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(56) for small wckT as follows:
wckT/sin(wckT)=14+%(wckT)*+ - - -
=144’ (ET)%*/3F*+---, (79)
where here the argument of ¢ is F#/¢. Accordingly the
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fractional error involved in using the Fowler-Nordheim
formula is of the order of 4x%(kT)%/3F% This is in
agreement with the results of Sommerfeld and Bethe®
and Guth and Mullin, their Eq. (12)%; only the nu-
merical factors differ slightly.
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" The mathematical methods of neutron diffusion theory are applied to the problem of cathode sputtering.
The state of all particles not in thermal equilibrium with the lattice can be described by a gas-like model in
which the atoms move with constant mean free path. Collisions are assumed to occur only with “fixed”
lattice atoms, but binding energies are neglected. The distribution functions exhibit finite discontinuities in
the energy which approximate the behavior of the correct functions. The sputtering ratio is determined by
integration over the velocity direction and also over energy, thus averaging out the approximation. The
resulting expression for the sputtering ratio depends upon four atomic parameters of the system. In prin-
ciple all are measurable, but only the mass ratio is known with precision at the present time. The theoretical
curve is fitted to the experimental data which are available for eight ion-metal combinations. The curve is
found to be very sensitive to the choice of fitting parameters, and the parameters exhibit considerable internal
consistency. The theory indicates certain areas of experimental research which should add to present

understanding of the process.

I. INTRODUCTION

ISINTEGRATION of cathodes by positive-ion
bombardment has been under discussion in the
literature for slightly more than 100 years.! Glockler and
Lind? summarize the information available in 1939. A
more modern survey, including a critical study of the
theoretical work, is given by Massey and Burhop.?
The theory proposed in this article is a logical devel-
opment of the ideas of Kingdon and Langmuir,* but
conceptually it lies between their approach and the
completely thermal method of Townes.> Mathematically
it closely resembles the methods developed to study the
diffusion of neutrons in solids.®
The sputtering process was analyzed as follows: a
beam of ions strikes a metallic surface and dislodges
atoms. The actual process probably involves the pene-
tration of the ions into the surface, where they “cool”
into thermal equilibrium with the lattice by making
collisions with the lattice atoms. These ‘“struck”
particles acquire an appreciable energy which must be

* Portions of this work were submitted to the faculty of Yale
University in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

1'W. R. Grove, Trans. Roy. Soc. (London) 142, 87 (1852).

2 G. Glockler and S. Lind, The Electrochemistry of Gases and
other Dielectrics (John Wiley and Sonms, Inc., New York, 1939),
Chap. XIX.

3H. Massey and E. Burhop, Electronic and Ionic Impact
Phenomena (Clarendon Press, Oxford, 1952), pp. 578-5%4.

4K. Kingdon and I. Langmuir, Phys. Rev. 22, 148 (1923).

§ C. Townes, Phys. Rev. 65, 319 (1934).

( 8 S;:)e, for example, R. Marshak, Revs. Modern Phys. 19, 185
1947).

dissipated by collisions with particles which are still
bound in lattice sites. Thus the steady state consists of
two distributions of moving atoms, one describing the
state of all incident atoms and the other the state of all
“struck” atoms, which interact with the stationary
distribution of lattice particles. If the corresponding
distribution functions can be calculated, the sputtering
ratio, the number of atoms sputtered per incident ion,
is determined by the flux of “sputtered” lattice atoms
through the surface.

We assume that the distribution functions are solu-
tions of the Boltzmann integro-differential equation
written in the form known as the transport equation.
Thus we are accepting all of the assumptions inherent
in that formulation. The validity of this assumption will
be discussed later in greater detail.

II. DISTRIBUTION FUNCTIONS

It is convenient to describe the process as the inter-
action of four distributions, where each of those pre-
viously mentioned is split into two parts. This method
allows the interesting portions of the distributions to be
represented by functions which are approximately
isotropic.

