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Representation of Charge Conjugation for Dirac Fields*
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Explicit representations of the charge conjugation transformation for fermion fields are derived in a form
which does not make explicit reference to the expansion of the fields in a complete orthonormal set of space
and spin functions. It is shown that the different forms must be equivalent if one is working in an irreducible
representation of the signer-Jordan anticommutation rules, but it has not been found possible to prove the
equivalence directly, thus suggesting that the representations are not equivalent if the representation of the
anticommutation relations is not irreducible. The results are applied to the clarification of an apparent
paradox concerning commutability of the charge conjugation and space inversion transformations.

~ 'HE transformation of charge conjugation as ap-
plied to quantized fields has been studied ex-

tensively of late' since it may represent one of the few
exact symmetry principles in nature. The present note
deals with the construction of explicit representations
for this transformation in the case of Dirac fields. The
final forms obtained are characterized by the fact that
they make no explicit reference to an expansion of the
fields in a complete orthonormal set of functions. We
have not been able to prove directly the equivalence of
different representations which we obtain, but only
indirectly on the assumption that one is working with an
irreducible representation of the Wigner-Jordan anti-
commutation relations. This suggests that the different
representations may not be equivalent if the representa-
tion of the anticommutation relations is not irreducible.
We apply our results to the resolution of an apparent
paradox concerning the commutation of the space
inversion and charge conjugation transformations. The
explicit representations we obtain may also be of value
in other applications.

solution of (1) we can associate another solution,

P, (r, t) = erat(r, t),

and to each solution it t of (2) another solution

P, t (r, t) = s*f(r,t),

provided K is a matrix such that

~p*~ '=lrprs '= —p

Kn;*K—'= Kn.~K—'= n.

KK~= KK = i~

where the superscript T represents the transpose of the
matrix, One can prove that a matrix K with these
properties exists for any irreducible representation of the
Dirac matrices, and is unique to within a multiplicative
factor of modulus unity for any irreducible representa-
tion. The transformation

(6)

CHARGE CONJUGATION TRANSFORMATION

We write the Dirac equation in the form

iBQ/Bt= (Pm+ n P)$

where p= —iV, p and u, are the usual Dirac matrices,
and the units are chosen so that 5=@=1.With lt (r, t)
considered an operator and its Hermitian conjugate
designated ft(r, t), we have for the equation satisfied

by ft.

is called charge conjugation. In the space of solutions of
Eqs. (1) or (2) it is not a unitary nor even a linear
transformation.

The operators lt and pt are assumed to satisfy the
Wigner-Jordan anticommutation relations:

A(r, t)4 „t(r', t)+4 „t(r', t)Pi, (r, t) = 8„)8(r r'), —
A(r, t)y„(r', t)yy„(r', t)y~(r, t) (~)

=4'(r, t)lI" (r', 1)+it.'(r', 1)A'(r, t) = o,

and we shall assume in particular that we are dealing
with an irreducible representation of these relations.
Now on.e can easily verify that p, and lt, t satisfy the
same anticommutation relations as to lt and pt, re-
spectively. This suggests that there exists a unitary
transformation U, such that

icbm t/Bt= (P*m——n* P)it t, (2)

where the asterisk on the Dirac matrices designates
their complex (not Hermitian) conjugates. To each
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U.PU. '=it, =~/*,

U.ptU, '=f.t=lrep.

We shall now construct explicit representations of the
f

transformation U, .
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CHARGE CONJUGATION FOR DIRAC FIELDS

I.et 8' be an Hermitian operator in the Hilbert space
of solutions of Eq. (1) satisfying the two conditions:

(9)

where W* is the complex (not Hermitian) conjugate
of the operator 8". There exist many operators
satisfying these conditions. Particular examples are
P, A= (Pm+e p)/(eP+p')1, and in&nsns. Let I, be an
orthonormal set of eigenfunctions of 8" belong to the
eigenvalue +1, and let it be complete in the sense that
any eigenfunction of t/I/' belonging to this eigenvalue
may be expanded in the functions u, . Berne the func-
tions v, by

ra=mls ~ (10)

«gP= +3 a~@~, (12)

Then the set of functions e, form a complete orthonormal
set of functions in which any eigenfunction of t/t/'

belonging to the eigenvalue —1 can be expanded. To
prove this, let @ be any eigenfunction of W belonging to
the eigenvalue —1, whence we may easily verify that
«qP is an eigenfunction of W belonging to the eigenvalue
+1 since

W («p*) = —«W*p*= —«(Wp) *=«p*.

Hence «p* can be expanded in the functions u, :

Now, one can easily derive that

A = -', [PtWiP QW—*pt]dr =P, (a,ta, b,—b,t), (19)

and

3= ', J~$-P«*WP Qt«—W*pt]dr =Q, (a,tb, +b,ta,), (20)

and that 3 and 8 commute. Hence

U, = exp-,'im (A+8) = exp[i7rB/2 j exp[inA/-2] (21)

It is clear that we obtain quite different expressions for
A and 8 and hence for U, depending on the choice of
the operator S'. We have not been able to prove
directly that these diferent choices lead to equivalent
transformations. However, if we have an irreducible
representation of the Wigner-Jordan anticommutation
relations, we may prove the equivalence indirectly. For
if U, and U, ' are two transformations obtained by
different choices of W, then U,—'U, ' commutes with It

and Pt and hence must be a multiple of the identity.
Hence U, and U, can diGer only in a multiplicative
phase factor.

