation and
G, (q~)=sin'sr', q;/sin'srq, ; the unit reciprocal vectors
bi, bs, and bs are de6ned by'

a, bs 2mb;s (i,k ="1,2——,3)..
' Our reciprocal vectors are 2m times as large as those commonly

used in crystallography.
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In (1), F (b) is P; ~ f,sexp( —ib. r,), where the
summation of the atomic scattering amplitudes f;s
is taken over the J atoms contained in the unit cell.
The main maxima of (1) occur when the q; take integral
values k;, namely, when b is a reciprocal lattice vector'
bs=h~b~+ksb&+ksbs. Fs(bs) is then the structure
factor:

J
Fss= P f exp( ib—s r,) . (2)

Equation (1) represents the intensity of a spherical
wave and cannot be compared directly with the formulas
of the DT, which refer to plane waves di6racted by a
crystal of supposedly unlimited lateral extent (1V& and
Xs~~) and of thickness D=IVsas In p.ractice, the
lateral extent is related to the cross section 0. of the
incident beam by 1V&a&1Vsc&=o/cosy, where y is the
angle between the direction of incidence and as (Fig. 1).
The results of both theories can be compared if the
integrated intensity or flux J=J'IdS' of an observed
di6racted spot is computed. In the KT, the spot
corresponds to the intersection with the Ewald sphere
of the extension of a reciprocal lattice point, as described
by the functions G, in (1).To an area dS' of a spot on a
photograph, there corresponds on the Ewald sphere
an area' dS= btbsdq~dqs/cosy= (k'/r')dS'. It follows
that

J= (r'b~bs/k' cosy) ~ Idq~dqs,

spot

where I is given by (1).
In the neighborhood of a reciprocal lattice point bs,

(sing~1V, (q, —k;)jq '
G(q')=&'I

~1V;(q;—k;) )
When this approximate expression is substituted in
(3), the limits of integration can be taken as +oo,
so that f.~,tG, (q,)dq, (i=1,2) reduces to IV;. For an
incident beam of unit intensity and unit cross section
the flux J~ of a di6racted spot of indices h~h2h3 is
therefore

(sinLmlVs(qs —ks) j) '
Js= (2'Il/kr cosy)'I F& I'D'I

I ~ (4)
mlVs(qs —hs) )

where v =aiu2a3 is the unit cell volume.
For equatorial reciprocal points (ks ——0), (4) reduces to

(sin2'b, D) '
Js= (2~/kr)'I Fss I 'O'I

', bD i '—
where b, =qsbs is the projection of b along as. In the
exact Bragg position, qs

——hs and the last factor in (4)
or (5) is unity. Formulas (4) and (5) are directly

6 Since the scattering angle 8 does not exceed a few degrees,
cos(p+8) can be taken as approximately equal to cosy.

Fxe. i. Ewald construction in the kinematical theory. The in-
tensity recorded in an area dS' on the photographic film corre-
sponds to the area dS on the Kwald sphere in the region of inter-
section with the extension of the reciprocal lattice point P. The
angle p is the angular departure of the incident wave vector ko
from the Bragg position (for which the Ewald sphere would meet
the point P). Note that PQ = (q3 ha) b~=bg—g/cosy

comparable with the intensities of the di6racted plane
waves in the DT, since the intensity of a plane wave is
numerically equal to the flux for an incident beam of
unit cross section.

In the PET, multiple scattering within the atoms is
taken into account by replacing the quantities fP by
complex form factors' f,=

I f; I
e'»'. As before, the

scattering from the whole crystal is obtained by adding
the contributions of the various atoms. Formulas (4)
and (5) are therefore unchanged except that Fss has
to be replaced by the structure factor

Fs Pf exp( —ib——s r,)=+If, Ie'&iexp( —ibs r,). (6)

The F~ are in general complex even when the corre-
sponding FI,~ are real.

III. DYNAMICAL THEORY

The DT is usually applied to the case of a semi-
infinite crystal plate of thickness D limited by two
parallel faces. We shall consider here the transmission
or Laue case, in which the incident beam is nearly
normal to the front face and the di6racted beams emerge
from the back face (Fig. 2). Solutions of the Schrodinger
equation inside the crystal are Bloch functions':

I(r) =Qgse'"" ', (ks ——ks+ b„).
The I& satisfy the homogeneous equations

(kss —k')es —2k Q coque, 0, ——
qp-'h

where ~,= 2rrF, ~/kr.
7 According to (7), k0 is undetermined to the amount of any

reciprocal lattice vector. We shall define it as being closest in
magnitude and direction to the vector k of the incident wave.
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for the incident and a single diGracted beam are
retained, (10) reduces to the well-known expression

sin'L (s bs'ps+
I

oyy,
I
') ~D/cosy j

—,'bs'gP+
I

oys
I

I()——i —IJ,.