The first distribution, hereafter known as the “beam,”
shall consist of those particles which have penetrated
into the lattice without having made a collision. These
particles are within the metal, but they are still moving
in their initial direction with their original energy. For
convenience this incident beam will be considered mono-
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energetic, with all particles moving in the positive z
direction. Here 2 will be in the direction of the inward
drawn normal of an infinite plane metal surface.

The second distribution, the “incident particle”
distribution, consists of those beam particles which
have made one or more collisions without having
“cooled” into thermal equilibrium with the lattice.

The third distribution, the “lattice particle” distri-
bution, includes those lattice particles which are not
in thermal equilibrium with the lattice, i.e., those lattice-
type particles which have just been struck and therefore
have not had time to “cool.”

The fourth, the “metal,” contains all particles,
incident and lattice, which are in thermal equilibrium
with the lattice as a whole. The density of the former
will be assumed negligible compared to the latter. We
shall assume that this distribution is “smeared out”
into a uniform density of material, designated by p.
Actually we are assuming that the mean free paths, or
collision probabilities, are functions of velocity and not
of position. This use of ensemble average or effective
values is a mathematical artifice to facilitate calcula-
tions and has not been justified physically. The same
procedure seems to be effective in neutron transport
calculations performed to this degree of precision.

Defined in this way, the first distribution function
will depend only upon the penetration, z, while the next
two depend upon penetration and velocity. Preliminary
calculations using reasonable beam densities indicate
that collisions between two moving particles may be
neglected.

When the “target” distribution can be written in this
smeared-out form, the Boltzmann equation becomes the
transport equation. The distribution functions, which
satisfy this equation with the symmetry previously
described, must be symmetric in velocity direction
about the z axis; so that only two parameters are needed
to specify the velocity. Instead of the usual components
we shall use the logarithmic energy, #=In(E/E)
(where E is the energy of a particle and E, is the energy
of a beam particle before collision), and p, the direction
cosine of the particle velocity with respect to the z axis.
In terms of these variables, the transport equation takes
the form$

R

X [, po) () +W (u,2,p), (1)

where 7 (#)=po is the reciprocal of the mean free path
of a moving particle within the metal. Here o is the total
cross section of the moving particles upon the lattice
atoms; so that # is the macroscopic cross section.

The function L is defined as L(u,3,p)=N (u,zp)
Xwvp(u), where N(u,2,p) is the required distribution
function and v is the velocity under consideration. Note
that if L, the collision frequency per unit volume, is
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known, then N, the distribution function, is completely
determined.

The function f(u',u,po) is the probability that a
particle initially in a logarithmic energy state «’ will be
in a logarithmic energy state # after a collision. Here
po defines the scattering angle. In the rest of the work
this function will be referred to as the direct energy
transition function.

The remaining factor under the integral is defined
by the relation

h(w)=o:()/[os()+ou(u')], 2

where o, is the cross section for scattering, and o is
the cross section for trapping by the lattice. (Note that
o corresponds to the cross section for capture in the
neutron diffusion literature.) We shall refer to 4 («') as
the trapping parameter.

We assume that a trapped atom is brought into
thermal equilibrium with the lattice as the result of a
single collision. In general a moving atom will make
several collisions which reduce its energy to the point
that it can be trapped. Thus although o, and o, are
functions of the energy, we expect most of the energy
variation of ¢ to come from ¢, which will increase
rapidly as the energy decreases. If this is true, o, in-
creases with increasing logarithmic energy, and %
decreases.

If o, and o, were known functions of the energy any
difficulties would be entirely mathematical. Unfortu-
nately we have no quantitative information about their
behavior ; so the treatment of cross sections becomes one
of the weakest parts in the entire development. The
problem will be formulated on the assumption that these
functions are known, but for comparison with experi-
ment they are assumed constant; so that % and #,, can
be used as fitting parameters. For systems on which data
are available, this constant value assumption appears
to be valid so long as the mass ratio is greater than 0.1.
Fitting is possible for smaller mass ratios, but the data
are scattered and the results suspicious. Apparently % is
much more energy-sensitive than the 7.

Finally, W (%,2,p) is 1/2r times the source strength
of particles for the particular distribution.

