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It is pointed out that an exponential specific heat law in a superconductor leads to a uniquely specified
form of two-Quid model. The properties of this model are derived, and compared with the corresponding
properties of the usual Gorter-Casimir model.

II. TWO-FLUID MODEL IN GENERAL

One can describe a two-Quid model completely by
prescribing an order parameter ~, the so-called fraction
of superQuid, and by expressing the Helmholtz free
energy F per unit volume as a function of & and T,
the absolute temperature. Thus, for our case,

F= —Ace ——,'E((o)yT', (2)

where A is a constant, E(cp) is an arbitrary function,
and y is the electronic speci6c heat parameter. If
E(0)=1, the free-energy expression reduces to the
correct form for a normal electron gas. The linear form
of the first term in (2) is determined by the requirement
that no entropy be carried by the superQuid component.

~ 3.B.Goodman and W. S, Corak, and Goodman, Satterthwaite,
and Wexler, Proceedings of the Paris Low Temperature Con-
ference, 1955, papers 64 and 75. Older references are listed in
these papers.' C. J. Gorter and H. B.G. Casimir, Physik. Z. 35, 963 (1934);
Z. Physik 15, 539 (1934).

& H. Koppe, Ann. Physik 1, 405 (1947).
4 P. L. Bender and C. J. Gorter, Physica 18, 59'7 (1952).

I. INTRODUCTION

ECENTLY evidence' has begun to appear that,
in some superconductors, the specific heat law

does not conform at suSciently low temperatures to
that predicted by the two-Quid model of Gorter and
Casimir. ' Speci6cally, it appears that one can represent
the specific heat law, to remarkable accuracy, by an
expression of the form

C(T)/yT, =A expL —nT, /Tj,
where C is the speci6c heat, T, the critical temperature,
and yT, the specific heat of the normal metal at a tem-
perature T equal to T,. 0; is a constant of order unity,
that seems to vary from metal to metal. It is the pur-
pose of this work to point out that the most general
two-Quid model that will yield (1), and which preserves
the zero entropy characteristic of the superQuid elec-
tron, is completely determined by (1).In the remainder
of this paper we will exhibit its form explicitly, and
develop its consequences. A specific example of a two-
Quid model that is diferent from the Gorter-Casimir
model has been developed by Koppe' and discussed by
Bender and Gorter. 4 The specific heat to which it leads
is, at sufBciently low temperatures, intermediate be-
tween (1) and that given by the Gorter-Casimir model.

At absolute zero, where co=i, the free energy of the
superconductor is known to be equal to —Hp'/Spr,
where IIo is the critical field at absolute zero. This
determines A, which is equal to Hp'/Ss. . Thus

(BF) =0= —Hp'/Ss —E'(cp, )yT'/2, (4)
E BQ) ) ra=cuz

whence we obtain

E'(~.)=H p'/—4rryT',

which determines co. as a function of temperature.
Since we want this to describe a second-order phase
transition at the critical temperature T„we have

E'(0)=H p—'/~7T, '. (6)

For the Gorter-Casimir model, E(&o)= (1—cu)'*, so that
—E'(0)= sr. Equation (6) is then a well-known relation.
In the more general case —E'(0) will not be equal to sr.

In view of (6), we can write (3) as follows:

87rF/H p' rp+ 1'E((u)/K'———(0)

where t= T/T, is the reduc—ed temperature. We can
also write (5) in the form

E'(0)= PE'((u ) (8)

which determines the function +,(t).
The entropy of our system (again, per unit volume)

is given by S= —BF/r)T, so that

S=yTK(co,).

The specific heat is C(T)= TdS/dT, so that

C(T)/yT, = 1K(pp, )+t'K'(pp, ) (Cko,/Ck) (10)

or, using (8)

C(T)/yT, = tK(cu,)+E'(0) (dpp, /dt).

It follows from (10) or (11) that E(co,) is determined,
as a function of t, by the specific heat. By combining
this with (8), therefore, E(co) is itself determined
parametrically, using 3 as a parameter. Then all the
other details of the model are determined.

F= cpH p'/87r —E(cp)y T'—/2 (3)

and the condition for equilibrium at a temperature T is
given by
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The quantity ce, (t) is, of course, given by (8). If we

suppose, as usual, that the penetration depth A varies
with temperature, as fee. (t)7 &, then

'A (T)/X (0)= L(v, (t)7
—

&. (12)

If necessary, this relationship, which is based upon an
interpretation of the London electrodynamics of a
superconductor, can be changed. It is not very firmly
based in the theory.

The critical field H, at a temperature T is given by
the diGerence in free energy between the normal and
superconducting phases.