I

I ~&

D

I

1

I

) v, ,
'

I

I

I

I

Ik

I

I

t
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Fn. 2. Relations among wave vectors in the Laue case of the
dynamical theory: k, K0, and the Kz are the incident transmitted
and diffracted wave vectors, respectively. Within the crystal only
one of the solutions m7', with wave vectors kl, k0, k1, and k2, has
been drawn. The orientation of k is such that the waves for h=1
are in the Bragg position. The boundary condition for vector
tangential components is shown.

Equations (8) yield the eigenvalues of IkpI (distin-
guished by an upper index j) and the corresponding
amplitude ratios rrs'=Nsy'/Np'. The condition of con-

tinuity for the incident wave exp(:k r) and the waves

in the crystal determine the orientation of the kp'

(in the way shown in Fig. 2) and the amplitudes spy,

namely

A superposition of diffracted plane waves, +Us
&(exp(iKs r), (I KsI =k), emerges from the back face
of the crystal. The intensity of a diffracted beam
h= Itgh2jg3 is

Iy, =Q;sesyccs"' expi Q'"—P') D. (10)

Here ty is the difference between the components of
k and kpy' in the direction of the normal v to the back
face.

In practice, a small number of amplitudes NA are
retained. in (8). When only two amplitudes mp and Nz

Here p is the angle (in a plane containing the vector
by,) of departure from the Bragg position (the position
for which Ikpy'I = Ikey'I). For a given value of p, the
di6racted7intensity Iz varies sinusoidally with the
thickness "D whereas for a given value of D, it is an
oscillating function of p. If a convergent beam is
focused within the crystal, ' the intensities corresponding
to various values of p, can be observed simultaneously
as a set of parallel fringes, the spacing of which permits
an experimental determination'" of D and Ioyy„I. In
the past, formula (11) has been applied to a number of
problems, but, as will be made clear by the results of
this paper, it cannot always be justified on theoretical
grounds and might therefore lead to inconsistent results.

sin'(-,'b ppD/cosy)

$h2p2
(12)

since 2rrFP/kr = eye and gs hp gsb—syy/2——rr cosy (see
Fig. 1). In the case of thin enough crystals, (11) and
(12) become identical, as the sine functions may be
replaced by their arguments. Thus it appears that in
the limit, the DT goes over into the KT. There is also
another case, not restricted to small values of D, when
both theories coincide, namely for a large angular
departure from the Bragg position (sbpsp'» IoysI'). Jn
both cases Is is small relative to Ip in (11), so that the
basic condition of validity of the KT appears to be
satisfied. As is well known, the comparison can also
be made on the integrated reflections (obtained by
integration of (11) over the angle p).' According to
whether (D/cosy) IoysI is much larger or smaller than
unity, the integral of (11) is proportional to Ioyy, I

or
IoysIs respectively, the latter value being again in
agreement with the KT value.

The above considerations are unsatisfactory in two
respects. First, work on electron scattering by mole-
cules" '2 has established that the KT has to be replaced
by the PET. Both theories yield similar results if only
light atoms are present but differ significantly in the
case of heavy atoms. Second, formula (11) in the DT

W. Kossel and G. Mollenstedt, Arin. Physik 3g, 113 (1939).' C. H. MacGillavry, Physica 7, 329 (1940).
J. A. Hoerni, Helv. Phys. Acta 23, 587 (1950).

"V. Schomaker and R. Glauber, Nature 170, 290 (1952).
's J.A. Hoerni and J. A. Ibers, Phys. Rev. 91, 1182 (1933).

IV. DYNAMICAL vs KINEMATICAL THEORY

The DT and KT are usually compared on the basis of
formulas (11) and (4). To use a common notation,
we rewrite (4) as
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is only valid when interactions among the diGracted
beams are negligible, even for very thin crystals; these
interactions again increase with the atomic number of
the atoms present. We may therefore expect that
whenever there is need to replace the KT by the PKT,
at the same time it is necessary in the corresponding
treatment by the DT to take into account the inQuence
on a given diGracted beam of other diGracted beams.
In the next paragraph, we shall discuss the two types
of interactions which can take place among diGracted
beams in the DT.