Beam

The only source of particles for the beam distribution
is the flux of ions through the metal’s surface. We shall
assume that the ions are immediately neutralized upon
entering the metal so that electrical forces may be
neglected. The beam distribution is so designed that
any collision removes the particle from the distribution,
and hence the rearrangement (integral) term of the
transport equation must vanish. The resulting equation
may be solved immediately if we assume that the mean
free path is not a function of the energy, and it follows
that

No=N %, (3)
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where N,/2x is the density per cubic centimeter of the
incident flux. The exponential form of this distribution
function greatly simplifies the determination of the
incident particle distribution function.

Metal

The energy at which a particle becomes a member of
the metal distribution will be left unspecified. Consider-
ation of the requirements of conservation of energy and
of particles shows that it could be determined if the
distribution functions were accurately known, but the
process would be extremely complicated. In practice,
no attempt has been made to evaluate this energy,
because we find that the lower limit of the energy range
can be determined in another way.

Throughout the work, we are assuming that the
number of moving particles is negligible compared to
the number of metal particles. Because collisions
between two moving particles may be neglected, all
collisions are “cooling” collisions; that is, the energy
of the moving particle is decreased.

Fundamental Equations

Now that the first distribution function has been
relegated to the role of source term for the second, and
the fourth has been merged with the bulk cross section,
we can concentrate our attention upon the incident
particle and lattice particle distributions. The subscript
¢ will refer to the incident type of particle and its dis-
tribution function and 7 will refer to the lattice-type
particles and their distribution function. The subscript
m refers to either type of moving particle.

The beam distribution function determines the source
strength for the incident particle distribution, because
any particle introduced into this distribution must come
from the beam. That is dNo/dz must be proportional to
the required source strength. This rate, multiplied by
the appropriate f function will give the probability
that a particle will be introduced with a particular
value of # and p. Thus

WiE Neﬂiv()e_“zfi(o:uwp) = Ne—"izfi(oyu:P% (4)

and the transport equation for the incident particle
distribution function may be written

d
‘)15(14) dZ ».
This equation will be called the first fundamental
equation.

To determine the second fundamental equation we
must define a new energy transition probability func-
tion. Let F,, (4 ,u,p0) be the probability that a particle of
logarithmic energy %’ will transfer a logarithmic energy
u to the struck particle, sending it in the po direction.
Obviously this function is related to fm(#',%,p0) and
can be evaluated by similar techniques.
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The source strength for the lattice distribution can
now be written as the sum of three terms corresponding
to three orders of approximation to the distribution
function. Thus

WjOENe"IivOeMWZFi(O:u)?) = Ne_wzFi (O:“:?) (5)

represents the production by collisions of “beam”
particles with metal atoms, while

leE fdplfdu’[‘i(M,)Z7PI)Fi(u,:u7p0) (6)

is the production by collisions of “incident” particles
with the metal, and

WﬂEfdP’ f du'Li(u' ,2,p")F (' yu,po) @)

is the production by moving lattice atoms. We shall
expect the contributions of the second and third terms
to increase as the energy of the beam particles is in-
creased. Then, if W;=3",W,, the second fundamental
equation takes the form

LE(L)——L-—I— fdp’fdu’bf-h-—l—W' 8y
nj(u) dz J 7 . 2J 3743 Je

Note that this separation of source terms is possible
only if collisions between two moving particles can be
neglected. If this assumption is not made, the two
fundamental equations must be solved simultaneously.
In the present formulation the first may be solved
independently, and this solution provides part of the
complete solution to the second.

Energy Transition Functions

If we assume hard-sphere collisions, which appears
reasonable because of the energies involved in the usual
sputtering experiments, the energy transition functions
can be evaluated immediately. The direct function, fu,
has been discussed in the literature® and its derivation
need not be repeated here. The indirect function, F,
is evaluated from the same formulation of the collision
kinetics with attention focused upon the struck particle
after the collision. The functions and related quantities
are defined in Table I. The quantity u is the mass
ratio, u= Mi/Mj.

