
P H YSI CAL k EVI EN VOLU M E 102, NUM HER 8 JUNE 1, 1956

Realistic Independent-Particle Model of the Nucleus*

ALEX E. S. GREEN
Department of Physics, The Florida State Unipersity, Tallahassee, Florsda

{Received November 7, 1955)

A phenomenological central potential is explored which is
characterized by a universal depth (Vp), a universal surface ex-
tension (d), and an inner radius function u=aIA&+a0. The four
parameters are adjusted to be in accord with experimental in-
formation obtained from low-energy neutron scattering and from
neutron separation energies. The results go=40 Mev, d=1,
aI =1.32, and a0= —0.8 (all in units of 10 "cm), are in reasonable
accord with what might be expected from other experimental and
theoretical considerations. Since the experimental data used in
the adjustment process bound the energy region in which the dis-
creteness of nuclear energies is most evident, one might expect
that the eigenvalues and eigenfunctions based upon this phe-
nomenological model would furnish a highly realistic set for the

theoretical study of low-energy nuclear transitions within the
framework of the independent-particle model of the nucleus.

The energy eigenvalues and the important parameters for the
energy eigenfunctions are calculated by a procedure suitable for
the restricted type of potential under consideration. A simple
method is presented for handling small perturbations, particularly
the Coulomb perturbation. In the latter case, it is shown that the
derived proton eigenvalues agree with experimental proton
separation energies, provided one introduces an anomalous
attractive potential which cancels approximately one-half of the
classical Coulomb potential acting upon an individual proton.
The implications of these results are discussed.

(1) SIMPLE NUCLEAR MODEL

A PREVIOUS study' has shown that it is possible
to locate the 3s and 4s maxima in the theoretical

neutron cross-section surface at prescribed A values and
at the same time to match the general trends of neutron
binding energies by interpolating between exponentially
diGuse potential wells with appropriate degrees of
diffuseness. If, as current studies of neutron scattering
indicate, '' these A values are near 55 and 170, re-
spectively, then the required difruseness parameter 6,
which is defined as the tail length to the 1/e point
divided by the radius of the uniform region, drifts from
about 0.3 for light nuclei to about 0.13 for heavy nuclei.
The fact that this ratio falls oG quite substantially led
to the investigation of a simple model which embodies
such a decrease. The model chosen has an inner region
of constant depth Vo whose radius is given by

a= aiAi+ap,

and an outer exponentially decreasing region with the
decay length d to the I/e point. Vp and d are the same
for all nuclei. The procedure used in fixing the four
constants Vo, d, a1, and ao was as follows: First a set of
theoretical neutron binding energies for 8= d/a=0, 0.1,
0.2, 0.3 and 0.4 were prepared using the eigenvalues of
GL1.' These were similar to Fig. 2 of reference 1, but
with 55 and 170 taken as the locations for the 3s and
4s neutron cross section maxima instead of 55 and 150.
Using the empirical neutron binding energy line corre-

*This investigation was supported by a grant from the U. S.
Atomic Energy Commission.

' A. E. S. Green, Phys. Rev. 99, 1410 (1955).' W. S. Emmerich, Phys. Rev. 98, 148(A) (1955) and private
communication.

'Weisskopf, Porter, and Feshbach, Proceedings of the Inter-
national Conference on the Peaceful Uses of Atomic Energy
8/P/830, 1955 (to be published).

'A. E. S. Green and K. Lee, Phys. Rev. 99, 772 (1955). This
work will henceforth be referred to as GI 1. The analysis and
notation in GL1 are applicable here unless otherwise noted.

where U0=20.734 Mev and a is in units of 10 " cm.
The assumption of a constant diffuseness distance
implies

g= da—&= Cgo
—1

Using fi(8) and fs(8) functions determined to secure
the critical 3s and 4s A values of 55 and 170, and
inserting the 10 interpolated 8's into

eo= fr(8)A'+ fs(5) =C6 ',

the values of C were obtained for each of the ten A' s.
These were found to be approximately compatible with
C= 1.389. Since eo and 6 are now rigidly tied together,
t.o is now a function of A alone. Replacing the 8 in
Eq. (4) by Cep ' and solving for ep es A, it was found
that the function so obtained could be fitted quite
accurately by the equation

so= 1.833A &—1.111.