V. INTERACTIONS BETWEEN DIFFRACTED WAVES
IN THE DYNAMICAL THEORY

When the intensity of a given spot h is computed from
formula (10), diffracted waves u, exp(ik, r) should be
included in the calculations whenever

~
k,

~
is close to k.

Orientations of the crystal for which ks remains in
(or close to) the Bragg position are obtained by
azimuthal rotations of the crystal around the direction
of bs. The amplitudes of other waves will go through a
sharp maximum whevever ~k,

~

= ~kp~ (or in the KT
language whenever the points b, traverse the Ewald
sphere), except in the case of vectors that are multiples
of by, (namely —b&, &b», &bp&, . , if h&, hs and hp

have no common integral factor). Thus some of the
dynamical in.teractions expressed by Eq. (8) depend on
a particular azimuthal orientation (accidental interac-
tions), whereas the others do not (systematic interac-
tions). In what follows, we shall assume that the
azimuthal orientation is such that only systematic
interactions have to be considered. In other words,
we replace the tridimensional potential V by a one-
variable function I/ which clearly is the average value
of V over planes perpendicular to bs. This approxima-
tion has been shown to be satisfactory" when Ig&, h2,
and hs are low indices which refer to strongly reQecting
reticular planes. In this case, the average inQuence of
the neglected waves, as given by the consideration of
the average value of I~ over all azimuthal orientations,
is small, even though it might be important for a
particular orientation. On the other hand, when the
indices hj, h2, h3 are high, this average inQuence may
become greater than the interaction among the waves
retained in the one-dimensional potential approximation.

In order to simplify the calculations, we further make
the unessential assumptions that the faces of the crystal
are parallel to by„, and that the three vectors k, by, and
v are coplanar (Fig. 2). If x and z are coordinates in
the directions of bs and v, respectively, we have

V(x) =Pg, Vy„e pixh'Px, (P= ~by, ~).

With these assumptions, the formulas given above
keep the same form, although they now include waves
relative to only one row of reciprocal lattice points.
The Schrodinger equation is then separable, its solutions

"K.Artmann, Z. Physik 125, 298 (1948).

being of the type

(13)N(r) =e(x,z) =exp(ikp, z)ty(x),
where

ry (x)=P sey, expi (k,+hP) x, (14)

v. and v referring to vector tangential and normal
components, respectively. In the next paragraphs, a
comparison of the DT results obtained in this way with
the corresponding KT and PKT results will be made on
the basis of several examples.

with
d'tt/dw'+ (a——',s cos2w) ty =0,

w=-', Px, a=4(k' kp, ')/P'—=4(k '+2k&)/P'

s= -32k(~g(/P'.

(15)

It is known that there exist sets of eigenvalues of g
for which the solutions of (15) are of period x, 2',
3x, . . . Solutions of period x and 2x and the correspond-
ing eigenvalues a&, have been tabulated" for a range of
values of s between —100 and +100. These solutions
must then be normalized in the way suitable to our
problem, namely by means of Eq. (9). Consideration of
(14) shows that ty(w) is of period pr for k,/P=O, &1,
~2, . . . The same solution in reference 14 can be used
for all these orientations of the incident wave, provided
that the numbering of the waves in (14) is modified
accordingly. (For instance, the case of k, = —P is
deduced from the case k, =0 by replacing every index
h in the former solution by h+1.) In every case,
however, the normalization (9) is different. Similar
considerations apply to solutions of period 2+ and the
values k,/P=&-'„&-,', . . . For other values of k,/P,
interpolation has to be made.

Although t/' is never strictly harmonic in any actual
crystal, it may be considered as approximately so
when the coefficient co for the second order of a strong
reflection is zero. Such is the case for the reQection 111
in germanium (oyyyt ——0.0131 A ' for 39.47-kev incident
electrons (k=103.75 A '), ppsss=0, P= ~btn~ =1.936
A '). The influence of couplings of higher orders
involving ~333, is unimportant for at least the
reQections 111 and 222 so that the use of Mathieu's
solution is justified in computing these low-order
reQections.

Table I shows the values of the I' and P' for h =000,
&(111), &(222), and 333 obtained from Mathieu's
solutions in the case of k, = —-', P (when the waves111 are
in Bragg position, see Fig. 2). The indexing in terms of

j4 Tables Relating to Muthieg Functions, U. S. National Bureau
of Standards (Columbia University Press, New York, 1951).