In this formulation we neglect the binding energy of
the struck particles. This assumption is probably valid
for kev incident particie energies, but is questionable
near the sputtering threshold. The low-energy portions
of the theoretical curves are probably less reliable, and
the threshold values may be considerably in error for
this reason. The available data do not justify generali-
zing these functions which would greatly increase the
mathematical difficulties of the theory.

We find that there is a maximum logarithmic energy
loss, em, possible in a single collision. Similarly there is a
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TaBLE 1. Definitions and properties of the energy transition
functions, including the complete and approximate Laplace
transforms of the functions.

0u—u'Sem
en<u—u' L ©
v SU—u' o
0L u—ou' <vm

Jn=(an/2m)e @8 po—3(u—u')] ;
=0 ;
Fr=(am/2m)e 48[ po— O (u—u')];
=0 :

Im="bm exp[— (u—o')/2]—cm exp[+ (u—u') /2],
On=an? exp[— (u—u')/2],
an= (14-n)*/4u,
bm= (1 +ﬂ)/2:u')
em=(1—n)/2p.
Letting (s+1)=v,
Jmo=[an/v][1—even],
Jm1=an{[bn/ (v+3) 1—e @D en]—[cn/(v—H J[1—e~ @ HenT},
Fo= (an/v)em,
Fy=[an}/ (v+3)Jo@Hm,
In the pa approximation, these reduce to the following:
f 0= (a:/v) E1(2),
Ja=(3) (uai/v) E1(v),
Fjo=(a:/v) Ex(v),
Fi=(3) (uai/v) E2(v),

E(@)=(1—e),
Eo(v) =eve,

where

minimum logarithmic energy, »., which the struck
particle may acquire. Note that these logarithmic ener-
gies are not numerically equal, although they have the
same reference energy.

The discontinuous form of both f, and F, wil
simplify our evaluation of the integral terms of the
transport equation. The energy transition functions
also determine the limits of integration in the rearrange-
ment term. Thus for direct transitions (#—en) <2<,
while for indirect 0<#'< (#—vn). In both cases
—1<p'<L

III. FIRST FUNDAMENTAL EQUATION

The initial step in our determination of L; will be to
simplify the angular dependence of the first fundamental
equation. As the distribution function, source strength,
and energy transition function are all approximately
spherically symmetrical, we begin by expanding all
three of these functions in a series of Legendre poly-
nomials of p. All of the functions take the form

1 n=c0
x0)=(2) £ nror.ox.,

where

X,=2r f dpP.(p)X (p).

When the expanded forms are substituted into Eq. (I)
and the usual procedure of multiplication by P.(p)
and integration over p is followed, we obtain the set of
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equations

1 1dL; “
[’_"j_="’Lio+ f du' Ly fiohi~+W s0,
7:(u) ] dz o ,

L[ # dLina, ot dLMH]
n@lont+1 dz 2w+l dz

0

Here the integration extends from 0 to # because of the
step function nature of f; and hence of the f;,.

Now assume that %; can be removed from under the
integral sign of these equations. This can be interpreted
in two ways: either the cross sections for scattering and
trapping are not functions of the energy, as discussed
above; or we are defining %, as a weighted average of the
correct trapping parameter over the range of energy
under consideration. Our detailed knowledge of the
process is very limited, but the latter assumption seems
most reasonable.

Our next step is to define the Laplace transform of
the functions

T[Xin(u)]EXm (S)Ef e X n(u)du, (8)

where -
TCLin/n: () ]=Nin,

and then write the set of equations in terms of the
transformed quantities. The integral terms cause no
difficulty because they are convolution integrals. We
obtain

%1

=—vi0(8)Lio(s,5)+Wi(s,2),

b
1 dxt n— di\; n
———-—[n - (nt1) +1]
(2n+1) dz dz
= —Yin(s)f/in(syz)_!-Win(S,Z),' ﬂ> 1
here
Yin(8)= (1—hifin(s)). 9)

As the distribution function is approximately
isotropic, the L and higher order terms will be neg-
lected, and the set of equations reduces to the following
pair: : _ _

d\ia/dz= —yuLiot+Wa,
$ANo/da= —vyaLa+W .