The constant Vo was next fixed by insisting that the
general trends of the predicted particle binding energies
match the experimental trend. This led to Vo——40 Mev,

and
tE= C(Uo/Vo) *=1,

a= epC '= 1.32A"—0.8,

(6)

where all distances are in units of 10 " cm. It is im-
portant to note that while a change in Vo will produce
a proportionate change in the energy eigenvalues, it
will have a lesser eGect upon the corresponding diGuse-
ness distance and radius function. Accordingly, a modest

sponding to Vo 40 Mev, the 8's needed to produce
approximate agreement were then determined by
interpolation for 10 equally spaced values of A. Ignoring
the small reduced-mass effect, one may define a well
parameter

ep= (2m Vp/Pt') ~a= (Vp/Up)'a,
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(2) DETERMINATION OF THE EIGENVALUES

Since the particular family of potentials arrived at
in the previous section are contained in the work of
Green and Lee, 4 the analysis and results of this earlier
investigation are applicable here. In particular, ap-
proximate eigenvalues may be obtained by interpolating
between their eigenvalue curves for 8=0, 0.1, 0.2, 0.3,
and 0.4. A preliminary study by this method indicated
that some of the key parameters intrinsic to the specific
model now under study are far more restricted than
those considered in GL1. Accordingly, in the interests
of achieving the greatest accuracy within these re-
stricted ranges, it appeared best to develop a direct
method for determining the eigenvalues. The tech-
nique developed here may also be of interest in con-
nection with other types of compound potentials.

The important outer wave-function parameter k,
which is given in this special model by

k = [7.717—4P (1—n')l(/+ 1)j'*,

is presented in Fig. 3.
According to Eqs. (21) and (22) of GL1, the negative

of the logarithmic derivative of the external wave
function is a three-parameter function given by

E„(k,8) = fe—k[J„+t(k)/J„(k)j) (28) '. (10)

In GL1 a transformation made it possible to obtain
values of E (k,8) from the graph of I~(c'), the negative
of the logarithmic derivative of the internal wave
function. This transformation is not useful here because
of the restricted range of the diGuseness parameters.

the so
k' —e'= 4P[a"—l (l+ 1)j. (12)

A typical set of auxiliary scales which automatically
introduce the factor 48' is shown in Fig. 5. The lines
labeled by letters are positioned at the values of l(l+1).
The appropriate foreshortenings were determined by
swinging an arc of length k'= 7.717 on the scale of Fig. 4
and drawing radial lines such that the intersections on

Therefore, it was imperative in this study to develop
tables and graphs for obtaining the logarithmic deriva-
tive of the external wave function for fine intervals of
e and k within the restricted range of from 0—3. Using
all available tables of fractional Bessel functions and
evaluating various special cases by series and recur-
rence relationships, the function

f.(k)=n —k[J +t(k)/J. (k)j (11)

was generated. The values of this function so obtained
are presented in Fig. 4. Here the horizontal scale repre-
sents f, (k) for the values of e which label the curves
and for the vertical coordinates which correspond to
the k' values. To obtain the actual logarithmic deriva-
tives for various 6, a scale for graphical division y 28
is provided on the lower right. The scales are chosen so
that the output E„(k,B) on the right is on the same scale
as that used for I&(e') in GL1, Fig. 1. Thus by coupling
the two graphs, the process of matching the logarithmic
derivatives can be accomplished mechanically.

The scale to the extreme left on Fig. 4 represents
lues of m and in conjunction with auxiliary scales,

1' hesprovides a method which automatically accomp is es
lution of
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well is

S=2(2m/A')~ V(r)rdr. (14)

On this basis, the equivalent well strength of the model
under study here is

S= pp' (1+2b+ 2P) = ppP+ 2Cpp+ 2C'

~A= (dA/dS)BS= L0 5890AI/(a+1)]~S (16)

The coefficient of AS is also plotted in Fig. 10.
When the perturbing potential is proportional to

n yV r, i.e., v=kV(r), the shift in A is given h AA

=kS(dA/dS). S(dA/dS) is also plotted on Fig. 10.