VI. CASE OF A HARMONIC POTENTIAL

It is instructive to consider first the harmonic
potential V=2Vy cosPx since the Schrodinger equation
can be solved directly in this case. Substitution of (13)
in the Schrodinger equation yields Mathieu's equation
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TABLE I. DT data for ditfraction by germanium. Results given by the approximations (u) and (b) discussed
in the text are shown in parentheses. The P are expressed in A '.

.1
'2

3

l5

6
104Ig

104@'

—165(—131,—164)
69(131,72)

371(0,394)
400(0,421)

1092(0,0)
1092(0,0)

104u111&

4688(5000,4706)—4062 (—5000,—4146)
310(0,294)—935(0,—854)

2(0,0)—3(0,0)
3946(5000,4015)

104us22&

1202 (0,1178)—1936(01—1881)—1185(0,—1178)
1915(0,1881)—17(0',0)

21(0,0)
1026{0,985)

104u 388&'

127(0,0)—250(0,'0)
—219(0,0)

367(0,0)
92(0,0)—117(0,0)
28(0,0)

j is such that u'&a'& . Due to symmetry, the
solutions Bf(x) in (13) are alternately even and odd so
that in our example 33, &&'= (—1)&'33&&'. The intensity of
any diBracted beam can be computed from (10).
Since it varies strongly with the crystal thickness, it has
been found convenient to report in Table I a mean
intensity

IA= E~ INA'I', (16)

obtained by averaging (10) over all possible thicknesses.
Whereas Table I refers to a given incidence angle
(k, = —-,'P), Fig. 3 shows the variation of Ippp, It~t, and

Isss with the incidence angle (or the tangential compo-
nent k,).

In order to test the reliability of the usual formulation
of the DT (paragraph III), Eqs. (8) have been solved

by successive approximations by retaining in these
equations (a) two amplitudes Nppp and Nttt, (b) four
amplitudes 33»& to N333 (c) six amplitudes 33~33 to 33333.

In Table I, values of the 33' and p', obtained from
approximations (a) and (b), are listed in that order in
the parentheses following the rigorous values. Results
for approximation (c) have not been reported since they
agree with the accurate results to within a few tenths of
a percent. In approximation (a), an analytical expres-
sion for I»t can be deduced from (11),namely

I„,=-,'L1+(,'P'f 3/I~, I3) j-&,

where the angle of departure p, from the Bragg position
for the waves 111 is )'3 '(-,'p —k,). In Fig. 3, the dashed
line shows the values of I111 obtained from approxima-
tion (a) (Isss vanishing in this approximation since

is zero). Obviously, this approximation fails
badly here, whereas approximation (b) (not shown on

Fig. 3) is already in close agreement with the rigorous
treatment, as may be directly inferred from Table I.
The large intensity of the "forbidden" reflection 222 is
entirely due to indirect coupling between the beams
000 and 222 through the beam 111.

Experimental evidence of a strong reflection 222 for
germanium has been reported by Heidenreich. "
According to Fig. 3, the integrated intensity of the 222
reflection should be about half of that of the 111
reflection. A powder photograph shown in Fig. 2(b) of
reference 15 shows that the actual ratio is less. This is
due to the fact that the assumption on which (16) is

'3 R. D Heidenreich, .Phys. Rev. 77, 271 (1950).

based is not satisfied. The powder is not made up of
crystals of random thickness D, but the D values range
up to some upper limit, say 400 A. Over this limited
range, the mean intensity does not reach the value
indicated by (16). This can be seen from Fig. 4, where
the expression (10) for the intensity of the 222 reflection
is plotted against D for the particular orientation
k, = —P (when the waves 222 are in the Bragg position).

In his theoretical treatment of the reflection 222 from
germanium, Heidenreich exclusively takes into account
accidental interactions between the beam 222 and
other beams 113, 331, ~ in turn. Because the corre-
sponding waves can be brought simultaneously into
Bragg position, these interactions may exceed the
systematic interactions discussed here. However, they
take place only briefly during azimuthal rotations of the
crystal, and, on the average, systematic interactions
are predominant since they must be taken into account
for any crystal orientation. "

The "anomalous" strong reflections 222 for CuC12
and CaF& observed by Germer17 are associated with
small coefficients co2». again their increased intensity is
due to a strong coupling with the reflection 111. The
effect is most marked when or»2=0, but should be
generally observed for reflections of low indices,
The case of germanium shows that it is important even
for crystals composed of relatively light atoms. When
the potential V is no longer harmonic, no rigorous solu-
tion analogous to the Mathieu solution is available and
successive approximations of the type described above
have to be made. The convergence is not as rapid as

000

Frc. 3. Germanium: Graph of dependence of average intensities
Ippp, I111,and I222 on direction of incident wave vector. The dashed
line corresponds to approximation (a) discussed in text.