These equations correspond to a diffusion approximation
for the dependence on the space variable, z. &y

Now our problem is to obtain the simultaneous
solution of these two equations with appropriate bound-
ary conditions. One further analytic simplification is
desirable. The functional form of the 7,,(%) is not known;
so it is convenient to assume that 7,(#)=n;= const.
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This assumption is quite reasonable because the mean
free path probably depends more strongly upon the
lattice spacing and particle diameter than upon the
energy. The equations then become

1d_

——Ly= _'YiOZi0+WiO;

7 d%

1 d_ _ _
— —Lj=—vaLut+Wa.
3?].' dz

We now recall that W, (%,2) can be written in the form
W in(14,2) =W 3 (,0) exp(—n:z) ; so that the transform
operator affects only the first factor, giving Wia(s,2)
=Win(s,0) exp(—n:2). _

It is now possible to eliminate L;; between these two
equations, with the following result:

2L:0(5,2)/d72= w2(s) L (5,2)+ Ko(s)e =,  (11)

where
wiz(s) = 37]1'271207'[1,
Ko(s)=—3nWis(s,0)yi+Wals0)].

It is interesting to note that when we restrict Eq.
(11) with a requirement 5?1 and make a linear change
of variable in transform space, it reduces to the “age
equation.” This method has certain mathematical
similarities to an age approximation, but it is valid over
a wider energy range.

An examination of the rate at which the separate
components of the distribution function are changing
suggests

(12)

- d__ _
limL;o (S,Z) =0, 1111;)1;[[:10 (S,Z)]= Wﬂ(.?,()),
250 2= 2

as boundary conditions for Eq. (11). The first condition
is quite standard, but the second requires some com-
ment. Basically it says that the distribution function is
space-symmetric at z=0 except for the source-term
contribution. This term, which was neglected in the
numerical calculations, introduces a surface scattering
effect into the distribution. Its contribution is at least
an order of magnitude less than the other terms in the
distribution function.

These conditions are sufficient to determine the
solution of Eq. (11) as

Lio(s,2)= A (s)e—@i®2+ B(s)e sz, - (13)
where the amplitudes, functions of s only, are
A(s)=—[1:/w2:()IL3W u(5,0)+ B(s)], (19)

B(9)=Ko(s)/[n—wi(s)]-

We need not carry our analysis of the first funda-
mental equation beyond this point, as the remaining
development depends only upon the Laplace transform
of the incident particle collision frequency.
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Marshak® and Placzek” have discussed functions
which are similar to Lo, but the present formulation is
more useful for this particular problem.

IV. SECOND FUNDAMENTAL EQUATION

Formally, there is no difference between the first and
second fundamental equations except that in this case
the source consists of three terms. The procedure
described above is followed, and the solution takes the
same general form. After taking the Laplace transform,
we note that the third source term may be combined
with the rearrangement term. Thus we write

I‘,.E l—hjfjn_ an.
In terms of the I',, Eq. (II) becomes

(15)

1 df/,-l _ _

— ——=—ToLjo+Wj,

n; dz

1 dLj L
— ——=—T1Lju+Wj,
3‘)7,' dz

and again eliminating between these two equations,

&L jo/d22=w(s) L j0(s,2) -+ K1(s)e 2 Ko (s)eoi)2,
where
w(s)=3STely,
Ki()==3n/L@+BE)Fals

+ (1s/73) (N+B(s)yi0) Fr],

Ka(s)=—3n7LF T+ (ne/n;) Firyio LA (s)— B(s)].
The functions A (s) and B(s) are defined in Sec. III.
As before, barred symbols, functions of s, refer to the
Laplace transform of the corresponding function.
When the differential equation is assumed to have a

solution of form of Eq. (13), and the same boundary
conditions are applied, we find .

