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The conductivity, Hall coefficient, and low-field magnetoresistance are calculated for a semiconductor
with conduction in two sets of spheroids, one set oriented along [100] directions, the other along [111]
directions in reciprocal lattice space. These calculations are used in an analysis of experimental data on
alloys of twelve to seventeen percent silicon in germanium. A good fit to the data is obtained assuming
such a conduction band, with the shape of the [111] spheroids similar to that found in germanium and
the shape of the [1007] spheroids like those in silicon. Some interband scattering is introduced to give the
observed mobility variation with composition. The calculated energy separations of the [1117] and the
[100] minima depend strongly on the scattering assumed.

I. INTRODUCTION

PHENOMENOLOGICAL theory of the galva-

nomagnetic effects in semiconductors having
spheroidal energy surfaces has been discussed by a
number of authors.™* The treatments have been
applied in particular to the two cases: (a) six spheroids
with axes along the [100] directions in reciprocal lattice
space, (b) four or eight spheroids with major axes along
the [111] directions in reciprocal lattice space. Case
(a) describes the conduction band in silicon®® and case
(b) describes the germanium conduction band.®® It is
of interest to consider a semiconductor with a conduc-
tion band made up (considering possible occupied
states) of a set of type (a) and a set of type (b), with
minima separated in energy by

A8= 8100°— E11s’. 1)

The alloy system germanium-silicon contains possible
examples of a semiconductor with conduction occurring
in these two sets.®” Figure 1 is a plot of the optical
band gap of the germanium-silicon alloys as a function
of composition, taken from Johnson and Christian’s
letter.” These data can be fitted by one line from 0 to
15 percent silicon content and another line of different
slope from 15 to 100 percent silicon. To explain® these
results, it is first assumed that in germanium the [100]
states are about 0.18 ev above the [111] states. As
silicon is added to form the alloys, both sets of states
move away from the valence band, but the [100] move
less rapidly than the [1117]. At about 15 percent silicon
content, the two sets are at the same energy. For alloys
with greater than 15 percent silicon, conduction is
mainly in the [1007] states. The break in slope in the
optical band gap curve is caused by a transition from
a semiconductor with conduction in the [1117] minima
to one in which conduction occurs in [100] minima.
An alloy of about 15 percent silicon would then be an

1B. Abeles and S. Meiboom, Phys. Rev. 95, 31 /(1954).

2 M. Shibuya, Phys. Rev. 95, 1385 (1954).

3 C. Herring, Bell System Tech. J. 34, 237 (1955).

4 C. Herring and E. Vogt (to be published).

5 Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1955).

6 F. Herman, Phys. Rev. 95, 847 (1954).

7E. R. Johnson and S. M. Christian, Phys. Rev. 95, 560 (1954)

example of a semiconductor with conduction occurring
in two different states or bands.

We shall calculate the galvanomagnetic effects of
such a semiconductor and then apply these results to
measurements made on germanium-silicon alloys of
12-16 percent silicon content.

II. CALCULATIONS

In treating the transport processes, the following
assumptions are made.

(a) The conduction band consists of six [100]-
oriented spheroids and four [1117-oriented spheroids,
each of which is represented by an equation of the form

PP+P2 Py
&= 84+ ———F— (2)
2mt 2mt

&° is the energy difference between the bottom of the
spheroid and the top of the valence band, and the
coordinates are taken along and perpendicular to the
spheroid axis. There are two sets of effective masses,
one (m') along the axis and one (m?) perpendicular to
it, for each class of spheroid.
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Fic. 1. Optical energy band gap for the germanium-silicon alloys
as function of silicon content.
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" (b) The scattering of the carriers in each spheroid
may be represented by a relaxation time 7, and this
relaxation time is a function of the energy only. Scat-
tering by longitudinal acoustical waves is of this form.?
Intervalley lattice scattering and neutral impurity
scattering also should yield such a relaxation time.?
Scattering by ionized impurities and by some of the
acoustical modes may be poorly described by such a
relaxation time. For these cases, Herring and Vogt*
have introduced three relaxation times for the principal
ellipsoidal directions. The result of such a treatment
for the galvanomagnetic effects is to weight the re-
ciprocal effective mass by the relaxation time for that
direction. An analysis which assumes one 7(&) may
then incorporate such a relaxation time anisotropy
into the calculated energy surface anisotropy.