40 I60

(15)

It might be noted that for small 8 this result corresponds
approximately to an earlier definition for equivalence
derived from the locations of the 2s, 3s, and 4s wave
maxima Lsee Eq. (16), reference 1).The function S for
various values of A in our simple nuclear model is
plotted in Fig. 10. Using Eq. (12) to compute S, this
curve may be used to find the equivalent A corre-

this
sponding to an arbitrary nuclear potential. T 1

t is method to small perturbations in such a manner as
to minimize the uncertainties in the definition of
equivalent square well strength, one may calculate the
shift in A by means of

The effective a then follows from

a= r2 —0.6932d. (19)

Alternatively, one might use a variety of graphical pro-
cedures for finding a suitable a to be associated with the
equivalent A. The ultimate objective in these pro-
ce ures is to find the member of the set of dimensionless
potentials, characterized in our model by A alone,
which most nearly corresponds to a dimensionless
form of the exact potential. If the residual between the
dimensionless exact potential and the dimensionless
model potential undergoes several alternations in sign,
then, not only will the error in the energy eigenvalue
be small, but, apart from small local differences, the
model wave function for the equivalent A will be close
to the exact wave functions. The second-order effect of
the residual (including the residual centrifugal energy)
upon the eigenvalues and eigenfunctions can finally be
determined by numerical methods.

Having obtained an equivalent A, the task still
remains of finding the appropriate radius parameter
In the latter case, of course, the unperturbed radius
parameter is to be used. However, for other perturba-
tions or other potentials, some alteration of a may be
essential.

The following procedure is regarded as a reasonable
one for a monotonically decreasing potential V(r).
One first calculates r&, r2, and r3 which satisfy

V(r~) =0.9V(0), V(rp)=0. 5V(0), V(rp)=0. 1V(0). (17)

Using the characteristics of our simple exponential
model, the effective d may then be determined by letting

r3—rg ——2.T97d.
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(4) COULOMB CORRECTION FOR PROTONS

If one assumes that each proton experiences the
Coulomb repulsion of the remaining protons as well
as the nuclear potential, one must use a modified po-
tential well for protons. To arrive at the effective
individual particle potential for each proton, one must
first make a reasonable assumption as to the proton
distribution. Thus, one must, in effect, solve the
complete self-consistent field problem for the nucleus.
Since, however, the Coulomb potential energy is a
re atively small perturbation and rather insensitive to
the fine details of the charge distribution, it is possible
to proceed on the basis of almost any reasonable dis-
tribution of protons in arriving at an a tappropria e

fol
potential energy for a single proton. The procedroce ure

Z—1
o lowed here shall be based on the assumpt'o th t th

protons which act upon the last proton are dis-
tributed according to

p(r) =pp,
FIG. 10. Functions for calculating equivalent A. S is to be

read on the right scale. =pp exp| —(r—a,)/d], r) a„
(20)
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where po is a constant and a, and d, are lengths which
characterize the charge distribution. On the basis of a
classical calculation, the Coulomb potential of a single
proton is

(Z—1)e'
V (r)= pc

a,),
(Z—1)e'

1—

where

and

r2

r&a,
6a,'

g 2 (a, rq -—
(r+25.a.) exp i),a, I d. 3

'

r) a, (21)

tt.= -', +5,+8.s

X.= -'a+8,+28,'+ 2','. (23)

In seeking an equivalent A which will correct for the
major effect of the Coulomb perturbation, one is im-
mediately confronted with the fact that the 6$ for the
Coulomb perturbation diverges. However, the slow
decay of the Coulomb perturbation suggests an approxi-
mation in which Coulomb potential energy is replaced
by a constant plus an additional potential which is
proportional to the nuclear potential Lsee Eq. (11) and
Table II, reference 1$. The constant term simply
causes a corresponding shift in the proton energy with-
out altering the wave function. The term proportional
to the nuclear potential, however, not only effects the
energy, but also inQuences the wave functions. The
major corrections to the energy as well as to the wave
functions may be determined by the perturbation
method discussed in the previous section. The shift in
A is simply given by

DA = —(Z—1)[2n (8) U / Vpa jS(dA/dS), (24)

where o. is the function given in Table III of reference
2 and U, =0.8639 Mev.