(16)

_ S Kis)
Ljo(S,Z)zD(S)e w,(s)z+_.___.__._e Niz
17— w(s)
K,
where @r) el
;i 7:K1(s)
D(s)=— jo—
© '(w,-(s) wi(s)[nd—w?(s)]
wiKz
O] (18)

i) [wd(s) —wi(s)]

We now begin the final step, the calculation of the
inverse transformation (inversion) of the function
Ljo(S,O). ’

7 G. Placzek, Phys. Rev. 69, 423 (1946).
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V. INVERSE TRANSFORMATION

The inversion process is considerably simplified if
we now make the following physical approximation.
We let fi1(%)=2%uf:0(u) which is equivalent to replacing
$ by pu in the definition of f;(#). It is apparent that
this is a satisfactory approximation for small u. Later
we will discuss the meaning of this approximation in
more detail.

Even with this approximation, Ljo(s,2) is an ex-
tremely complicated function of s. In such cases it is
most convenient to consider the inversion of separate
factors and then use the convolution theorem to obtain
the inversion of the complete function.

The most difficult factors are those of the form
exp[ —g(s)z]; so we consider them first. It has been
shown by Widder® that the following theorem holds:
If f(s)=TL[f(#)], then it can be shown that

=) ()0

where f® is the kth derivative of the function with
respect to its argument. The mathematical conditions
on the theorem are not restrictive for physical problems.

Applying this theorem to a function of the form
exp[—g(s)z], we see that its Laplace inversion must
vanish at z=0. Thus if we make the additional physical
approximation that, because of the small mean free
path, a particle must actually make a collision at the
surface to escape, our expression for L;o(s,z) reduces to

I—lj(,(s,O)=K1(s)/[n,-2—w,~2(s)], (19)

which can be handled by normal techniques. We note
that this'function is a first approximation to the correct
collision frequency, even if the mean free path assump-
tion is not reasonable.

After some tedious algebra in which it is convenient
to set (s+1)=v, we find

L (»,0)=R@)[ (exv—es){ N+ B ()}
' —e3B(v) E1(v) 1Ex(v),

(20)
where
R(v)=es/(v—r1) (v—72),
B(v)=%(N/1?) (es— esv)[v— €21 (v) 1B (v),
E}('U) =1— _‘i”,
‘E2 (‘U) _ e—viv’

and the e, and 7, are constants which depend upon the
parameters un=n;/n;, and k= h,=h;.

The factor {v—e;[1—exp(—e2)]}~! which appears
in B(v) is of considerable physical as well as mathe-
matical interest. It is a particularly complicated form
of the “jump function” which is used in the solution of
difference equations.® This factor modifies B(v) so that

8D. V. Widder, The Laplace Transform (Princeton University
Press, Princeton, 1946), pp. 288 ff. There is a misprint in the initial
statement of the theorem.

9W. Thomson, Laplace Transformation (Prentice-Hall, Inc.,
New York, 1950).
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its inverse function appears as a discontinuous function
of the energy, where both positive and negative values
are possible, convoluted by a decaying exponential
function of the energy. The resulting function has
alternating positive and negative steps whose amplitude
decreases exponentially, B(x#) always remaining posi-
tive. The actual inversion to real space is accomplished
by expansion in » and termwise inversion. Fortunately
the real space exponential decays rapidly; so that only
three terms of the expansion must be retained. The
number of terms required depends upon the mass ratio
through e; which controls the separation between steps
on the energy scale.

We expect this behavior with a source function which
was initially postulated as discontinuous. Compu-
tational difficulties are increased because the collision
frequency is represented by different functions in
certain regions of the energy variable, but our under-
standing of the problem is not affected.

We can now interpret the ps approximation which
was made earlier in the work. Removal of this approxi-
mation increases the complexity of the “jump factor”
and introduces more fine structure into the distribution
function. As we are interested in the infegrated distri-
bution function the approximation seems reasonable
until the experimental curves are available to a higher
degree of precision.