"For this reason, the statement made in reference 15 that
dynamical interactions only take place when the incident wave
vector originates from corners or edges of Brillouin zones is in-
correct.

rr L. H. Germer, Phys. Rev. 56, 58 (1939).
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VII. FAILURE OF FRIEDEL'S LAW

In an acentric crystal, it is not possible to find an
origin of coordinates such that V(r) = V(—r). In this
case the structure factors Ii~~ in the KT are in general
complex. Since Ii y,

——Iiy, ', however, Friedel's law—

I.O—

.8
CO

ED

c .6

200 400
0 in Angstroms

800

Fxo. 4. Germanium: Graph of dependence of I222 on thick-
ness D. The value I222 results from the averaging of I~~2 over a
large range of D values.

's J.A. Ibers and J.A. Hoerni, Acta Cryst. 7, 405 (1954).

in the harmonic case since new coeKcients orI, are
introduced at every successive stage.

Let us now compare our results for germanium with
the formulas of the KT and PKT. If the beam h is in
the Bragg position, these formulas reduce respectively
to

D' or l»l'D'

where x&=2~Fs/kr is obtained by replacing Fss by
Fs in a&s. Using atomic scattering amplitudes f and f
computed on the basis of the Thomas-Fermi field, "we

have for the reflection 111, Jitt=(1.73X10 ')D' or
(1.53X10 ')D'(D in A). Both expressions differ but
little since the atomic number is relatively low. Figure
5 shows that the PKT result is somewhat closer to the
accurate solution. On the other hand, no agreement will

be reached in the case of the reAection 222, since

o)2»=x2» ——0 and I»g vanishes in the KT and PKT.
Here the basic kinematical condition is not satisfied,
even for small D values when I»2 is much smaller than

Ippp, because there is another diGracted beam (111) of

stronger intensity than I»2 and which acts in fact as
the "primary beam" for the beam 222. In other words,
this e6ect is due to successive collisions of the incident
electron on diferent atoms and is therefore neglected
in the PKT. Similarly, the PKT will be inadequate to
account for I»2 whenever or»2 is small relative to or)gg

and I»2 is mainly due to indirect excitation through
the beam 111.Thisis of course also the circumstance
that causes Eq. (11) to fail in the DT.

Finally, we note that the phase factor e'& in f was

of no importance in the application of the PKT to
germanium since the crystal was monatomic, We shall

now study a case where phase factors are important,
namely an acentric crystal.

1.0

~2

50
D in Angstroms

IOO

Fio. S. Germanium: Graph of dependence of I000 and I111 on
thickness D. DT results (solid lines) do not add up to unity since
other diffracted beams have been included in the calculations.
KT and PKT results for I111 are shown for comparison.

I.-P;,~, ~„*expLz g &—p)Dj,
Is' ——Q;, sos "sss" expLi(t' —P)D].

(17)

(»)
These two expressions are diGerent unless the I&„

are real (namely when the a&'s are real and the crystal
has a center of symmetry). The asymmetry is not
brought out by solving the Schrodinger equation, but
appears when boundary conditions are applied. It will
be noted that the transmitted intensity Io' is always
equal to Is since the Ns' as defined in (9) are real.
Also the sum of the intensities of all di8racted beams
is the same in both cases. Consequently when the
intensity of a spot h is computed from the two-waves
formula (11), we have I&' I&, this being phy——sically
obvious since (11) is equivalent to replacing the
acentric potential by a function Vs exp(ibs r)+Vs'

' See also a similar discussion by H. Niehrs, Z. Physik 140,
106 (1955).

which states that the intensity of the diGracted beams
h and —h should be equal —is verified. On the other
hand, )F z( may difFer from (Fs( in the PET since
I' p, is deduced from Iiz by changing the sign of only
the second phase factor in (6). (The only cases when

~F s( = )Fs) occur when F sn=&Fsn. ) A failure of
Friedel's law is therefore expected. We shall find it
convenient to express this failure in the following
alternative way: the intensity I& of the diGracted beam
h is not equal to the intensity I&' of the same beam
obtained by replacing V(r) by V'(r) = V(—r), the shape
and orientation of the crystal being unchanged.