In using the eigenvalues given in Fig. 8 for the
equivalent 3, one must take note of the fact that these
eigenvalues represent W= e„'(ttt'/2ma'). Thus the de-
sired proton eigenvalues which include the effect of
the constant term are given by

W= W(A') (a"/a')+2(Z —1)U,P/a,
=W(A+AA)[1+2a '(da/dA)DA j

+ 2(Z—1)U,P/a, (25)

where P is the second function in Table III of reference
2. The function 2a '(da/dA) is also shown in Fig. 10.

Using Eq. (24), the proton binding energies have
been calculated for beta-stable nuclei with Z=10, 20,
etc. These are indicated by the solid circles in Fig. 9.
The experimental trend is indicated in this figure by the
line labeled 8„'. lt should be clear that the proton
binding energies obtained by adding the classical
Coulomb potential energy are highly unsatisfactory.
Indeed this calculation indicates that the last proton
in medium and heavy nuclei is not even bound. One

Sy V c+ 'Va) (26)

where ~, is the full classical Coulomb perturbation and
~, is the additional anomaly. I.et it be assumed that the
proton density distribution is characterized by Eq. (20),
and consequently the classical Coulomb potential act-
ing on an individual proton is given by Eq. (21). Since
the inner radius function a=1.322&—0.8=1.163& is

slightly smaller than the radii of the nuclear charge
distribution as observed in electron scattering and

p,-mesonic x-ray studies, it is not unreasonable for
initial studies to let u, =a, provided one uses a proton
decay length which is smaller than the decay length

' K. Bleuler and Ch. Terreaux, Helv. Phys. Acta 28, 254 (1955).
6 E. V. Condon and G. H. Shortley, The Theory of Atomic

Spectra (Cambridge University Press, Cambridge, 1955).
7 Melkano8, Moskowski, Nodvik, and Saxon, Phys. Rev. 101,

507 (1956).

obtains fairly satisfactory proton binding energies if
one adds only one-half the Coulomb potential energy
to the nuclear potential. The results based upon such a
perturbation are indicated by the open circles in Fig. 9.
The eKcacy of the use of one-half the Coulomb poten-
tial to provide satisfactory proton binding energies has
been checked by more direct perturbation methods and
seems strongly established.

It is tempting to relate this empirically established
factor of one-half with the two-body character of the
electrostatic interaction in the sense that only one-half
of the Coulomb interaction energy of a single proton
with the remaining protons may be taken as the
"share" of this proton. The independent-particle-model
Coulomb perturbation was used in reference 2 as well as
the one chosen in a recent work by Bleuler and Terreaux. '
This explanation might be objected to on the grounds
that the Hartree self-consistent field method for many-
electron systems, which requires corrections for the
two-body effect in total energy calculations, neverthe-
less, leads to separation energies which are approxi-
mately equal to the eigenvalues computed on the basis
of the full Coulomb potential energy. ' One might, of
course, question whether these results are applicable
to the nucleus —a system so vastly different from the
atom in its density and compressibility. It should be
clear that an equivalent device to reduce the Coulomb
potential energy by one-half would be to assume that
in addition to the neutron potential and the full classical
Coulomb potential each proton feels an anomalous
attractive potential which cancels approximately one-
half the repulsive Coulomb potential. In the absence of
an understanding as to the origin of the shell model
potential, this interpretation should be relatively free
from objection at this time. An important argument in
favor of the idea of an attractive proton anomaly has
come out of a recent analysis of low-energy proton
scattering. ' To facilitate a quantitative study of the
proton potential, the total proton perturbation will be
represented by
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v, (r,)= (Z—1)e'/(a+I). (28)

A comparison of this with the classical expression
6(Z—1)e'/5R, based upon the assumption that the
outermost proton and the remaining protons are uni-

formly distributed over the radius E, suggests that
Eq. (28) accounts for the bulk of the classical Coulomb

effect. To correct for the small residual influences on
both the wave functions and the eigenvalues, the
approximate method outlined in Sec. 3 may be used.
According to this procedure, this residual Coulomb