&,10

1.00—
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0.80

& a=).25

H, '/87r =F F„— (13) 0.70

so that the reduced critical field )'t—=H, /H ies given by

0.60
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The surface energy can be calculated, in the frame-
work of the new phenomenological theories, ' by using
the free-energy form (3) instead of that given by the
Gorter-Casimir model. The explicit consequences of the
change will be postponed to a separate paper on the
surface energy problem.

It is of some interest to note explicitly that the ratio
of electronic specific heats just above and just below
the transition is

C (T,&
—

&) [E'(0)7'
=I—2

C(T,&+&) E"(0)

FIG. 2. Ratio of the function E(co) for 'the "energy-gap"
model to that in the Gorter-Casimir model. For the latter,
E(a&) = (1—(o)&.

For the Gorter-Casimir model, the expression in square
brackets on the right side of (16) is equal to 4.

This summarizes the most important properties of
the model. In the next section we will derive the
speci6c results for the model determined by (1).

III. "ENERGY-GAP" MODEL, AND ITS
CONSEQUENCES

For the particular form of the speci6c heat law given
by (1), namelyFor the Gorter-Casimir model, this ratio is 3.

We should also note the relation between He/T, and

(dHo/dT) T= To. We obtain, from (14) and (8)

fdH, i He 2E'(0) &

EdT) r=r. T. E"(0)
(18)

& 00

c(t)=C(T)/YT, =A—expL —n/t7, (17)

we want to 6nd E(te). To this end we 6rst calculate the

(16) entropy

0.90
where we have taken into account the third law of
thermodynamics in choosing the lower limit for the
integral. Thus

0.80

0.70

dr
o (t) =A —exp L n/r7 =AE(n—/t),

Jo r
(19)

0.60

0.50 0.2 0.4 0.6 0.8 ).0

where we have used the terminology E(x) for the
standard exponential integral J;"e 'dr/r. This is the
integral many mathematics books call —Ei(—x). We
prefer to dispense with the two minus signs.

Since we want a second-order phase transition at
t=1, A is determined by

Fio. 1.Ratio of the "fraction of supertiuid" cu(t) in the "energy-
gap" model, to that in the Gorter-Casimir model. For the latter,
co(t) = 1—t4.

5 V. L. Ginzberg and L. D. Landau, J. Exptl. Theoret. Phys.
(Japan) 20, 1064 (1950);J.Bardeen, Phys. Rev. 94, 554 (1954).

(2o)

so that only one of the parameters in (1) is really in-
dependent. It is gratifying to note that the parameters
obtained by curve-Gtting to the observed speci6c heats'
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FIG. 3. Ratio of the critical Geld in the "energy-gap" model to
that in the Gorter-Casimir model, normalized to the same value
of Hp. For the latter, h(t) =H. (T)/Hp t —tP. ——

do indeed closely satisfy (20). This is as it must be.
It follows, therefore, that the ratio of specific heats
just above and just below the transition is

C(T. )/C(T.+)=exp[—nj/E(n) (21)

For the cases observed in practice, this is normally less
than the value of 3 given by the Gorter-Casimir model.

We have then

Integrating this differential equation for co„we Gnd

E'(0)E(a)[1—po, (t)j= (2a+t)E(n/t)
2t—exp[—a/t j, (26)

where we have had to specify E'(0) in order to have
the change in to, (t) from t=0 to t=1 come out equal
to unity. The necessary value for E'(0) is

Z'(0) = 1+2n—2e—"/E(n). (27)

Equations (23), (26), and (27) now determine E(pp)
parametrically, with t as a parameter. Then the rest
of the properties of the model follow from the appro-
priate equations in Sec. II, and it is unnecessary to do
more than to list them, leaving out the simple and
straightforward derivations.

The properties of the most general model of the
form (3) that will lead to a specific heat of the form (1)

lp3

E(n)o (t) =E(a/t).

Combining this with (9), we find

E(a/t)
o (t) = tIC(po,)=

E(n)

(22)

(23)

Ht- 1.2

so that

Ao,
E'(0) = tPE'(&o,) = t'—[E(pp,)j,

dt dt dt
(24)

dcp. dE(n/t)
E'(0)E(n) = t — —E(alt)

dt

which determines E(po,) as a function of t. Using (8),
we obtain '1.0

0 OA 0.6 0.8 1.0

or (17), are, then, as follows:

Fn. 5. Ratio of the critical Geld in the "energy-gap" model to
that in the Gorter-Casimir model, normalized to the same slope
at T= Tc

1.4

=exp[—n/t j—E(n/t). (25) E'(0)=1+2n—2e- /E(n),

&[ .(t)E=E( lt)/tE( ),

(28)

(29)

'l.3
(2n+ t)E(n/t) —2t exp (—n/t)

1—to, (t) = (30)
E'(0)E(a)

X, 12
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The last two equations determine E(pp).