We can mak. e use of the freedom in the choice of 8' to
simplify the expression for U, . In particular, the choice
W=P is particularly convenient, for if we introduce the
adjoint to iP by the definition

and from this we obtain:

y= («-'p, a,g,)*
=K ~s Cs Ns =~s ~8 &s.

The I,and e, together then form a complete orthonorxnal
basis in the Hilbert space of solutions of (1) and in
particular, we may expand any iP as

ip= Q, (a,l,+b, tv, ),

where a„a,~, b„b,~ are the usual creation and destruc-
tion operators satisfying the familiar anticommutation
relations:

then we may write for A the simple form

A =k~t LA 4k]«, —

and by introducing the matrix

C= —P«,

we may write 8 in the form:

(22)

(23)

(24)

agtaai+as~aat= B„~,

aaa~~+as ag= ag "ag i+a ita t=ai0. B

(15)
&=s ' LK4 O'C V]«. — (25)

YVe then have

ip, =apt= Q, (a, te,+b,m, )

The matrix C is then identical with that employed by
Schwinger' and others, and can be defined abstractly by
the relations:

and from (8), we then obtain

U,a, U, '= b„
U,b, tU, '=e, t.

Cy„C '= —y„, CC~= —CC*= 1, (26)

(17) with the p„defined as usual. The charge conjugation
transformation can then be written:

One can then use the procedure of Ravenhall and
Kolfenstein' to obtain the general solution for U, which

apart from an arbitrary phase factor is given by f.= U,CPU, '=C 'iP.
(27)

U,=g,fi(1 a, ta. b, tb, +a,tb, +—b, ta, )j-
=g, expPivr(1 a, ta, b, tb, +—a, tb, +—b, ta, )5
=expt si~ Z.(a.ta. b.b.I+a.tb.+b.&a.)] (18)

This concludes our derivation of an explicit form for
the charge conjugation transformation. In the remainder

2 J. Schwinger, Phys. Rev. 74, 1439 (1948).



B. P. NI GAM AND L. L. FOLD Y

of this note, we employ this representation to clarify a
question about the commutation of charge conjugation
with the space inversion transformation.

SPACE INVERSION TRANSFORMATION

One can then verify that

V.SU, '= S, U,QU. '= —Q, QS=SQ. (33)

We now note that

The space inversion transformation for the Dirac while
equation is defined as the following unitary trans-
formation:

U, U, (0)f(r, t) V —'(0) U —'= se "p/cd 1(—r, t), (34)

U, (8) U,p(r, t) U, 'U '—(0) =—ie "pept( r, t)—. (35)

it (r,t)~p, (r, t) = U, (8)it U, '(8) =ie "pf( r, t—), (28)

where 8 is an arbitrary or undetermined phase factor.
To obtain an explicit form for U, (0), one may make use
of one of the theorems derived by Berger, Foldy, and
Osborn, ' from which one can see immediately that

U, (0)= expfivrS/2)

Z7l f

=exp —
~

Pt(r, t)PP( r, t)d—r . (29)
2~

To obtain the additional phase factor e" one requires a
gauge transformation and hence

Thus it appears that U, and U, do not commute unless
0=em, and hence that one could obtain information
about the phase factor 0 from experiment. Thus if one
had a system such as positronium and found that the
stationary states of this system were simultaneous
eigenstates of both charge conjugation parity and space
parity, one might be tempted to conclude that 0 is
restricted to one of the values ex.

This apparent paradox is easily resolved. Using our
explicit forms for U, and U, (8) we can compute their
commutator as follows: We have

V I V„V.(0)]=U, (0)—U; U, (0)U,
—e4//Qe4m s/2 V —le48Qe4ws/2U (36)

U, (0) = exp[i0Q] expI is.S/2],

where Q is the operator for the total charge:

(30) Then using (33) and multiplying on the left by U„we
obtain

Q= "Pt(r,t)P(r, t)dr. (31)

S=-.,'~[pt(r, t)pp( r, t) p(r—,t)p*pt( —r, t)]dr—

=-,'~I Lit (r, t)P( —r, t) —P(r, t)P( —r, t)]dr, (32)

Q=s I4'4 44']«=s ' I—4&44 Pv4'4]«—
'Berger, Foidy, and Osborn, Phys. Rev. 87, 1061 (1952).

Actually it will be more convenient to employ for S and

Q the charge-symmetric expressions:

I U„U, (8)]=2sU,U, (8) sin(8Q). (37)

Now the representation space (Hilbert space) can be
decomposed into subspaces each associated with a given
eigenvalue of the total charge Q of the system. In the
subspace in which Q=O, Eq. (37) tells us that U, and
U, (0) always commute, independently of the value of 8.
Thus one can learn nothing concerning the value of 0
from experiments performed on systems such as
positronium for which the total charge is zero. On the
other hand, since U, does not commute with the total
charge it cannot be an observable in any subspace in
which the total charge is not zero since this would

violate the superselection principle for charge. ' Thus
experiments of the type envisaged above can never
yield information about the phase factor 0.

4 Wick, Wightman, and Wigner, Phys. Rev. 88, 101 (1952).