20

-IO

-20

«4,p
1 ~ f r I i f i l i I

4 6 8 IQ t2 t'xl0' cm

FIG. 1j.. Illustration of the general nature of the potentials
assumed to act in a heavy nucleus (80Hg"'). V denotes the nuclear
potential, e, the Coulomb potential, v the anomaly based upon
Eqs. (31}and (20} with k=0.7, and v, a the net perturbation.
V,t is the net potential acting upon a proton, V,~ is the approxi-
rnate one used in this analysis, and e„ is the residual which is
ignored.

of the nuclear potential. The effect of the classical
perturbation acting upon the proton may now be
treated by the perturbation methods developed in the
preceding section. A simpler and more direct way will
now be used for computing the well-strength change
associated with the slowly decreasing Coulomb poten-
tial, This method involves introducing a cut-oG radius
r, beyond which the classical Coulomb perturbation
has no appreciable eGect upon bound states. If r, is
expressed in the form @+ed„where e is a, pure number,
the Coulomb energy at this distance is

v, (r,) = (Z—1)e'(a+nd, )
—'

X{1—5,9. '[1+(m+2)8.]e ~). (27)

Assuming that nd, =d, which is essentially choosing
the cutoff at a+1, and then estimating e to be of the
order of 2—5, it clearly becomes safe to ignore the second
term in the bracket. Accordingly, one may make a
partial correction for the eGect of the classical Coulomb
perturbation upon bound states of protons simply by
raising the proton energy levels by

perturbation causes a well-strength change

(2m/
AS.= —2( ) [v.(r) —v.(r.)]tdr

(O'I 4s

= (2ma'/fs') (Z—1)e'(12}t,a)
—'{1+12K,b,m

—128,s—485.'—485.4+125.se "

X[1+(2m+4)5m+(2n+2)'8P]). (29)

Expanding P, and ignoring terms of the order of b,'
and higher, it follows that the A shifts associated with
the residual Coulomb perturbation are given by

DA, = —(dA/dS) ess (Z—1)(5U, /12 Vea)

X[1+4',—35'] (30)

For the purposes here, it is sufficiently accurate to let
eb, =b in the second term in the bracket and 35,=5 in
the third term. The Coulomb 3 shifts so computed are
given in Table I.

In view of the previously noted success from the
particle binding energy standpoint of the simple device
of reducing the Coulomb interaction by one-half, one
is led to investigate the possibility that the anomaly is
indeed associated with a direct distortion of the Cou-
lomb interaction. For greater realism, it shall be
assumed here that the distortion occurs only on the
inside of the nucleus. As a simple exploratory step,
borrowing from well-known atomic methods, let it be
assumed that the proton anomaly is the product of the
Coulomb interaction and a dimensionless function iv(r)
which is close to zero at ~, and which builds up rapidly
to —k as one proceeds towards r=0. If for simplicity
this function is taken as

p(r) = —k, r(a; p(r) = —k exp[(a —r)/d, ],r) a, (31)

it follows by calculations analogous to those leading to
Eq. (29) that the A shift due to the anomaly (to linear
order in 8, but exact in 8 =d,/a) is

DA, = 25k(Z —1)ees(12a) '{1—(3/5)t',

+ (8/5) 5,[1—exp (—d/d, )])dA/dS. (32)

If as previously assumed b,((b, the second term can
safely be ignored, and if 5 8 the third term makes only
a small contribution. For concreteness and to conform
to the assumption that q (r) is small near r, =a+nr, it
shall be assumed that d, =-,'d. The A shift due to this
anomaly as well as the net A shift then may be com-
puted for any choice of k. The final expected proton
energies are given by Eq. (25) but with v, (r,) replacing
the second term and with AA representing the net A
shift. After investigation of the consequences of a
number of choices of k, the value k=0.7 was found to
yield proton binding energies in approximate accord
with the experimental trends. The A shifts associated
with this anomaly and the net A shifts are also given in
Table I. Particle binding energies based upon these
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hA's conform quite closely to the 8„' line in Fig. 9.
An illustration of the general nature of the potentials
which are assumed to act in a typical heavy nucleus
(ssHg"') is shown in Fig. 11. V here denotes the nuclear
potential, v, the Coulomb potential, v the anomaly
based upon Eqs. (31) and (20) with k=0.7. s„,~ is the
net perturbation acting upon a proton. Also shown on
this diagram is —,v„which clearly provides a moderately
good average representation of the net perturbation.
The net potential acting upon a proton is indicated by
V„,~. The approximate proton potential used in this
analysis which is a,rrived at by the cut-off device and
the method of A shifts is denoted by V„,&. The residual,
v„= V,&