(c) The conductivity is the sum of the contributions
from each spheroid. The two sets differ in their contri-
butions because of different shapes and orientation,
different relaxation times, and because of different
distances from the Fermi energy.

(d) The calculations are carried out in the limit of
“weak’ magnetic fields, i.e., terms in H® and higher in
the series expansion of the distribution function are
neglected.

Use is made of the treatment given by Abeles and
Meiboom! for the simpler cases of [111] and of [100]
spheroids alone. Where the treatment is identical,
their results are referred to.

The electric current density in the presence of
electric and magnetic fields is

€

I =
4mdhd

dfo
f grad,8——¢dV, 3)
a8

where ¢ is a function® of the electric field E, magnetic
field H, the energy 8 and the shape of the energy
surfaces, and the scattering relaxation time r. Here
fo is the electron distribution function in the absence
of fields.

The current contribution from each spheroid is

ti=oaErt o ErH o iimEcH Hm, (4)

where the ¢’s are integrals over momentum space. The
summation convention is used throughout. When
7=7(8), and the momentum coordinates are chosen
along and perpendicular to the principal axis of the
energy spheroid, the ¢’s are

0'11=022=MKF1,

(5a)
g33— MFl,
o128= —0215= — UV K*Fy,
(Sb)
0231= 03127 — 0132~ —0321=M?)KF2,

8 J. M. Radcliffe, Proc. Phys. Soc. (London) A68, 675 (1955).
® H. Jones and C. Zener, Proc. Roy. Soc. (London) A145, 268
(1934). :
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o1122=02211= — UV K?F3,
o1133=02233= — UV K?F 3,
(5¢)
03311= 03322~ —-’WUZKF&

T3jij= ’WIJZKF:;.

The other components of the ¢ tensor are zero. Here!®

B 4ne? TY-sn
u—37r%ml( ) ) (6)
e
v=-(m")", )
c
K=mY/m!, (8)

Fo= f [+(8)°8 exp(— &/kT)dS, (9
and # is the density of carriers in this spheroid:

2wkT\
n=2(?~) mt(m?) exp(— Ep/kT). (10)
The contributions from each of the six [1007] sphe-

roids and the four [111] spheroids are summed to give
the total current in the s-direction.

Li=Ya Bat Yot B4 Y iim B H,, (1)
2a={(4/3) w111 (2K 1 +1)F, M0
+20300(2K 100+ 1) F10®}5,, (12a)
2= {— (4/3)u111911:.K 111 (K 111+ 2) F 10
— 20100v100K 100 (K 100+ 2) Fa®} ¢35, (12b)

> itim= — (8/Nu111011:2K 111 (K 11— 1)2F 510
i=k=l=m
=— (4/Nu111911:°K 111 (2K 112+ 5K 111+ 2) F1
— 2110091002K 100 (K 100*+ K 100+ 1) F 30100
i=kFl=m
= (4/9Nu111011:°K 111 (K 1124+ TK 111+ 1) F 10
+ 6210001002 K 1002 F 3% i=l#k=m
= (4/9%1119112K 111 (K 111— 1)2F ;110
i=msEh=1. (120)

To calculate the Hall constant Ry and the magneto-
resistance coefficients, Eq. (11) is inverted to give the
electric field as a function of the current and the
magnetic field. For cubic crystals the magnetoresistance

1 Tf 7=A &P, Fo=A%(RT)*P*52T (ap+5/2).
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can be represented by the expression!!
(I-H)? ! JI CHA+IPH+1H?
¢ a
rm rm

. (13)

Substituting into Egs. (12) the expressions for the
functions # and v, and taking the reciprocal resistivity
tensor, we have the relations

16V2re? (— 85010 /4T)
= s exp(— ,
ser T

3BRT ¢
R ovtnes PR,
b=Reoe?{ (s/2)[ (4/9) (mans?)~
X 2K 112+ 5K 111+ 2) F30
+2 (m100") (K 1002+ K 100+1) DF ;00— 1},
¢=Reo{1— (s/2)[(4/9) (m11)~
X (2K 11124 5K 111+2) F 010
+-6(m100) 1K 100F 5100 D]}‘,
d=Roe?(s/2)[(8/9) (m11x) (K 11— 1)2F 010
—2(m100")H(K100— 1)*F 320 D],

go

(14a)

(14b)

(14c¢)

where

Kinn+1

s= -(mllll) pI—
3

2K100+1
F1(111)+2 (mmol)% _Fl(IOO)D’

111 100

t=(4/3) (m111) "} (K 111+ 2) F,1D
+2(m100") "} (K 100+2) F29 D,
D= exp[— (61000_ 81110)/kT:|.