Let us now describe the same eGect in terms of the
DT." We again compare the intensity of a given
diEracted beam h for the potentials V and V', the
direction of the incident beam and the crystal thickness
being the same in both cases. If quantities relative to
V' are distinguished by an accent, we have or&'= or&* and,
since the matrix formed by the coeKcients of the I's
in (8) is Hermitian, Ns"=sss'* and i"=P'. Is and Is',
as given by (10), are
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Fxo. 6. Cadmium su16de: Graph of dependence of I000, Iy11, and I»1' on thickness D, the waves 111 being in Bragg
position. Due to the failure of Friedel's law, the intensity I»&' obtained by replacing the crystal potential V(r) by
U( —r) is different from I»1. DT results are shown by solid lines, PKT results by dashed lines.

Xexp (—ib&. r) which introduces a center of symmetry.
In this connection, it is worth pointing out that Bethe's
perturbation method" of taking into account the
inQuence of additional weak diffracted beams in the
two-wave problem does not yield the required asym-
metry since the procedure leads essentially to the same
final expression (11), the correction only modifying the
numerical value of (&u&~ and )co&'( by an equal amount.

%e shall now apply our equations to the numerical
study of the reQection 111 from cadmium sulfide. The
structure is polar and similar to that of zinc blende.
Planes of cadmium and sulfur alternate parallel to the
plane (111), the distance between the close pair of
Cd and S planes being one quarter of the whole 111
spacing. We again assume that biii is parallel to the
crystal faces and locate the origin of coordinates in a
Cd plane. Corresponding to the potentials U and U',
we take the S plane nearest to the origin in the direction
of b»i, respectively —biii. Then Frit —4(foq+ifs),
whereas Fiii'=Fiii ——4(fog —ifs) At the Bra.gg position
the respective intensities given by the PKT are

J=1.22X10 4D',

J'=0.925X10 4D'

Here the numerical values k=103.75 A ', b~~~=1.870
A ', foq(111) (in A)=6.91+2.30 i and fs(111)=4.19
+0.69 i have been used. "

In the corresponding dynamical treatment for the
case where the waves 111 are in Sragg position, we
make the approximation (b) already used for germanium

by retaining in (8) the four amplitudes ei» to msss.

Because of symmetry, the equations can be transformed
into four linear equations with real coefficients by
considering suitable linear combinations of the un-

knowns. The final intensities Iiii, Iiii', and Isss (=Isss'),
Eqs. (17) and (18), are plotted in Fig. 6 as functions
of D. It will be seen that satisfactory agreement between

"Reference 3, p. 77.
2~ The f values given in reference 18 have been slightly adjusted

so as to correspond to the DT calculations mentioned below, in
which relativistic corrections were not taken into account and the
cop, were computed from diferent Qts of the atomic potentials.
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Fro. 7. Cadmium sulfide: Solid lines show the DT dependence
of I222 and I222' on thickness D, the waves 222 being in Bragg
position. Here, no failure of Friedel s law is predicted by the PKT
(dashed line), the lack of agreement between both theories being
due to the simultaneously strong intensities Il'[f or In( (chain-
dotted lines).

the PKT and DT results is obtained for thicknesses up
to 50 A, i.e., up to the point where the condition that
the diGracted beam be small relative to the incident
beam is no longer verified. For larger values of D, I~~~
and I»& oscillate, their diGerence is alternatively
positive and negative, showing that in that range the
breakdown of Friedel's law cannot even qualitatively
be interpreted in terms of the PKT. The intensities of
the weaker beams 222 and 111 included in the calcula-
tions but not plotted in Fig. 6, show a similar failure
of Friedel's law.

Other calculations for CdS have been made in the
case where the waves 222 are in the Bragg position.
For the reQection 222, the PKT does not predict any
failure of Friedel's law since Fsss Fsss 4(fog —fs).
From corresponding calculations in the DT (where five
amplitudes Niii to vasss have been taken into account),
it turns out that such a failure actually occurs. In Fig. 7,
the intensities I222 and I222' are compared with the
common PKT intensity. In spite of the fact that the
waves 111are not in the Bragg position, the (dynamical)
intensities Iiii and I»i'—also shown on Fig. 7—are
larger than I222 and I22~' in the range of thickness where
the PKT should be valid. As has been shown previously,
no agreement can therefore be expected in such a case
between both theories since additional coupling between
the beams 111 and 222 takes place, leading here to
reinforcement of I2~2' and weakening of I22~.