—V,&, which is ignored in this analysis, is also
shown. It is satisfactory that even in the case of a
heavy nucleus this residual is small in the region of
importance and changes sign several times. The effect
of the residual which varies somewhat from state to
state, could be handled in the next approximation by
numerical methods.

The overall agreement between —,'v, and v, & indicates
that both devices would be about equally eGective from
the standpoint of particle binding energies. The diGer-
ences between these two perturbations would, however,
inhuence the wave functions. Because of the slow
decline of v„ this perturbation would push out the
proton probability distribution relative to the neutron
distribution in the same quantum state. On the other
hand the abrupt rise in e„,& indicates that with the
alternative interpretation the proton is pulled in rela-
tive to a neutron in the same quantum state. The
extent of these eGects will be examined in a later paper
in which the wave functions will be developed.

(5) DISCUSSION AND CONCLUSIONS

It might be hoped that the reasonableness and
success of this simple model might shed some light on
the relationship between the theory of nuclear forces
and the phenomenological nuclear potentials required
for shell model studies. The proton potential anomaly
must certainly be a significant clue in this direction.
While the potential anomaly described here has been
related to the Coulomb eGect, it is important to point
out that alternative interpretations concerning the
origin of the anomaly have been examined which also
yield satisfactory proton binding energies. These will
be reported in a later work. For the moment, it is per-
haps best to use the net 3 shifts and the constants
given in Table I to characterize the net perturbing
force acting upon protons without regard to their
interpretation.

The fact that in this model the region of buildup of
the nuclear potential occurs in a distance of the order
of 1&10—"cm, independent of the mass number, is
quite reasonable from the standpoint of meson theory
of nuclear forces. One would expect such a diGuse
boundary potential as long as the nuclear density dis-

TAM.E I. Coulomb A shifts.
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80.25

3.90
6.26
7.99
9.56

11.'01

12.18
13.29
14.36
15.40
16.23

tribution falls oG in a region smaller than the region of
fall-oG of the potential function. Preliminary studies'
indicate that the composite nucleon densities calculated
from this type of potential fall off more rapidly than
the assumed nuclear potential.

The good agreement of the eigenvalues with experi-
ment suggests that, quite apart from the fundamental

significance of this phenonmnological potential, this
model will serve a useful role in many applications of
the shell model. Good agreement is here to be inter-
preted in the sense of gross structure rather than fine
structure, i.e., the eigenvalues of outermost particles
are close from the standpoint of a range of possibilities
extending from about —40 Mev to, say, +10 Mev.
Since the experimental data used in the adjustment
process bounds the energy region in which the shell
model has been most successfully applied, one might
look to the eigenvalues, and certainly to the eigen-
functions based upon this simple potential, for a realistic
and quantitative realization of what has long been
expected in qualitative discussions of the nuclear shell
model.

The use of the critical 3s and 4s A values in the
adjustment process, as well as the close resemblance
between this potential and the real part of the cloudy
crystal ball model potential, makes it obvious that the
remarkable neutron scattering predictions of the sharp
boundary cloudy crystal ball model will not be sacri-
ficed by the substitution of the potential used here.
Indeed, the scattering predictions might well be further
improved by the use of a diffuse boundary potential. '
The fact that this restricted type of nuclear potential
successfully embraces both the low-energy neutron
scattering problem and the bound state problem is no
mean accomplishment. The widely used harmonic oscil-
lator potential is obviously incapable of this. The
square well' and other still more realistic potentials"
have also been found inadequate in this regard. Other
advantages of this nuclear potential are the finiteness
of the potential gradient, an important consideration
in correcting for the spin-orbit eGect as well as other
surface phenomena, and the fact that the eigenfunctions
are Bessel functions, which have numerous useful