The magnetoresistance is then a function of the Hall
mobility Rooo, the scattering, the longitudinal, and
transverse effective masses of each set of valleys, and
the energy separation of the two sets. All of these
cannot be determined from the measured values of
Ry, a0, b, ¢, and d.

In the cases where there are six [100] valleys or four
[111] valleys alone, the following symmetry conditions
hold:

[1117-oriented,

b+c=0} (15)

b+c+d=0
} [1007]-oriented.

(16)

When the two sets contribute to conduction, neither
of these relations holds. Instead there are relations
among the constants b, ¢, and d which involve the

1 G, L. Pearson and H. Suhl, Phys. Rev. 83, 768 (1951).
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shape of the valleys, their energy separation and the
relaxation times.
A and B are defined by the equations

bto=A(b+c+d), (17
b+ (Rooo)?= B(b+c+4d), (18)
where
9 mlul i (Kloo“— 1)2 Fa(m)
A=—( exp(—AE/kT), (19)
4 mmol (Klu— 1)2 Fs(m)
3 2K112+5K1+2 1 9 K100*+K100+1
2Ki—1)? 4 (Km—1)
mah\ § Fyto0
[ —_— _A .
X (mwol) g exp( E/kT). (20)

If the shape of the valleys, i.e., the effective masses,
and the ratio of relaxation time integrals are known,
Egs. (19) and (20) may be used to give independent
estimates of the energy separation. A comparison of
the results should serve as a check on the theory.

The energy, longitudinal effective masses and scat-
tering may be eliminated from Egs. (19) and (20):

3 2K1112+~'5K11r¥-2J Ko+ Ki00+1
2(Ky1—1)? (K100—1)?

(21)

A is a'quantity which is zero for [1117] conduction alone
and becomes very large for predominant [100] conduc-
tion. B has the same behavior, with a finite value for
[1117] conduction, which increases as the [100] states
begin to contribute. This Eq. (21) is analogous to the
symmetry conditions (15) and (16). It provides a
condition which is satisfied if there are two sets of
valleys of [100] and [111] orientation contributing to
the conduction. It does not depend on the number of
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F16. 2. Ratio Ki11 of longitudinal to transverse effective masses
for [1117] spheroids as function of Koo for [100] spheroids.
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valleys, nor on the form of energy dependence of the
scattering. However, this condition depends quantita-
tively on the shape of the valleys. If this condition
holds or is assumed to hold, some information on the
shape of the valleys may be deduced. Equation (21)
may be written in the form:

B=C1(K111)+AC:(K100).

Both C; and C; are positive and greater than or equal
to unity for all values of K. The measured quantities
A and B may be used to calculate Ki1; as a function
of Kigo from Eq. (21). Such a curve has vertical and
horizontal asymptotes, so that the possible values of
K111 and Ky are limited in range (see Fig. 2). Since
C: and C; have the same values for 1/K as for K, the
prolate and oblate spheroids cannot be distinguished.

III. COMPARISON WITH EXPERIMENT

We apply this treatment to measurements!? on #-type
germanium-silicon alloys. Table I lists the pertinent
data. Observations were made at 290°K.

Crystal 1067, with some six to seven percent silicon
dissolved at random in the lattice, has a magneto-
resistance effect which fits the [111]-spheroid model
very well. This is also true for other crystals with less
than eight percent silicon, reported in reference 12. The
measured data for crystals in the range ten to seventeen
percent silicon deviate from what is expected from a
one-band model. This is shown in the last two columns
of Table I, where the values of 4 and B are listed.
A differs appreciably from zero for the crystals with
more than ten percent silicon.

We first explore the question of whether the data are
fitted by the model assumed. If Eq. (21) is applied to
the above data, a plot of Ki1; as a function of Ky is
obtained for each crystal. These curves are shown in
Fig. 2. There is an experimental error which is not
shown, large enough so that the curves may be con-
sidered to overlap considerably. These curves should
contain a set of K’s which correspond to the physical
situation in the alloys, if the symmetry condition (21)
is valid. The ratio K;; appears to vary little from its
value of about 12 in going from germanium to an eight
percent alloy.* As well, the effective masses in the

TasirE I. Galvanomagnetic measurements on Ge-Si alloys.