In the case of a reQection of high order, systematic
interactions with other diBracted beams become less



MULTI PLE ELASTI C SCATTERING

important than the accidental interactions which occur
for any azimuthal orientation of the crystal (see
paragraph V). Let us for instance consider the reflection
331 from CdS. According to the PET, I33~ should be
nearly twice as large as I~I. In the dynamical treatment
if the potential is averaged in the same way as before,
namely over planes parallel to the planes 331, it is
found that the systematic interactions of the beam
331 with the beams 331 and 662 are negligible so that
I»t is correctly given by the two-wave formula (11)
and is therefore equal to I»&'. In this case any failure of
Friedel's law is due to accidental interactions only, and
will therefore vary with the azimuthal orientation of
the crystal.

Experimental evidence of a failure of Friedel's law
has been reported by Miyake and Uyeda. "The eGect
was observed on ZnS in the Bragg (reflection) case with
the incident beam impinging on the cleavage face (110)
in (or close to) the azimuthal plane (110) so as to excite
simultaneously the rejections hkl and hh/. In particular
a large asymmetry between the beams 331 and 331 has
been observed. A satisfactory account of this eGect has
been given by Kohra, "who considered the accidental
interactions occurring between the beams 000, 331
and 331,. Calculations were only performed in the case
where the plane of incidence is strictly parallel to the
plane (110).Since the asymmetry seems to occur over
at least a small range of azimuthal orientations, it
would be desirable to extend the calculations to the
cases where the waves 331 and 331 do not reach the
Bragg position simultaneously, in order to evaluate
the possible importance of interactions with other
diGracted beams. The same asymmetry can also be
qualitatively explained by the PET. A quantitative
comparison of both theories can only be taken up in
the Bragg case if absorption effects are included. For
this reason, it would be preferable to investigate the
failure of Friedel's law in the Laue (transmission) case.

VIII. RELATION BETWEEN THE DYNAMICAL THEORY
AND THE ENERGY BAND PROBLEM

The diGraction problem discussed in terms of the
dynamical theory is only one aspect of the more general
problem of electronic energy bands and wave functions
in crystals. From Bloch's theorem any electron wave
function is the product of an exponential factor
exp(ik r) and of a function having the lattice perio-
dicity. Since there is an in6nite set of discrete allowed
energies E corresponding to a given wave vector k
the whole relationship can be described by an infinite
set of surfaces in a four-dimensional space E, k. If one
assumes that an electron is but little perturbed by the
periodic field, these surfaces can be calculated by a
perturbation method (nearly free electron approxima-
tion). In the energy band problem, this method is

IS. Miyake and R. Uyeda, Acta Cryst. 3, 314 (1950).
"K.Kohra, J.Phys. Soc. Japan, 9, 690 (1954).

applied to calculate the intersection of the energy
surfaces by planes containing the E axis and a given
direction in k subspace, while in the diffraction. problem
it is applied to calculate intersections by planes of
constant energy. In the latter case the Schrodinger
equation yields eigenvalues for the normal component
4„ofthe wave vector ks, corresponding to the tangential
component Ao, fixed by the boundary conditions.
Convergence of the method is very poor for atomic or
valence electrons in a crystal, but our examples have
shown that it can be slow even at the high energies met
in the diGraction problem. This is the case when the
incident electron travels nearly parallel to strong
reQecting planes. In particle language, the electron
zigzags between the walls of one of the potential valleys
created by the reflecting planes, since its momentum
component normal to the planes is too small to lift it
over the walls. The behavior of the wave function in
the direction normal to the walls is similar to that of
a bound atomic electron and has to be expressed by the
superposition of a necessarily large number of plane
waves. It has been shown by Artmann'4 that this
notion of laterally bound electrons leads to a simple
qualitative interpretation of the intensity distribution
in Kikuchi bands. In most cases, however, the electrons
are not perfectly free nor perfectly laterally bound, and
the numerical analysis is therefore involved. For the
corresponding intermediary cases arising in the energy
band problem, there exists several modi6ed methods"
(for instance the orthogonalized plane wave method"),
which might equally prove useful in the diGraction
problem.

The energy band problem corresponding to the
diGraction problem for the harmonic one-dimensional
potential, taken up in paragraph VI, has been discussed
by Slater."Since the Schrodinger equation reduces in
this case to Mathieu's equation (15) (where the
parameter s has the same meaning as in the diGraction
problem), it follows that Slater's discussion of the
resulting wave functions can be directly applied to
our function u(x) in (13) or (14).