s K. Lee and A. E. S. Green, Phys. Rev. 99, 1627(A) (1955).' V. F. Weisskopf (private conversation)."R.D. Lawson, Phys. Rev. 100, 957(A) (1955).
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analytic properties and which are among the most ex-
tensively tabulated sets of functions. The normalization
constants, as well as several important diagonal matrix
elements associated with this nuclear potential, have
been computed and are now being prepared for
publication.
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By comparison with the nuclear magnetic resonance of CPS, the nuclear magnetic moments of Ba"' and
Ba"7 were found to be 0.832293&0.000025 and 0.931074&0.000055, respectively, without diamagnetic
correction.

'HE nuclear magnetic resonances of the barium
isotopes have been determined by means of

nuclear induction using a variable frequency nuclear
magnetic resonance spectrometer' and enriched stable
isotopes of barium. The electronically regulated magnet'
having 12-inch diameter poles and a 2.13-inch gap
provided a magnetic field of approximately 9200 gauss
having a homogeneity of better than 0.05 gauss over
the sample volume. Frequency determinations were
made using a Signal Corps BC-221 frequency meter
calibrated with its internal crystal and radio station
K%V. The combined short-time stability of the radio-
frequency oscillator and magnetic field system was

greater than 1 part in 250 000.
The samples were saturated aqueous solutions of

BaCl& sealed in 15-mm test tubes. No magnetic catalysts
were added. Both samples exhibited signs of small BaC12
crystals in the bottom of the tube. The barium-135
sample contained 1.5 grams of barium enriched to
58.5% barium-135, and the barium-137 sample con-
tained 1.5 grams of barium enriched to 43.5% barium-
137. All frequency comparisons were made with respect
to the resonance frequency of the CP' in the samples.
The line widths as determined by maximum deflection
of the derivative of the absorption curve was approxi-
mately 2.5 gauss. The modulating field was 1.3 gauss
and it was necessary to use a relatively high level of
radio-frequency field.

The results of these measurements indicate that the

*Now located at Commercial Atomic Power Activities, %est-
inghouse Electric Corporation, P.O. Box 355, Pittsburgh, Penn-
sylvania.' Manufactured by Varian Associates, Palo Alto, California.

barium-to-chlorine frequency ratios are

v(Ba"')/v(CP') = 1.01387&0.00002,

v(Ba's7)/v(CPs) = 1.13420+0.00005,

and by calculation we find the resonance frequency
ratio to be

v(Ba" )/v(Ba"') = 1.11868+0.00006.

This result compares favorably, but is more precise
than the earlier molecular beam determination by Hay'
which gives the ratio of the barium gyromagnetic
factors to be 1.1184&0.0010.

Using the chlorine-to-deuterium ratio of %alchli
and the deuterium-to-proton ratio of Lindstrom, 4 and
choosing the value of the proton moment as 2.79267
nuclear magnetons with known spins of 2 for the
barium isotopes, ' we have calculated the nuclear
moments, without diamagnetic correction, to be

p (Ba"') =0.832293&0.000025,

p (Ba"r)=0.931074&0.000055.

This work was performed in the Metals Research
Laboratory of the Electro Metallurgical Company,
and the enriched samples were provided by the Stable
Isotope Research and Production Division of the Oak
Ridge National Laboratory.

' R. H. Hay, Phys. Rev. 60, 75 (1941). This report states the
ratio to be 1.1174~0.0010, but moment values reported give a
ratio of 1.1184.

'H. E. Kalchli, M.S. thesis, University of Tennessee, June,
1954 (unpublished); also Oak Ridge National Laboratory
Report ORNL-1775 (unclassified) (un ublished).

4 G. Lindstrom, Physica 17, 412 1951); Arkiv Fysik 4, 1
(1951).' I. E. Mack, Revs. Modern Phys. 22, 64 (1950).