The factor E,(v) which was introduced from 9, and
also from F;; in the pu approximation, has an interesting
physical significance. We recall that », was associated
with the maximum energy which could be transferred
in a collision. This energy must be equal to or greater
than the threshold energy for the process to be possible.
Therefore we may take as the limiting case v,=1n(Eo/
E,); so that (#—w,)=In(E,/E), which appears in the
inversion process from the Es(v) factor, is just the
logarithmic energy referred to the threshold energy
rather than the beam energy. With # written in terms
of this reference the algebra is much simpler.

It is now a straightforward if somewhat involved
process to obtain the inversion of Ljo(s,0) as defined
by Eq. (19). The results appear as a sum of three terms
whose complexity depends upon the number of terms
carried in the jump function. Once the collision fre-
quency is known it is not difficult to calculate the flux
of metal particles through the surface by integrating
over the possible angles of emission.

VI. SPUTTERING RATIO

The sputtering ratio is now obtained by integrating
the metal atom flux over the allowable values of the
logarithmic energy, 0<#< #/, which correspond to the
energy range EoS EX E;. The resulting expression for
the sputtering ratio takes the form

RW)=3 Su(eme=1),

n=1

@y
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where the S, have different values in the ranges
0L € &5 &< < 2¢;; 2e;< 4’ < 3¢5 ete. The algebraic
forms of the constants S, and 7, are very complicated,
and will not be reproduced here.

The final function, R(#’), depends upon the following
parameters of the physical system: u= M,/ M, the mass
ratio, %, the trapping parameter, n=1;/7;, the mean
free path ratio, and finally E,, the threshold energy.

In principle, all of these parameters should be
experimentally measureable; however, of the four, only
 is accurately known. Of the others, we can make some
educated guesses about the order of magnitude of E;,
and % and 7 are completely unknown.

The constants are very complicated functions of the
parameters, but a few generalizations are possible. Thus
the 7, are extremely sensitive to %, and are very in-
sensitive to 5. The S, vary directly with 5, and are
relatively unaffected by %. Neither the .S, nor the 7,

3

o

FS

SPUTTERING RATIO (atoms/ion)
[

~

1 2 3 4 5 6 7 8
INCIDENT ION ENERGY  (kev)

F1c. 1. Comparison of theory and experiment for A—Ag and
Ne—Ag. The 300-ev point of the A—Ag curve appears in Key-
well’s original letter, but was inadvertently omitted in the long
paper. In a private communication Dr. Keywell has suggested that
all of his experimental points may be uncertain by as much as 15%,
of the sputtering ratio.

depend upon E;. Approximately, % controls the shape
of the sputtering ratio curve, and 7 its magnitude.

VII. COMPARISON WITH EXPERIMENT

Probably the most reliable total sputtering ratio
curves are those of Keywell. The experimental method
which he has described appears to be the most satis-
factory so far devised for this type of measurement; the
only apparent difficulty being that the amount of
bombarding material trapped in the target was not
determined, although it may affect the weight of the
target after bombardment.

To compare with experiment we plot R as a function
of E,; the actual fitting was done by trial and error,
but is very sensitive to the values chosen for the
parameters. Thus if any parameter is varied by 109,

b |, Keywell, Phys. Rev. 87, 160 (1952); 97, 1611 (1955). The
author would like to thank Dr. Keywell for the use of his data in
advance of publication.
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F16. 2. Comparison of theory and experiment for Kr—Ag and
Kr—Cu. The Kr—Ag curve appears to be significant because it
contains a reasonable number of points, but the low-energy end is
questionable. The Kr—Cu system is included only because the
parameters are in line with those for several other systems. The
data are much too incomplete to insure that this is the correct fit.

of its value the curve is noticeably changed. Further-
more, the curve cannot be readjusted by variation of
the other parameters.

The results for six cases are shown in Figs. 1, 2, and
3. This theory appears adequate for these mass ratios,
and there are regularities in the parameters for similar
atomic systems; see Table IT. The threshold for Kr-Cu
is not out of line with the general trend, because here
the mass ratio is greater than unity. The minimum
logarithmic energy transferrable, »;, begins to increase
when p>1. This behavior is to be expected from the
conservation of momentum requirement in a single
collision.