IX. CONCLUSION

The present paper discusses the way in which the
available kinematical and dynamical theories of electron
diGraction have to be modified or amplified in the case
of diGraction by crystals containing heavy atoms.
Corresponding to the substitution in the KT of rigorous
atomic scattering amplitudes for their Born-approxima-
tion values, mutual interactions of a number of dif-
fracted waves are taken into account in the DT
treatment. The PET and the DT are compared in the

s4 K. Artmann, Z. Physik, 125, 225 (1948); 126, 533 (1949).
P 25 See for instance J. C. Slater, Technical Report No. 4, Solid-
State and Molecular Theory Group, Massachusetts Institute of
Technology, July 15, 1953 (unpublished).

2' C. Herring, Phys. Rev. 57, 1169 (1940).
'r J.C. Slater, Phys. Rev. 87, 807 (1952).
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case of very thin crystals, where both should give
identical results. Our examples have shown that such
is indeed the case for refIections of the first order and
of low indices, but that in general there is no agreement
for other types of reQections. The discrepancy in the
second case can be explained as follows: The diGracted
beam under consideration is more strongly coupled with
one or more other diGracted beams than it is with the
incident beam; in other words, the contribution of
electron paths with successive collisions on diGerent
atoms is predominant and is the cause of the discrepancy
between both theories, since these paths are neglected
in the PKT.

In the study of a given diGracted beam the number
of other beams of equal or higher intensity is roughly
the same as the order of the system of Eqs. (8); therefore
DT calculations for weak beams of high indices would
be very lengthy and, at the same time, strongly
dependent on azimuthal orientation. No agreement with
the PET should then be expected in the limit of thin
crystals. Furthermore, it will be clear from the previous
discussion that the commonly accepted notion that
integrated intensities are proportional to

~

Jism
~

in the
DT, in contrast to the values

I
Fas

~

' in the KT, is
only correct insofar as the two-waves formula (11)
is valid.

In weighting the relative merits of the PKT and the
DT, it should be remembered that our comparison

has been based on the scattering by a given potential
6eld, and has therefore overlooked a main feature of
the PKT, namely that, unlike the DT, it can take up in
a straightforward way a/l single-atom scattering effects,
including even those which cannot be strictly described
by a potential (polarization, electron exchange for
instance). There is yet no experimental evidence,
however, that these effects are actually important.

Finally, it should be emphasized that the possibility
of crystal structure determinations from Fourier
inversion of diffraction data (a procedure which is
based upon the validity of the KT, but can still be
carried out if the PKT is valid" ), is in fact brighter
than it would appear from our discussion. Our calcula-
tions apply to perfect crystals of simple shape for
which dynamical eGects are most conspicuous. Since
mosaic structure destroys the coherence between the
waves scattered by the various mosaic blocks, the
eGective scatterer size may well correspond to the
range of validity of the KT. This eGect, combined
with the small weight of the atoms present, is the
probable reason of recent successful crystal structure
determinations by electron diGraction.
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I'he annihilation rate of triplet positronium has been calculated without summing at once over spin and
polarization. The results, quoted without proof, apply to some recent measurements of spin and polariza-
tion effects.

INTRODUCTION

~HE calculation by Ore and Powell' and others 3

of the angular correlations and spectrum of the
annihilation quanta from triplet positronium has been
repeated without averaging over spin or summing over
polarization. The results then apply to recent measure-
ments of the relative polarization of a single annihila-

*Submitted in partial fulfillment of the requirements for the de-
gree of Doctor of PhiJosophy at Carnegie Institute of Technology.

(Now at University of Pittsburgh, Pittsburgh, Pennsylvania.
' A. Ore and J. Powell, Phys. Rev. 75, 1696, 1963 (1948).
2 J. Radcliffe, Phil. Mag. 42, 1334 (1951).
3R. Ferrell, doctoral thesis, Princeton University, 1951 (un-

published).

tion quantum' and the eGect of the vs= 0 spin state on
the angular distribution of the annihilation quanta. "

The calculation follows readily from expressions
given by Ore and Powell; the results will be quoted
without proof.

MATRIX ELEMENT

The transition probability for a positronium atom
in the lowest triplet S-state to annihilate with the
production of three quanta of energies k~, k~, k3 and

4 Leipuner, Siegel, and DeBenedetti, Phys. Rev. 91, 198 (1953).
s J. Wheatley and D. Halliday, Phys. Rev. 88, 424 (1952).
e Marder, Hughes, and Wu, Phys. Rev. 95, 611 (1954), also 98,

1840 {1955).