Rogo
Percent (ohm- (cn:’/v- b ¢ d

Crystal Si cm) sec) (108 cm¢/v2-sec?) A B

Ge 0 5-7 4250 8.6 —-8.0 180 0.03 143
106T 6-7 1.5 2330 2.3 -23 54 0.01 142
106H 12-13 6.2 840 0.55 —046 0.70 0.14 1.57
106G ~14 83 580 0.29 -—0.18 0.25 0.31 1.77
1061 ~14 10.2 495 0.20 -0.11 0.13 039 2.07
106D ~16 9.2 540 0.21 —-0.11 0.12 045 2.27
106F ~17 94 510 0.17 —-0.09 0.10 045 2.31

12 M. Glicksman, Phys. Rev. 100, 1146 (1955). The compositions
listed are based on recent spectrographic analyses.
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TaBLE II. Functions of the energy separation of the valleys.®

K(uw) F,(wo)
(Fa(m) )A B ) (Fa(m) )

8(100)

Sample Fyamy
106T (6-7% Si) 001 0016 142 0028 0.022
1068 (12-13%) 014 0231 157 0.163 0.197
106G (~14%) 031 0511 177  0.345 0.428
1061 (~14%) 039 0643 207 0.618 0.631
106D (~16%,) 045 0742 227  0.799 0.771
106F (~17%,) 045 0742 231 0835 0.789

a D =exp(—Ag/kT).

[100] minima are probably changed only a small
amount in going from silicon to germanium, since it is
expected that the interacting states do not change their
relative positions appreciably. Some recent observa-
tions® on an alloy of twenty-five percent silicon obey
the [100] symmetry conditions, with Kio=5.5. All
the curves of Fig. 2 are consistent with the set of values
K111=13.5, K100=5.5. Thus the symmetry condition
(21) is satisfied for these crystals by effective mass
ratios in good agreement with those given by the
magnetoresistance data'? in germanium and silicon and
expected to apply in this alloy region.

The application of Egs. (19) and (20) to the data
should yield the energy separation of the wvalleys,
provided we know the effective masses and the relaxa-
tion times. The symmetry condition is satisfied by
K111=13.5 and K10=>35.5. If in addition the longitudinal
effective masses are assumed to have the cyclotron
resonance values,® i.e., (m111%/m100%)=1.63, the scat-
tering integrals and the energy separation are left
as unknown quantities. Table II lists the products
[F300/F,007] exp(—A8/kT) calculated from A4 and
B, and the average value for each crystal.

In order to estimate the energy separation, some
assumptions about the scattering need to be introduced.
As a first simple trial, the relaxation times are assumed
to have the form r=A&8?, where A and p may be
different for each type of valley and may vary with
composition. We examine the behavior of 7 as a function
of composition outside the competition region (approxi-
mately ten to twenty percent), and extend this depend-
ence into this region. In silicon and germanium, the
magnetoresistance data may be used to give values of
F3F1/F¢? which, under the above assumptions, is a
function of p alone. This function is 1.17 in germanium
and 1.16 in silicon, for the resistivities noted in reference
12. These values correspond to p=—0.42 or —0.43.
The alloys of low composition have data consistent
with a decreased value for p, in the range —0.36 to
—0.39, depending on impurity content. Crystal 1067,
with about the same impurity concentration as the
other 106 crystals, yields p=—0.39, and this was used
in fitting the data.

The Hall mobility is proportional to F»/F; and this
may be used to calculate A. If Ao and Ayy; are assumed

13 S, M. Christian and M. Glicksman (unpublished).
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TasLE III. Energy separation of the valleys.