In Fig. 4 we see the best single-parameter fits of the
theory and experimental data for two systems of small
mass ratio. Here the theory is not as satisfactory, but
the behavior of the curves suggests the following
explanation: a single choice of the parameter % is not
satisfactory over the entire experimental range. Thus
the averaged value of %, which we assumed in the de-
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F1c. 3. Comparison of theory and experiment for A—Pb and
A—Cu. The A—Pb curve is probably not significant, but is in-
cluded because again the parameters fit the pattern. Next to the
A—Ag pair, the A—Cu is probably the most useful system.
Unfortunately it does not extend into the higher energy range.



1480

TasBLE II. Comparison of the parameters for the eight available
atomic systems. u is the mass ratio, # the trapping parameter, %
the macroscopic cross-section or mean-free-path ratio, and E; the
sputtering threshold energy. Notice the general trend of decrease
of E, with increasing mass ratio for <1, and the considerable
internal consistency of the other parameters for similar systems.

System u h 7 E¢(ev)
He—Pb 0.0193 0.04 0.04 275
He—Ag 0.0371 0.30 0.05 250
Ne—Ag 0.187 0.10 0.35 220
A—-Pb 0.193 0.10 0.35 125
A—Ag 0.370 0.10 0.35 22.5
A—Cu 0.626 0.10 0.35 30
Kr—Ag 0.777 0.08 0.50 25
Kr—Cu 1.316 0.10 0.35 130

velopment, is not sufficient in the case of small mass
ratios. This agrees with the results of neutron cooling
experiments. If % is a function of the energy, we are not
allowed to remove it from under the integral sign in the
transport equation, and the theory is much more com-
plicated. It would be very difficult to extend the theory
in this direction unless % is a known function of .

No attempt has been made to fit Keywell’s data for
the sputtering of silver by hydrogen. The diatomic
nature of the ion, and the resulting possibility of
fragmentation in a collision, forces a reexamination of
the collision mechanics for this single case, which
hardly seems worthwhile at this time.

When more work has been done on the threshold
energy values it may be possible to relate E; to the
atomic heat of vaporization through the hard sphere
maximum energy transfer relation. It is probable that
the threshold for normal incidence will be different
from that for fine wires. The incident particles arriving
with low energy, but almost parallel to the surface,
could very well remove a lattice atom by means of a
“plowing” effect across the surface. Experimental work
along these lines has been carried out by Fetz! and
Wehner.!?

VIII. ANALYSIS AND CONCLUSIONS

In conclusion, we should take a closer look at some
of the basic assumptions made in this work. For
example, the assumption that the distribution functions
must satisfy the transport equation is not justified,
because in all probability the binary collision require-
ment, made in the development of that equation, is not
met in the problem under consideration. In addition,
the entire process takes place in a very thin region near
the surface of the metal, or the particles would lose

W H. Fetz, Z. Physik. 119, 590 (1942).
12 G. Wehner, Phys. Rev. 93, 633 (1954).

DON E. HARRISON, JR.

their energy before they could escape. This makes the
assumption 95£7(z) quite questionable.

Fortunately the surface roughness of the metal tends
to overcome the last difficulty. In the development this
surface is assumed to be a mathematical plane which
levels the surface, i.e., which leaves as many vacant
sites within the surface as there are atoms outside, but
the actual irregularities may be greater than the mean
depth of penetration from which particles ultimately
escape. At worst, the distributions obtained in this
manner must be first approximations to the correct
distribution functions.

The theory provides a semiquantitative explanation
of the sputtering mechanism. Unfortunately it depends
upon unknown atomic parameters, but it has the ad-
vantage over other theories that the parameters are
relatively few in number, and that they should be at
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F1c. 4. Comparison of theory and experiment for He—Ag and
He—Pb. Note the change of scale. The He—Ag system is quite
complete, but the He—Pb is very questionable. The fitting is not
so satisfactory as for systems of higher mass ratio.

least approximately measurable. When these measure-
ments have been made, significant improvements should
be possible. Until this has been done, a further com-
pounding of approximations hardly seems justified.
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