t2
h'= .(t)+ [1—&[ .(t)jj

E'(0)
(P /Tp, )'= —4pryE'(0),

(d+c) (+p l
(dT) r=r, ET,&

(31)

(32)

Fro. 4. Ratio of the penetration depth in the "energy-gap"
model to that in the Gorter-Casimir model, both referred to 'the
penetration depth at absolute zero. For the Gorter-Casimir model,
this is X(T)/X(0) = (t -t') &. (34)

exp( —n) —E(n)
X (33)

2 exp( —n) —(1+2n)E(n)

C(T, )/C(T,+)= e /E(n).
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The corresponding expressions in the Gorter-Casimir
two-Quid model are as follows:

E'(0)= ——,',
EL~o, (t)j=t',

I-co, (t) = t4,

(Ho/T, )'= 2sry,

(dH. ) Ho

&dr) r=r, ' 1;

(28GC)

(29GC)

(30GC)

(31GC)

(32GC)

(33GC)

(34GC)

As mentioned before, the variation of the surface
energy with temperature is also changed from that
given by the Gorter-Casimir model, but this will be
discussed separately.

We exhibit in Figs. 1-4 for the "energy-gap" model
with u= 1.25 and n = 1.5, co,(t), E(co), h(l) and X(t)/X (0)
= Lco.(t)$ &, respectively. In each case we have plotted

the ratio to the corresponding expression for the Gorter-
Casimir model, so that that model is represented by the
horizontal line at unity. We show in Fig. 5 the ratio of
the critical Geld in this model to that in the Gorter-
Casimir model, when they are normalized to the same
slope at T=T,.

IV. DISCUSSION OF THE RESULTS

As one might expect, the main di6erence between
the "energy-gap" model and the Gorter-Casimir model
is that, in the former, all the physical quantities tend
to their values at absolute zero more rapidly than in
the latter. Thus, C(T) goes to zero more rapidly, oi, (t)
goes to unity more rapidly, and H, goes to Hp more
rapIdly.

The jump in speciGc heat is changed, and for the
chosen values of n, is reduced. This is given by (24).

The relation between Hs/T, and the slope of the
critical Geld curve at the transition temperature is
changed to (33), so that parabolic extrapolation to 6nd
Ho is no longer valid.

All these changes are quantitative rather than quali-
tative, and are subject to experimental check.
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The magnetic susceptibility of two polycrystalline rods of hafnium (Hf I and Hf II) was observed from
4.22'K down to 0.08'K. The electrical resistance of these specimens was also observed from room tempera-
tures down to 0.08'K. While the magnetic measurements indicated unambiguously that no superconducting
transition occurred, the electrical resistance did, however, exhibit a decrease at approximately 0.19'K for
Hf I and 0.28'K for Hf II. The resistance did not fall to zero but remained finite down to the lowest tem-
peratures obtained. The temperature at which this decrease occurred was found to be sensitive to an ex-
ternally applied magnetic field. Critical field data were obtained for Hf I which indicated a (dH/dt) r =r, of
450 gauss/degree. Magnetic and electrical measurements obtained for one of the specimens, subsequent to
an anneal, indicated no marked change in these measured quantities. Both these specimens had a stated
purity of 98.92%.

The magnetic susceptibility of a third specimen of hafnium was observed and a superconducting transition
was noted at 0.173'K. This specimen was in the form of lathe turnings and was approximately 96% pure. A
few critical field points were obtained which yield a value for (dH/dT)r =r, of 130 gauss/degree.

From a consideration of all the available data concerning the superconductivity of hafnium, it is felt that
pure hafnium is probably not a superconductor down to a temperature of 0.08'K.

I. INTRODUCTION

URTI and Simon' observed the magnetic behavior
of hafnium below 1.0'K and reported it to be a

superconductor with a transition temperature (T,) of
0.35~0.05'K. Roberts and Dabbs' investigated the
magnetic susceptibility of several specimens of hafnium
and detected no superconducting transitions down to

' N. Kurti and F. Simon, Proc. Roy. Soc. (London) AISI, 610
(1935).

s L. D. Roberts and J.W. T. Dabbs, Phys. Rev. 86, 622 (1952);
and private communications.

0.03'K. The specimens were then annealed after which
one of the specimens exhibited a transition at 0.29'K.
The specimen which showed superconductivity was in
the form of lathe turnings and possessed a purity of
96%, the major impurity being zirconium ( 4%%uz).

Smith and Daunt' failed to observe, magnetically, any
superconductivity in a relatively pure hafnium sample
(98.92%) down to a temperature of 0.15'K. The speci-
men was then annealed and a superconducting transi-

e T. S. Smith and J. G. Daunt, Phys. Rev. 88, 1172 (1952).