With no interband Interband
scattering scattering
Rooo Rooo (Ra)obs
(cm?/v- (cm2/v-  (cm2?/v-
Sample Ag/kT sec) Ag/RT  sec) sec)
106T (6-7% Si) 2 2100 2330
106H (12-139, Si) —0.6 1120 0.9 785 840
106G (~149, Si) —14 870 0.6 640 580
10671 (~149, Si) —1.7 800 0.35 570 495
106D (~169, Si) —1.9 715 0.25 515 540
106F (~17% Si) —20 685 02 490 510

independent of the separation of the two sets of minima,
the strong decrease in mobility in the twelve to seven-
teen percent silicon composition region is not in accord
with that deduced from the magnetoresistance obser-
vations. The magnetoresistance data in the competition
region are a combination of [1117] and [100] contri-
butions. However, the mobility has about the value
expected for [100] conduction alone, estimated from
the observations in the range up to ten percent and at
twenty-five percent silicon content.® If a scattering
mechanism is introduced which appreciably lowers
the mobilities of the valleys, these conditions can be
simultaneously satisfied. Such a mechanism may be the
enhanced scattering (and reduced mobility) of electrons
in the [1117 valleys into the [100] valleys, and the
reverse, i.e., a type of intervalley scattering® which is
interband scattering.* Since this should introduce no
appreciable asymmetry into 7, the magnetoresistance
conditions will not be strongly affected. However, the
expected mobility would be reduced with respect to
that found outside the competition region.

A proper choice for the energy dependence of the
scattering under such conditions should involve a good
number of parameters (in a phenomenological ap-
“proach) as has been discussed by Herring.® The utility
of a detailed analysis is limited, since there are insuffi-
cient types of data to determine these parameters.
We choose arbitrarily to represent the scattering
relaxation times by the expression '

r=A(A8) &7,
where .
;—i—a exp[—B(AE/kT)*]. (22)

B

Such a choice is made for simplicity, and the analysis
is carried out to show the possibility of fitting both the
magnetoresistance and mobility data by introducing a
scattering time which has a minimum when the two
bands are close together.

A’ is fitted to the data at low alloy compositions,
where the interband scattering should be small. It
depends quite strongly on alloy composition, since the
Hall mobility decreases rapidly with increasing silicon

4 H, Brooks and W. Paul, Bull. Am. Phys. Soc. Ser. II, 1, 48
(1956).

MAURICE GLICKSMAN

content. The scattering of charge carriers by the ran-
domly positioned atomic potentials in the disordered
alloy has been treated by Nordheim! for the case of a
metal, and his approach may be simply extended to a
semiconductor. Brooks'® has considered the semicon-
ductor problem, but treated the random array in terms
of energy band fluctuations. He has calculated a
scattering time and mobility for this mechanism for an
alloy of silicon in germanium. In either case, it is found
that the appropriate scattering time is proportional to
{#(1—x)}!, where % is the fraction of silicon atoms
present. The alloy scattering relaxation time has the
same energy dependence as the thermal scattering time.
Brooks predicted that this contribution to the scattering
would equal that due to the thermal vibrations for an
alloy of about eight percent silicon in germanium. Some
preliminary measurements on the temperature depend-
ende of the mobility made by the author give approxi-
mately the expected temperature dependence for this
mechanism and equality with the thermal scattering at
about nine percent silicon in germanium. In accordance
with these observations, Ay’ is taken as

0.082
Ay =—————Ay,
0.0824-x(1—x)

where A1, is the value at x=0. Arbitrarily Ao is
assumed to have the same functional behavior.®®* The
values of the A’s for #=0 are chosen to fit the Hall
mobilities in germanium and silicon, with a small
adjustment in value to account for the impurity
concentration in crystals 106. This fit requires A190®/A11°
=0.48.

The interband term in A has two adjustable param-
eters, a and 8, which give the strength of the scattering
and the sharpness of its dependence on the energy
separation. Since the current flow from the [111]
minima into the [1007] minima should equal the reverse
current, 8 will be the same for the [1117] and [100]
valleys, and the ratio ay11/ai00 is determined.

In Table III are listed the results of this analysis.
The second and third columns give values for AE/ET
and Ry calculated with «=0; the next two columns
give similar calculations with a111A11,°=0.6, 8=0.7. In
the last column are listed the experimental values of
Rooo. The calculated values for no interband scattering
are about fifty percent larger than the observed values
in the competition region. However, the introduction
of considerable interband scattering gives good agree-
ment.

The calculated energy separation A& is very sensitive
to the amount of interband scattering present, in this
simple approximation of the scattering. The values
quoted in the table may be considered only as repre-
sentative of the small separation in the above crystals.

The mobility calculated for interband scattering shows

15 L. Nordheim, Ann. Physik 9, 607 and 641 (1931).
16 H. Brooks (private communication).
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a shallow minimum in its variation with A& (or compo-
sition) in the competition region.

IV. CONCLUSIONS

The room temperature magnetoresistance data for
the germanium-silicon alloys can be explained by a
conduction band of [1117] spheroids for alloys with
less than ten percent silicon in germanium. However,
the data for alloys of ten to seventeen percent silicon
show a different anisotropy, not in accord with the
assumption of one set of spheroids. These data are
fitted satisfactorily by a conduction band made up of
two sets of spheroids, with an energy separation varying
with composition—one set having four [111]-oriented
spheroids, the other having six [100]-oriented sphe-
roids. This is in agreement with the alloy band structure
suggested by Herman® to explain the variation with
composition of the optical band gap.”

This analysis does not yield unique values for the

1501

effective masses of the spheroids. However, the effective
masses which fit the data for germanium and silicon
satisfy the magnetoresistance symmetry condition for
the ten to seventeen percent silicon alloys.

An analysis of the data to yield the energy separation
of the two bands as a function of composition depends
sensitively on the scattering behavior in the alloys. If
the scattering in each band is assumed independent of
the other, the observed Hall mobility in the competition
region is only about two-thirds that expected from an
analysis of the magnetoresistance. The mobilities can
be correlated with the magnetoresistance if some inter-
band scattering is assumed. Such scattering lowers the
band mobilities but leaves the magnetoresistance
symmetry conditions unchanged.

The author is indebted to Professor H. Brooks, Dr.
F. Herman, and Dr. R. H. Parmenter for informative
discussions on the problems of energy band structure
and scattering processes.
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Dilute alloys of Mn in Cu are expected to show marked effects of the exchange interaction between the
3d® ion core electrons of the Mn atoms and the 4s conduction electrons of the crystal. The simple model leads
to the prediction of indirect exchange ferromagnetism; electronic Knight shift of the electron spin resonance
line; nuclear Knight shift of the copper nuclear resonance; electron spin relaxation by the coupling with
the conduction electrons; and a contribution to the electrical resistivity by the Elliott-Schmitt mechanism.
The observed width of the electron spin resonance line suggests that the sd exchange interaction may be
of the order of 0.2 of the interaction in the free ion. The dilute alloys appear to be antiferromagnetic, but
with a ferromagnetic interaction also present which is rather stronger than calculated on the indirect ex-
change model. An unexpected experimental result is that the nuclear Knight shift is unaffected by the
presence of Mn, suggesting that the conduction electron magnetization by the sd coupling is less than 1/50

of what might be expected.

T occurred to us that it might be profitable to study
by electron spin resonance methods the electronic
properties of metallic alloys. We were particularly
interested in observing the effect on the conduction
electrons of the host metal when a low concentration of
a second component is added. For several reasons it was
decided to emphasize at the beginning the study of
dilute solutions of manganese in copper: (a) The con-
duction band of copper is believed to have a simple
structure, containing 4s electrons with an approximately
isotropic effective mass nearly equal to the free electron
mass. (b) The presence of paramagnetic solute ions

* Supported in part by the Office of Naval Research and the
U. S. Signal Corp.

1 Foreign Operations Administration Fellow; now at Clarendon
Laboratory, Oxford, England.

I Now at Lockheed Aircraft Corporation, Van Nuys, California.

permits the application to the problem of powerful
magnetic methods, including susceptibility determina~
tion; line width, intensity, and position in electron and
nuclear spin resonance; and neutron diffraction.! (c) It
was anticipated that a ferromagnetic coupling between
Mn ions might result from an indirect exchange cou-
pling? via the conduction electrons. (d) There was some

1 Neutron diffraction studies of the Cu—Mn system are being
carried out at the Argonne National Laboratory under the direc-
tion of Dr. S. Sidhu, to whom we are indebted for interest and
cooperation.

2 The idea is based on the observed exchange energy difference
55 —75=9473 cm™ of the 3d%4s configuration of free Mn*. A Mn*+
ion is viewed as magnetizing the 4s conduction electrons, which in
turn magnetize other Mn*+ ions by the same interaction. Similar
mechanisms have been proposed by H. Frohlich and F. R. N.
Nabarro, Proc. Roy. Soc. (London) A175, 382 (1940); C. Zener,
Phys. Rev. 81,440 (1951) ; see also M. A. Ruderman and C. Kittel,
Phys. Rev. 96,99 (1954). The application to the Cu—Mn problem
was suggested independently by J. Fisher (unpublished).,



